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Abstract 

Community structures are fundamental in understanding the structure and functionality of 

complex networks. Different optimization algorithms, including both single-objective and multi-

objective approaches, have been employed to address the challenge of community detection. 

Recently, multi-objective evolutionary algorithms (MOEAs) have attracted many researchers to 

identify communities in static networks. Many algorithms have been proposed to find a solution 

that achieves a trade-off between exploring new areas of the solution space and improving the 

quality of existing solutions. In this trade-off is crucial; whereas exploitation improves existing 

solutions, it may fail to find better solutions from insufficiently explored regions of the solution 

space. Therefore, mutation in evolutionary algorithms greatly impacts community detection 

within social networks. Conventional mutation methods usually tend to apply too much 

randomness, which results in convergence being less precise about finding a suitable optimum 

solution. This paper introduces a new mutation called community strength enhancement (CSE) 

to enhance the search efficiency of the Multi-Objective Evolutionary Algorithm with 

Decomposition (MOEA/D) and speed up the convergence of the suggested algorithm. Moreover, 

the proposed algorithm overcomes the limitations of traditional MOEA/D by accurately and 

effectively identifying communities across a wide range of social networks. The enhanced 

algorithm was evaluated on two groups of datasets (twenty synthetic and four real-world) using 

normalized mutual information (NMI) and modularity (Q) across five baseline models. 

Integrating the CSE mutation strategy led to significant improvements in performance, 

particularly under high mixing parameters and in large-scale networks, as evidenced by 

increased NMI and modularity scores. 

Keywords: Multi-objective optimization, Evolutionary algorithms, Community detection, 

Metaheuristic, Hybrid, Social network. 

 

1.Introduction 

Networks represent a robust framework for modeling and analyzing various real-world 

systems, such as social network platforms, biological systems, transportation infrastructure, and 
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information systems (1). These frameworks ‎effectively capture both the components of these 

systems and their interactions (2). When identifying communities, the number of connections 

within a community is denser than those outside the communities (3-5). Therefore, this study 

employs two objective functions in the MOEA/D algorithm: the first objective function aims to 

maximize the intra connections within a community and the second objective function aims to 

minimize the inter connections connecting a node to other communities. To build interconnected 

communities, increasing internal connections and reducing external connections is necessary (6, 

7). Evolutionary optimization algorithms inspired by the principles of natural selection, due to 

the iterative and adaptive exploration of large solution spaces, can carry out this task according 

to (8). Among the core components of evolutionary algorithms, mutation operators play a crucial 

role in introducing diversity into the population and preventing premature convergence (9). 

Many social network analysis studies have aimed to capture the evolution of the community 

structure (11). For example, (11) unsigned and unweighted networks, (12) with the signed 

network, and (13) with the positive‎and negative weight networks. Despite the success of current 

evolutionary-based identification algorithms, they still exhibit a speed problem and face the 

challenge of assigning the weak node to the true community. Several researchers have attempted 

to improve the performance of MOEA/D algorithms by developing mutation strategies. A need 

for techniques that depend more on the structural properties of the network remains. The study in 

this context introduces the new mutation strategy Community Strength Enhancement (CSE), 

which focuses on intra-neighbor characteristics of nodes, thus helping the effectiveness of 

community detection. The contributions in this paper are listed below. 

 We state the problem as a multi-objective community detection algorithm based on the 

MOEA/D framework. Two conflicting objective functions are employed to solve the problem 

of single-objective functions, which most existing state-of-the-art methods adopt. 

 We introduce a new mutation operator based on the initialization process of neighbor nodes 

and their relationships to assign nodes to more suitable communities. The latest mutation 

strategy can improve the efficiency of the mutation process and make the algorithm converge 

faster. 

 We conducted a comparative evaluation by applying the traditional and the proposed algorithms 

across five models. The results revealed that integrating the proposed strategy consistently enhanced 

the performance of all models, achieving superior results on real-world networks compared to existing 

state-of-the-art methods. We organize the paper as follows. Section 2 introduces the problem of 

community detection; Section 4 presents the original framework of the MOEA/D algorithm 

and the proposed mutation operator to identify communities. Section 5 shows the results of 

the experiments on the proposed method and its comparison with other methods; Section 6 

covers the paper's conclusion. 

1.1. Preliminaries 

This section presents the basic concepts of community detection in complex networks. In 

complex networks, communities present a vital substructure, depicting a set of nodes with 

significantly greater internal connections than external connections with the rest of the network. 

The network structure represents the system as a graph (G). For a static, unweighted, and 

undirected network,        , where   is the set of nodes,   is the set of edges connecting 

these nodes,   is the number of nodes in the network   | |,   is a number of subgroups and 
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  is the number of all edges   | |. An adjacency matrix (    ) can also represent the graph; 

let         where     is given by: 

    {
     t  r   s  n        tw  n no  s    n   
  ot  rw s 

 

You can use the adjacency matrix to calculate a community or a node's internal and external 

edges. 

The primary objective of community detection is to divide the network into subgroups   

               so that each community demonstrates significantly stronger internal connections 

than external ones. In other words, nodes that belong to the same community are very densely 

connected, whereas the links between different communities are comparatively less dense. 

To determine whether a subset     represents a valid community (Measuring Community 

Strength), we compute the number of internal edges     and the number of external edges      

for this subset:        ∑         ,        ∑           . For node     represents the number 

of internal edges of a node within the same community and      represents the number of edges 

connecting the node to nodes outside the community. If               , the subset   can be 

considered a well-defined community. 

1.2. The Objective Function 

The purpose of partitioning a network into groups of vertices is to ensure that the edge density 

within each group exceeds the edge density between groups. For this purpose, we require an 

objective function that increases the number of connections within each cluster and another 

objective function that reduces the number of connections between the other clusters. Evaluate 

how well the generated communities capture the original structure and properties of the data. 

Additionally, any problem with a single objective function has a unique solution. At the same 

time, the Pareto front is the result of multiobjective optimization efforts to find exact solutions 

under many conflicting objectives simultaneously. This study presents the formulation for 

identifying communities as a task involving two optimization objectives. It was formulates the 

community detection problem as a maximization problem with two objectives (14). The first 

objective is the community score (CS), and the second is the community fitness (CF). 

      ∑
 

|  |
 
   ∑ (

      

|  |
)
 

    
                                                                                     (1) 

The parameter   controls the size of the communities to increase the weight of the degree of the 

internal node within a community and community size|  |. Thus, the CS calculated by the 

summation of a local score for each community Ck. 

       ∑
       

(                )
  

 
                                                                                                   (2) 

Where   is a positive number that determines the size of communities. If   is significant, the 

network will be split into small communities; otherwise, large communities will be the most 

prevalent. 

Where α is a positive number that determines the size of communities. If α is significant, the 

network will be split into small communities; otherwise, large communities will be the most 

prevalent. For example, in 2020, (15) and (16) incorporated these two objectives into their 

research as a multiobjective optimization model. It was formulated the community detection 

problem as a multi-objective minimization problem by (17). They considered modularity (Q) as 

two conflicting objectives that measure the degree of internal connectivity and interconnectivity. 
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Therefore, they define two objectives that should be minimized as follows. The first measures the 

intra-connection 

            ∑
       

 

 
                                                                                                            (3) 

While the second measures the degree of inter-connections: 

         ∑ *
     

  
+
 

 
                                                                                                                    (4) 

They have shown that optimizing these two objectives simultaneously can produce a wide range of 

possible community structures, with more or less emphasis on connections within and between 

communities. Since modularity is a weighted sum of two objectives, it is clear that the partition 

that maximizes modularity must be a member of the Pareto set. The two objectives are also 

adopted by other researchers. For example, in 2015, (18) and (19) minimize the kernel k-means 

(KKM)  and the ratio cut (RC). 

                ∑
       

|  |
 
                                                                                           (5) 

       ∑
        

|  |
 
                                                                                                                    (6) 

Which is used additionally in recent literary research (19-22). 

It was proposed a local information-based multiobjective evolutionary algorithm (LMOEA) by 

(23). A similar framework as MOEA/D is adopted to simultaneously optimize the two 

conflicting objectives of the negative ratio association (NRA) and ratio cut (RC). In addition, 

(24, 25) used the same objectives. 

       ∑
       

|  |
 
                                                                                                                     (7) 

It was proposed a new model that is based on the Hidden Markov Model (HMM- MODCD) 

consisting from fintra and finter with the Multi-Objective Evolutionary Algorithm and it proved 

effective in enhancing the performance of dynamic community detection by (7). 

   ntr            ∑
 

|  |
 
   ∑ (

  n    

  n     out   
)    
                                                               (8) 

    nt r    ∑
 

|  |

 
   ∑

   
     

 out(    )

      n          
                                                                                     (9) 

1.3 Evolutionary Algorithm with Decomposition for Multiple Objectives (MOEA/D) 

The MOEA/D is used for solving multi-objective optimization by maximizing a limited set of 

scalar optimization sub-problems to get uniformly spread Pareto solutions. MOEA / D algorithm 

achieves this objective by distributing resources using pre-specified weight vectors (w). The 

decomposition and selection of the weight vector will collaborate to promote diversity in the 

population (P), thus improving the quality of the solution. MOEA/D also studies the effect of 

constraints on mating coordination on the relationship between exploration and exploitation. 

MOEA/D ensures that solutions are exchanged synchronously through local interactions and 

safeguards the optimization process against being stopped prematurely. In this, the MOEA/D 

procedure presents a convenient optimization process where innovation flourishes in complexity 

(C) and methodological composition delivers solutions (26). Many studies have shown that 

MOEA / D-based algorithms show a very high level of success in solving MOP (27, 28). 

Because of this, researchers have applied it to the problem of detecting a community (CD), in 

which at least two target functions (f1, f2, . . . , fn)  either need to be maximized or minimized. The 

algorithm below briefly describes the principal MOEA/D phases. 
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Algorithm 1: General framework to MOEA/D Algorithm for Community Detection 

Input: 

• Number of objectives (Objective Dimension) 

• Population size (Pop Size) 

• Number of generations (Generations) 

• Mutation Probability (pm) 

• Crossover Probability (px) 

• Initial Ideal Point based on Fitness Model (minimization or maximization) 

Output: 

• Near Pareto Optimal Sets (Non-dominated solutions) 

• All solutions detected 

MOEA/D Loop 

For Generation Counter = 1 to Generations do 

Step 1: Update Reference Points (Ideal Point, IndivPoint);  

Step 2: Initialize Results and Near Pareto Optimal Set; 

Iteration Loop (ProblemCounter = 1 to PopSize) 

Step 3: Selection Operator – Choose two parent solutions (Parent1, Parent2); 

Step 4: Crossover Operator – Generate child solution from parents;  

Step 5: Mutation Operator – Apply mutation to the child solution;  

End loop 

Step 6: Decode Child Population – Convert child solutions to meaningful representations 

(Individual2ClusterDecoding); 

Step 7: Evaluate Fitness – Calculate fitness values for the child population 

(ComputeFitnessCollectionParallel); 

Step 8: Update Reference Points – Update IdealPoint and IndivPoint based on child population; 

Step 9: Update Population – Combine parent and child populations based on fitness 

(UpdateProblem); 

Step 10: Update Near Pareto Optimal Set – Add non-dominated solutions from child population 

(UpdateNearParetoOptimalSet); 

Step 11: Store Results – Save Near Pareto Optimal Set for current generation; 

End for  

End loop 
 

 

1.4. Related work 

Various evolutionary algorithms and optimization frameworks have been used to address the 

problem of community detection in complex networks. Current mutation strategies may fail to 

adequately explore solution spaces or preserve meaningful community structures, which can 

negatively impact the quality and efficiency of the detection process. Researchers address this 

issue by integrating a local search strategy with the evolutionary algorithm, which can make 

evolutionary algorithms much better at finding communities. Given the importance of mutation, 

several studies have proposed improvements to mutation operators designed explicitly for 

community detection. It was presented a new formulation for the intra-neighbor community 

detection score and the intra-neighbor score, and a migration operator method with MOEA/D 

(29). It was suggested a new multi-‎objective generational genetic algorithm (MOGGA+) 

integrated with three types of mutation operators (30). In each execution, choose a random 

mutation from one of these. This algorithm optimized two objectives, the modularity and 

the ‎conductance measure. RAMESH and SRIVATSUN proposed a framework that ‎integrates the 

MOEA/D algorithm with a new mutation operator that uses community labels of cliques as 
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genes rather than cliques (31). This algorithm optimizes Kernal K-mean (KKM) and Ratio Cut 

(RC) objectives. It was. suggested a multi-objective community identification method based on a 

pigeon-inspired optimization algorithm, MOPIO-Net, and this algorithm minimizes two 

objectives, RC and Negative Ratio Association (NRA). The algorithm was combined with the 

suggested boundary node variation strategy to enhance the detection effectiveness (25). Despite 

many approaches that have led to meaningful progress, there are still challenges, particularly in 

designing mutation strategies that can be deeply aligned with the structural characteristics of the 

networks. Most existing methods involve general or random mutation mechanisms, which are 

not conducive to effectively preserving meaningful community structures. Thus, more targeted 

strategies that consider the local topology of nodes are called for. Table 9 summarizes the 

difference between the state-of-the-art and our proposed CSE mutation strategies. 

 

2.  Materials and Methods 

In this section, we present the framework of our algorithm and introduce a proposed mutation 

that would improve its efficiency and effectiveness. This mutation encourages the diversity of 

efficient solutions that contribute positively to the community detection task across different 

kinds of networks. 

2.1. Framework structure 

 
Figure 1. The framework of the proposed Algorithm 

 

In Figure 1, the graph is first transformed into an adjacency matrix to represent the relationships 

between nodes. The next step is the genetic representation. The initialization step in which an 
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initial set of potential solutions is generated to ensure diversity of solutions and a broader 

exploration of the solution space. It will be attained and evaluated against the chosen objective 

function, which helps to point out the solution capable of achieving the most initial balance with 

objects. In the next stage, solutions are selected based on neighborhood relation- ships, and then 

genetic operations such as cross-over and mutation are performed to introduce new solutions and 

increase diversity within the population. The population is updated based on fitness evaluations 

performed over multiple generations, culminating in the final network partition, which can be 

visualized as a Pareto front of optimal solutions. 

2.1.1. Chromosome Representation (chromosome encoding) 

The representation of the chromosome is crucial to the effectiveness of evolutionary algorithms 

(EA). The genotype encoding used here follows a locus-based adjacency representation (14). It is 

the most commonly used approach and has been proven to be effective in previous research. 

2.1.2. Population Initialization (Decoding) 

In the first phase of population decoding, the genetic representation of each individual is 

converted into a community structure. The individual chromosomes represent the relationships 

between the nodes and should be used to assign the nodes to different clusters. 

2.1.3. Uniform Crossover 

It generates offspring by exchanging genes between two parents. In this method, each gene in an 

offspring chromosome is determined with some given prespecified probability of recombination. 

This operation is repeated for all genes on the chromosome, where, for each position, a random 

number between 0 and 1 is generated. If it is less than or equal to Pc, the gene in the position 

copies its allele from Parent1. Otherwise, it copies its allele from Parent2. The genes thus 

selected are then joined in order of selection itself to form the offspring chromosome. 

2.1.4. Enhanced Mutation Operator (Community Strength Enhancement (CSE)) 

The mutation operator in the traditional version of MOEA/D is employed to enhance the current 

optimal solution in a random manner. In this case, the exchange of node location between 

communities occurs randomly, meaning each node of the current solution is replaced by a 

random selected node from the neighboring nodes. The exchange occurs when the randomly 

generated value less than the mutation probability (pm). Randomly detecting nodes reduces the 

effectiveness of the search. 

To improve the efficiency of community evaluation solutions in networks, we propose to 

implement a Community Strength Enhancement (CSE) strategy that provides greater precision in 

assigning nodes to their actual communities. This strategy illustrates the interconnection of 

nodes, both within and among communities. The CSE strategy is calculated as follows: 

           n     our  ∑    
 n     our 

   
                                                                                               (10) 

 n     our , defined by: 

 n     our  ∑ |    
    |                                                                                                             (11) 

          refers to the computation of the reassignment rate of the current vulnerable node   in 

the neighboring community    , where  n     our  represent the neighbor nodes of node   in the 

community    and            represents the internal connections of each neighbor nodes of the 

vulnerable node with each   community. 

The CSE reassignment strategy is partitioned into three separate scenarios, see Figure 2. 

 In the first scenario, if the community to which the vulnerable node is assigned has a lower 



IHJPAS. 2025,38(4) 

447 

reassignment rate than other communities in its vicinity, the node will be reassigned to the 

community with the highest reassignment rate. 

 In contrast, the second scenario occurs when multiple communities have a shared maximum 

occupancy rate across all surrounding communities of the vulnerable community. In this 

circumstance, we assign the node to one of these communities at random based on the 

probability of mutation (Pm). 

 In the third scenario, when a node has equal internal and external connections, it will be 

reassigned to the community with the highest reassignment rate. This is because the strategy 

looks at the neighborhood strength and the internal connections of neighborhood, providing a 

better understanding of the structural context. Thus, even if the internal and external degrees 

look seemingly equal, this additional information layer enables more accurate and context-

aware community assignments. 

This study examines the distinction between canonical mutation operators and enhanced 

mutation operators. The key difference lies in the enhanced mutation strategy ability to 

potentially migrate a specific node to another suitable cluster according to the above three 

scenarios. In contrast, the canonical mutation selects and relocates a random node towards a 

randomly selected cluster. The procedure of the suggested mutation strategy is provided in 

 l or t m 2. In or  r to  n  nc  t   commun ty’s loc l s  rc  c p   l ty  n   ncr  s  t   qu l ty 

of the network community division, therefore, the (MOEA/D) can be applied to address the 

challenge of community detection as well as other optimization problems. In this work, we used 

the canonical and enhanced mutation strategy independently. 

 
Figure 2. Explain application of Community Strength Enhancement Mutation. 
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Algorithm 2. The Proposed Community Strength Enhancement Mutation 

 
Input: Number of nodes in the network, degree of each node, mutation probability, individual (partition) 

Output: Child (partition) 

For Node i= 1 to N do 

For Node j = 1 to NumConnectedNodes (Node i) do 

Calculate intra-connection for nodes; 

End for  

End for 

For Node i = 1 to N do 

If NumConnectedNodes (Node i) > 0 and rand ≤ Pm then 

If k Node i in ≤ k Node i out then 

For ConnectedNodeCounter = 1 to NumConnectedNodes (Node i) do 

Calculate Vneighbor from Equation (10) for each community;  

Calculate the intra-connection for Vneighbor  (11) for each community;  

End for 

End if 

temp = 0;        

     NewCluster = 1; 

For kk = 1: k do 

Calculate CSE from Equation (10) for each community; 

If temp < CSE then  

temp = CSE;  

NewCluster = kk; 

Else 

Go to canonical mutation; 

End if 

End for 

       End for 

End for 
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Figure 3. Flowchart for the main steps of the Algorithm 2. 

 

3. Results and Discussion 

In this section, we present and discuss the results that demonstrate the effectiveness of our 

improved MOEA/D algorithm compared to other state-of-the-art algorithms. We applied 

MOEA/D with canonical mutation and with the proposed mutation for these models (MOGA-

NET, MODPSO, LMOEA, HMM-MODCD), all of which are mentioned in Section 3.1. 

Furthermore, Table 8 includes the equations used and the period to which they were applied. In 

each case, a table compares the different mutation strategies and describes the determinants and 

pathways used in each case. 



IHJPAS. 2025,38(4) 

450 

For fear comparison, we determined the population's size, or an excessive amount of potential 

solutions, to be 300. We additionally set each solution's size, or number of neighbors, to five. 

The mutation probability is 0.6, and the crossover probability is 0.8. We settled on 300 

generations as the upper limit. The results were set to the mean of 10 simulated trials. The good 

non-dominated solution from each iteration saved with certain validity conditions into the Near 

Pareto Optimal Set (PS) archive. It was used to compute the average outcome for ten runs. We 

first illustrate the (MOEA/D) algorithm on 24 networks divided into two groups of networks 

(real networks and synthetic networks). 

3.1 Dataset description. 

This section describes the dataset that was employed in this study. It consists of 24 datasets 

divided into two groups. The first group examined four real networks. Zachary's network was 

constructed by examining the friendship connections between 34 club members with 78 

relationships within the network (32). The second network consists of 62 bottlenose dolphins 

from New Zealand and is called the Bottlenose Dolphins Network. This network contains 159 

connections with two significant groups (33). Girvan and Newman (34) rated the game of 

American football (2000) as the third most famous network. The 115 teams that competed in the 

Football 2000 championship games make up this network. Teams were divided into 12 groups, 

each representing a different geographic location. The ultimate network consists of the 

compilation of Krebs' publications on American politics, authored by Krebs himself (35). The 

105 books on politics that make up this network from the United States are available on 

Amazon.com. 

The second group consists of synthetic networks. Girvan and Newman (34) introduced a 

computer-generated benchmark that includes graphs of different levels of complexity. This 

benchmark was further developed by (36). The initial set of LFR benchmarks consists of a 

network with 128 nodes, built to accommodate four communities, each with 32 nodes. We 

evaluated the efficacy of the algorithms on networks produced between 0:05 and 0:5. The 

networks are referred to as LFR128. The next set of LFR benchmarks has been used to evaluate 

the four models using larger networks that closely match real-world networks. The benchmarks 

comprise 10 networks, each containing 1000 nodes. We refer to this set as LFR1000. According 

to (36), the size of the mixing parameter is between 0.5 and 0.05. 

3.2. Experiment on Real Networks. 

This section employs four types of real networks to test our algorithm. We show the result and 

discuss it. Table 1 shows the results of applying the MOEA/D algorithm to the five models with 

canonical mutations. These results show how canonical mutations influence the algorithm's 

performance in different models and serve as a comparison point with the results of applying the 

proposed CSE strategy in Table 2. The results of the tables show that the CSE strategy improves 

the performance of the MOEA/D algorithm by reassigning nodes to a more appropriate 

community. Speed up the convergence of the algorithm to the optimum solution. Table 1. The 

maximum and average values of Normalized Mutual Information (NMI) and Modularity (Q) were 

evaluated for the five models. These models are tested on four real-world networks with canonical 

mutation. 
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Table 1. The maximum and average values of Normalized Mutual Information (NMI) and Modularity (Q) were 

evaluated for the five models. These models are tested on four real-world networks with canonical mutation 

Dataset Measure MOCD MOGA-NET MODPSO LMOEA HMM-MODCD 

Zachary NMImax 0.8371 0.8371 0.8371 0.8371 0.8372 

 NMIav 0.8371 0.8371 0.8371 0.8371 0.8365 

 Qmax 0.4188 0.4188 0.4188 0.4188 0.3109 

 Qav 0.4188 0.4172 0.4188 0.4188 0.3079 

Dolphin NMImax 0.9065 1 1 1 1 

 NMIav 0.8888 1 1 1 1 

 Qmax 0.5178 0.5052 0.5008 0.5246 0.3339 

 Qav 0.5032 0.4931 0.5008 0.4994 0.3339 

Football 2000 NMImax 0.7571 0.6838 0.7598 0.7420 0.5493 

 NMIav 0.7315 0.6759 0.7292 0.7141 0.3487 

 Qmax 0.4727 0.4332 0.4713 0.4797 0.2799 

 Qav 0.4660 0.4231 0.4538 0.4573 0.2743 

Krebs NMImax 0.6263 0.6285 0.6103 0.6921 0.5934 

 NMIav 0.6014 0.6174 0.6019 0.6264 0.5934 

 Qmax 0.5123 0.5104 0.5189 0.5247 0.3569 

 Qav 0.5118 0.5060 0.5135 0.5177 0.3569 

 

Table 2. The maximum and average values of Normalized Mutual Information (NMI) and Modularity (Q) were 

evaluated for the five models. These models are tested on four real-world networks with community strength 

enhancement mutation. 

Dataset Measure MOCD MOGA-NET MODPSO LMOEA HMM-MODCD 

 NMImax 1 1 1 1 0.8589 

Zachary 
NMIav 

Qmax 

0.8372 

0.4188 

1 

0.4107 

1 

0.4198 

1 

0.4174 

0.8365 

0.3079 

 Qav 0.409 0.4033 0.4126 0.4174 0.3079 

 NMImax 1 1 1 1 1 

Dolphin 
NMIav 

Qmax 

1 

0.5178 

1 

0.5144 

1 

0.5178 

1 

0.5163 

1 

0.3339 

 Qav 0.5032 0.507 0.5172 0.5163 0.3339 

 NMImax 0.9273 0.8599 0.9269 0.9309 0.7961 

Football2000 
NMIav 

Qmax 

0.9273 

0.6036 

0.8559 

0.5847 

0.9177 

0.6044 

0.8946 

0.6044 

0.7961 

0.3237 

 Qav 0.6036 0.5806 0.6044 0.5950 0.3237 

 NMImax 0.6772 0.6314 0.6299 0.6705 0.6313 

Krebs 
NMIav 

Qmax 

0.6174 

0.5248 

0.594 

0.5249 

0.6299 

0.5178 

0.6099 

0.5253 

0.5979 

0.3539 

 Qav 0.5246 0.5211 0.5138 0.5145 0.3539 

 

In the Zachary dataset, all nodes in the actual partition are strong nodes. Two nodes (3 and 10) 

connect equally within and between the communities. The NMI achieved by all models using 

traditional mutations was about the same (0.8371), except for the HMM-MODCD model with a 

slightly better result of 0.8372, indicating that very little diversity was achieved in solution 

exploration before application of heuristic mutations. Now, the results of the best mutated 

versions by heuristics are much better, all reaching NMI = 1, which means that the method 

improves the quality of the results concerning how well the technique achieves community 
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detection. The HMM-MODCD with the traditional mutation method is not the best regarding 

heuristic mutation. It has now been improved only to 0.8589, possibly due to some inherent 

weaknesses in its functioning. 

In the dolphin dataset, all nodes in the actual partition of the dolphin dataset are strong nodes, 

except node (40), which has equal connections inside and between communities. All models 

achieved NMI = 1 for the Dolphin network except the MOCD model, which had 0.9065 with the 

traditional mutation. However, after applying our custom mutation, all models, including 

MOCD, reached NMI = 1, demonstrating their effectiveness in enhancing community detection 

precision. 

The football dataset has 15 weak nodes; some of them (12, 25, 51, 59, 60, 64,70, 81, 83, 98) 

have internal connections smaller than their external connections; on the other hand, nodes 

(22.93, 43, 91, 111) have internal connections of zero, but there are several external connections. 

In the football network, the results under traditional mutation produced notable variation, with 

the HMM-MODCD model having the lowest value of NMI at 0.5493, while MODPSO had the 

highest at 0.7598. These results show a lack of exploratory diversity in traditional mutation 

methods. However, after applying the proposed mutation, a significant improvement followed; 

LMOEA led with the highest value of 0.9309, while HMM-MODCD was 0.7961. This 

substantial improvement did not raise the NMI to one level, which reflects the complexity of 

network characteristics, the different responses of models to optimization processes, and the 

ultimate partitioning conditions that are sensitive and sometimes hard to attain. 

The Krebs dataset has 15 weak nodes. For these nodes (8, 19, 29, 51, 78, 86), the number of 

internal connections is smaller than the number of external connections; on the other hand, in 

nodes (30, 50), the internal connections of each node are equal to the number of external 

connections. Thus, the Krebs network was represented the highest by LMOEA with NMI = 

0.6921 using a traditional mutation, while its lowest value was recorded at 0.5934 by HMM-

MODCD. After its application, some models improved, whereby MOCD achieved the highest 

value of 0.6772. However, LMOEA dropped to 0.6705 and MODPSO had the least at 0.6299, 

further underscored by the variation in some models' response towards the optimization strategy. 
 

 

Figure 4. Zachary dataset, A- Correct partition and with CSE mutation, B- Canonical mutation.  
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Figure 5. Dolphin dataset with and without Heuristic mutation. 

 

 
Figure 6. Football dataset, A- Correct partition, B- Canonical mutation, C- Heuristic mutation 

 
Figure 7. Krebs dataset (A) Canonical mutation (B) Heuristic mutation 

 

The visual representations (Figures 4, 5, 6 and 7) present precise comparisons of the performance 

of the method being considered in the Football and Krebs networks, respectively. The figures 

portrayed the correct partitions along with the results drawn from the application of the 

traditional mutation and the CSE strategy, highlighting their effects on quality in community 

detection. When NMI = 1, the CSE mutation perfectly fits the correct partition. 
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Table 3. Real world dataset characteristics 

Dataset Nodes Edges Communities 

Zachary 34 78 2 

Dolphin 62 159 2 

Football 115 613 12 

Krebs 105 440 3 

 

3.3. Experiments on Synthetic Networks 

In this paper, we mainly perform experiments on the two groups of Synthetic Networks called 

the computer-generated benchmark network and the LFR benchmark network. We then 

displayed and discussed the result. Table 4 presents the Performance of the five models on 

synthetic LFR-128 networks without CSE mutation for maximum and average values of NMI 

 n  mo ul r ty Q, w  c   s s own to  r  u lly   cr  s   s t      r   o  t   m x n  p r m t r μ 

increases. Thus, it becomes more challenging to correctly recognize the existing community 

structures within the network as the mixing parameter increases. Throughout the variety of 

mo  ls t st  , un  r  ll μ l v ls,  t  s only  t t   low st m x n  p r m t r v lu  t  t LMOEA 

outperforms HMM- MODCD in terms of NMI and Q; th  v lu   s 0.9498  t μ = 0.05. How v r, 

the relative ability of HMM-MODCD to other models is seen to decline significantly, 

particularly when the level of mixing is increased. It does not seem to perform well when the 

model has to be applied to very complex networks 

Table 5 presents comparison of the models with the suggested mutation strategy CSE. There is a 

significant improvement in the performance of models due to the incorporation of CSE for 

n  rly  ll t   mo  ls  n  l v ls o  μ. Som  mo  ls,  or  x mpl , m  nt  n  n NMI o  1.0 up to μ 

= 0.25, a much more visible enhancement over Table 4, whereas the average modularity values 

over the different runs are more coherent and higher than pre-update runs, showing stronger 

community quality. These provide evidence that the CSE strategy maintains the quality of the 

solution as the difficulty increases. 

Results of the models on larger-scale synthetic networks (LFR-1000) using canonical mutation 

are shown in Table 6. There is a notable decrease in NMI and modularity  s n twork s z   n  μ 

increase, validating the scalability challenge faced by evolutionary models in community 

detection compared to the smaller networks. However, LMOEA maintains a relatively strong 

performance, compare to other models. The Q values drop s  n   c ntly w  n μ  xc   s 0.3, 

showing more pain in preserving meaningful community partitions. 

Table 7 shows the impact of the CSE strategy on the same large-scale networks. A clear 

improvement is observed across most models, especially in NMI scores, where many models 

k  p      v lu s (clos  to or  qu l to 1.0) up to μ = 0.3. LMOEA,  n p rt cul r, m  nt  ns  ot  

high accuracy and modularity in challenging settings, thus confirming the fact that the strategy is 

scalable and robust. Moreover, the performance gap between the models is reduced, which 

means that CSE helps equalize their exploration-exploitation balance and make them work 

towards optimal solutions. 
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Table 4. Performance metrics including maximum NMI, average NMI, maximum Q, and aver- age Q for synthetic 

networks were presented for all models, excluding CSE. 
 

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD 

 NMmax 1 1 1 1 1 

LFR-128-0.05 
Qmax 

NMlav 

0.7012 

1 

0.7012 

0.9874 

0.7012 

1 

0.7012 

0.9975 

0.4131 

1 

 Qav 0.7012 0.7012 0.6945 0.6999 0.4131 

 NMImax 0.9076 0.8868 0.9431 0.9498 0.9076 

LFR-128-0.1 
Qmax 

NMlav 

0.6014 

0.8837 

0.5669 

0.8478 

0.618 

0.9182 

0.6307 

0.8982 

0.3662 

0.8451 

 Qav 0.5837 0.5419 0.5987 0.5935 0.3528 

 NMImax 0.7862 0.729 0.873 0.8435 0.7565 

LFR-128-0.15 
Qmax 

NMlav 

0.453 

0.7587 

0.4441 

0.7104 

0.4985 

0.8125 

0.5 

0.7636 

0.3037 

0.5295 

 Qav 0.4431 0.4199 0.4778 0.4545 0.2887 

 NMImax 0.6502 0.6316 0.7139 0.6961 0.5356 

LFR-128-0.2 
Qmax 

NMlav 

0.3634 

0.6288 

0.3281 

0.5656 

0.4012 

0.6638 

0.3827 

0.6254 

0.2929 

0.4239 

 Qav 0.3521 0.3177 0.3658 0.3343 0.2657 

 NMImax 0.5629 0.462 0.5894 0.5682 0.4188 

LFR-128-0.25 
Qmax 

NMlav 

0.2764 

0.5239 

0.2491 

0,405 

0.3019 

0.5568 

0.2875 

0.523 

0.25 

0.354 

 Qav 0.2666 0.1965 0.2713 0.259 0.25 

 NMImax 0.5054 0.3653 0.5331 0.5189 0.3955 

LFR-128-0.3 
Qmax 

NMlav 

0.2322 

0.4641 

0.1766 

0.3428 

0.2413 

0.4558 

0.2498 

0.4448 

0.25 

0.3119 

 Qav 0.215 0.1398 0.2176 0.2068 0.25 

 NMImax 0.4514 0.087 0.4062 0.3949 0.29 

LFR-128-0.35 
Qmax 

NMlav 

0.1846 

0.3812 

0.0229 

0.0087 

0.1949 

0.3779 

0.1852 

0.3677 

0.25 

0.239 

 Qav 0.1759 0.0023 0.17010 0.1654 0.25 

 NMImax 0.3593 0.087 0.3444 0.4063 0.2525 

LFR-128-0.4 
Qmax 

NMlav 

0.1636 

0.3151 

0.021 

0.0087 

0.1613 

0.32 

0.1613 

0.3167 

0.25 

0.2065 

 Qav 0.1462 0.0021 0.1446 0.1432 0.25 

 NMImax 0.2878 0.03 0.3198 0.307 0.208 

LFR-128-0.45 
Qmax 

NMlav 

0.1339 

0.264 

0.0015 

0.02 

0.1333 

0.2344 

0.1324 

0.2415 

0.25 

0.171 

 Qav 0.1287 0.001 0.1274 0.1245 0.25 

 NMImax 0.2585 0.03 0.26 0.2418 0.2445 

LFR-128-0.5 
Qmax 

NMlav 

0.1349 

0.2214 

0.0015 

0.02 

0.1262 

0.2132 

0.135 

0.1891 

0.25 

0.161 

 Qav 0.1215 0.001 0.1165 0.1169 0.25 
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Table 5. Performance metrics including maximum NMI, average NMI, maximum Q, and aver- age Q for synthetic 

networks were presented for all models, including the CSE heuristic. 
 

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD 

 NMmax 1 1 1 1 1 

LFR-128-0.05 
Qmax 

NMlav 

0.7012 

1 

0.7012 

1 

0.7012 

1 

0.7012 

1 

0.1431 

1 

 Qav 0.7012 0.7012 0.7012 0.7012 0.1431 

 NMmax 1 1 1 1 1 

LFR-128-0.1 
Qmax 

NMlav 

0.6533 

1 

0.6533 

1 

0.6533 

1 

0.6533 

1 

0.3892 

1 

 Qav 0.6533 0.6533 0.6533 0.6533 0.3892 

 NMmax 1 1 1 1 0.8679 

LFR-128-0.15 
Qmax 

NMlav 

0.5995 

1 

0.5995 

1 

0.5995 

1 

0.5996 

0.9707 

0.3447 

0.8571 

 Qav 0.5995 0.5931 0.5995 0.583 0.3447 

 NMmax 1 1 1 0.9748 1 

LFR-128-0.2 
Qmax 

NMlav 

0.5508 

0.9666 

0.5508 

0.95 

0.5508 

1 

0.5389 

0.8622 

0.3379 

0.8622 

 Qav 0.5355 0.5292 0.5508 0.4726 0.3252 

 NMmax 1 0.9325 1 0.9247 0.8571 

LFR-128-0.25 
Qmax 

NMlav 

0.5 

0.922 

0.4728 

0.8974 

0.5 

1 

0.4713 

0.7601 

0.3027 

0.651 

 Qav 0.4669 0.4574 0.5 0.3851 0.2871 

 NMmax 0.9452 0.9247 1 0.7999 0.5911 

LFR-128-0.3 
Qmax 

NMlav 

0.4149 

0.8408 

0.4247 

0.8791 

0.4502 

1 

0.3719 

0.5704 

0.2705 

0.4947 

 Qav 0.3738 0.4046 0.4502 0.2567 0.2594 

 NMmax 0.9248 0.8682 1 0.5819 0.5002 

LFR-128-0.35 
Qmax 

NMlav 

0.3212 

0.6842 

0.3556 

0.7584 

0.4023 

0.9422 

0.2554 

0.4691 

0.25 

0.3238 

 Qav 0.2883 0.3129 0.382 0.2049 0.25 

 NMmax 0.5531 0.686 0.6667 0.436 0.3017 

LFR-128-0.4 
Qmax 

NMlav 

0.2118 

0.4323 

0.2638 

0.5665 

0.2441 

0.6085 

0.1843 

0.338 

0.25 

0.2319 

 Qav 0.1777 0.2227 0.2227 0.1537 0.25 

 NMmax 0.42 0.3 0.6667 0.3475 0.2375 

LFR-128-0.45 
Qmax 

NMlav 

0.1615 

0.2939 

0.0015 

0 

0.1973 

0.395 

0.1531 

0.2582 

0.25 

0.1734 

 Qav 0.1396 0 0.1703 0.1319 0.25 

 NMmax 0.2585 0.03 0.3868 0.2978 0.1636 

LFR-128-0.5 
Qmax 

NMlav 

0.1707 

0.2133 

0.0015 

0 

0.1692 

0.2609 

0.1255 

0.1891 

0.25 

0.13281 

 Qav 0.1327 0 0.1474 0.1169 0.25 
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Table 6. Performance metrics including maximum NMI, average NMI, maximum Q, and average Q for synthetic 

networks were presented for all models, with canonical mutation. 
 

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD 

 NMmax 0.9321 0.9259 0.931 0.9367 0.9369 

LFR-1000-0.05 
Qmax 

NMlav 

0.7353 

0.7353 

0.7501 

0.7501 

0.7709 

0.7709 

0.7605 

0.7605 

0.3907 

0.3907 

 Qav 0.9221 0.9147 0.9274 0.936 0.6261 

 NMmax 0.8624 0.8506 0.8726 0.8635 0.8411 

LFR-1000-0.1 
Qmax 

NMlav 

0.6353 

0.8577 

0.5897 

0.8402 

0.64 

0.8657 

0.6237 

0.8635 

0.3288 

0.8307 

 Qav 0.6257 0.5875 0.6277 0.6175 0.3288 

 NMmax 0.7915 0.7613 0.78 0.7709 0.7203 

LFR-1000-0.15 
Qmax 

NMlav 

0.5 

0.7736 

0.4828 

0.7509 

0.4909 

0.7771 

0.4813 

0.7672 

0.2554 

0.645 

 Qav 0.4846 0.4675 0.4726 0.4726 0.2497 

 NMmax 0.709 0.692 0.7033 0.7017 0.6221 

LFR-1000-0.2 
Qmax 

NMlav 

0.3966 

0.7018 

0.384 

0.6829 

0.3831 

0,7012 

0.3865 

0.7017 

0.2186 

0.5486 

 Qav 0.3909 0.3712 0.38 0.3865 0.214 

 NMmax 0.6314 0.6053 0.646 0.6316 0.4753 

LFR-1000-0.25 
Qmax 

NMlav 

0.3293 

0.6265 

0.3046 

0.5981 

0.3209 

0.6408 

0.3181 

0.6316 

0.2056 

0.39 

 Qav 0.3213 0.2928 0.3135 0.3181 0.2049 

 NMmax 0.5801 0.5738 0.593 0.5769 0.4332 

LFR-1000-0.3 
Qmax 

NMlav 

0.2617 

0.5747 

0.2562 

0.5397 

0.2608 

0.5839 

0.2553 

0.5638 

0.2051 

0.3577 

 Qav 0.2614 0.2418 0.2566 0.2529 0.2051 

 NMmax 0.5211 0.4945 0.5313 0.5151 0.3464 

LFR-1000-0.35 
Qmax 

NMlav 

0.2182 

0.5132 

0.1997 

0.4815 

0.2055 

0.519 

0.206 

0.5136 

0.2072 

0.3105 

 Qav 0.2122 0.1907 0.2018 0.2029 0.2072 

 NMmax 0.474 0.4336 0.464 0.467 0.3048 

LFR-1000-0.4 
Qmax 

NMlav 

0.1716 

0.4585 

0.1581 

0.3955 

0.1714 

0.4653 

0.1673 

0.467 

0.2174 

0.2344 

 Qav 0.1705 0.1389 0.1684 0.1665 0.2125 

 NMmax 0.4185 0.3772 0.4296 0.4285 0.2442 

LFR-1000-0.45 
Qmax 

NMlav 

0.1475 

0.4073 

0.1233 

0.3219 

0.143 

0.4147 

0.1375 

0.3973 

0.2204 

0.1852 

 Qav 0.1468 0.0982 0.1408 0.1466 0.2204 

 NMmax 0.4003 0.2858 0.3857 0.3703 0.2443 

LFR-1000-0.5 
Qmax 

NMlav 

0.1305 

0.3747 

0.0709 

0.2141 

0.1281 

0.3787 

0.1285 

0.3727 

0.2287 

0.1426 

 Qav 0.1285 0.0428 0.1235 0.1205 0.2287 
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Table 7. Performance metrics including maximum NMI, average NMI, maximum Q, and aver- age Q for synthetic 

networks were presented for all models, with the CSE heuristic. 
 

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD 

 NMmax 1 0.9839 1 1 0.9942 

LFR-1000-0.05 
Qmax 

NMlav 

0.8602 

0.9992 

0.8942 

0.9784 

0.9101 

1 

0.9101 

0.9977 

0.4645 

0.9934 

 Qav 0.8587 0.8896 0.9101 0.9098 0.4645 

 NMmax 1 0.9392 1 0.9857 0.9832 

LFR-1000-0.1 
Qmax 

NMlav 

0.8602 

0.9992 

0.8602 

0.938 

0.8602 

1 

0.8542 

0.9823 

0.4382 

0.9832 

 Qav 0.8602 0.8022 0.8602 0.8533 0.4382 

 NMmax 1 0.8953 1 0.9727 0.9878 

LFR-1000-0.15 
Qmax 

NMlav 

0.8099 

1 

0.7234 

0.8892 

0.8098 

1 

0.7959 

0.9727 

0.4138 

0.9878 

 Qav 0.8098 0.7098 0.8098 0.7959 0.4138 

 NMmax 1 0.8519 1 0.9652 0.9522 

LFR-1000-0.2 
Qmax 

NMlav 

0.7624 

1 

0.6486 

0.8448 

0.7624 

1 

0.7419 

0.9652 

0.387 

0.9522 

 Qav 0.7624 0.63337 0.7624 0.7419 0.387 

 NMmax 1 0.8364 1 0.9202 0.9359 

LFR-1000-0.25 
Qmax 

NMlav 

0.7131 

1 

0.5768 

0.8364 

0.7131 

1 

0.687 

0.9202 

0.3618 

0.9359 

 Qav 0.7131 0.5706 0.7131 0.687 0.3618 

 NMmax 0.992 0.8137 0.9843 0.9259 0.9145 

LFR-1000-0.3 
Qmax 

NMlav 

0.6661 

0.9901 

0.5327 

0.7969 

0.6661 

0.9917 

0.6194 

0.9119 

0.3371 

0.8716 

 Qav 0.6661 0.5258 0.6661 0.6031 0.3358 

 NMmax 1 0.7466 1 0.9802 0.4994 

LFR-1000-0.35 
Qmax 

NMlav 

0.6154 

0.9988 

0.4582 

0.7281 

0.6153 

0.9939 

0.6089 

0.9802 

0.2812 

0.4994 

 Qav 0.6153 0.4421 0.6153 0.6089 0.2812 

 NMmax 0.9699 0.699 0.9723 0.8246 0.292 

LFR-1000-0.4 
Qmax 

NMlav 

0.5619 

0.9661 

0.414 

0.6861 

0.5614 

0.9675 

0.4919 

0.8021 

0.2548 

0.1568 

 Qav 0.5614 0.4051 0.5614 0.4619 0.25483 

 NMmax 0.9962 0.6705 0.9955 0.6474 0.2809 

LFR-1000-0.45 
Qmax 

NMlav 

0.5151 

0.9933 

0.348 

0.6611 

0.5152 

0.9836 

0.3498 

0.6474 

0.253 

0.2809 

 Qav 0.5149 0.344 0.5142 0.3498 0.253 

 NMmax 0.9855 0.6294 0.9626 0.492 0.2206 

LFR-1000-0.5 
Qmax 

NMlav 

0.467 

0.95 

0.3117 

0.5891 

0.4671 

0.967 

0.251 

0.492 

0.25 

0.1108 

 Qav 0.4665 0.3007 0.4665 0.251 0.25 

 

Table 8. A comprehensive overview of the applied model: its name, formula and when it is applied 

Name Model functions References used the model 

MOCD CS Eq1 and CF Eq2 (14, 15, 16) 

MOGA-Net Intra Eq3 and Inter Eq4 (28, 18) 

MODPSO KKM Eq5 and RC Eq6 (19, 22, 21) 

LMOEA RC 6 and NRA 7 (23, 24, 25) 

HMM-MODCD fintra 8 and finter 9 (7) 
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Table 9. Comparative table summarizing the difference between state-of-the-art mutation strategies mentioned 

in Section l and our CSE proposed mutation strategy. 

Reference 

Name of 

mutation 

strategy 

The role of the proposed strategy 

to improve the evolutionary algorithm 

The limitation of the mutation 

method 

(11, 30) 
Migration mutation 

operator 

This method shows that a weak 

node joins the community to which 

most of its neighbors belong. 

1. Focusing on binary 

relationships only may lead to 

ignoring network complexities 

and an imbalanced distribution 

of information. 

2. Difficulty in handling highly 

interconnected networks, 

thereby reducing the accuracy of 

community detection. 

(31) 

Community 

Based mutation 

operator 

This method modifies a whole 

community. One community is selected 

at random and its cohesion is assessed. 

If it is weak, a small group is 

transferred to the highly cohesive 

neighboring community as identified by 

Weighted Roulette Selection. 

1. Unexpected changes in 

community structure influence 

solution stability. 

2. May lead to lower diversity 

and lower-quality outcomes. 

3. Strengthening a community is 

not a guarantee of the best 

solution for all scenarios. 

(25) Mutation strategy 

This Mutation occurs where nodes at 

the boundary of different communities 

have connectivity with multiple 

communities, irrespective of the 

number of internal connections. They 

are assigned to the majority community 

among their neighbors to improve 

clustering accuracy in complex 

networks 

1. Based on boundary node 

identification and mutation, it 

increases the complexity of the 

algorithm. 

2. Reclassification of nodes can 

be done wrongly in cases where 

the conditions for mutation are 

not accurately defined. 

Our 

mutation 

strategy 

Community 

strength 

enhancement 

(CSE) 

Our strategy is to measure the proximity 

of each node to different communities 

within the network. This proximity is 

defined by assessing the structural 

relationships between nodes, such as 

common neighbors, and the strength of 

their connections. Therefore, each node 

gets signed to the community for which 

such relatedness is at its maximum, that 

is, optimally assigning communities, 

based on relational proximity. 

1. The increase in the number of 

communities makes 

identification more difficult. 

2. The complexity of the 

process comes from the 

comparison of proximity 

between communities. 
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                     (a) LFR-128-maximum NMI                                            (b) LFR-128-average NMI 

  
                     (c) LFR-1000-maximum NMI (d) LFR-1000-average NMI 

Figure 8. Overall performance of all models based on their maximum and average NMI. The results with the 

community strength enhancement (CSE) are shown by dashed lines, whereas the results without it are represented 

by solid lines. 

 

4. Conclusion 

        This work presents a new mutation operation called community strength-based 

enhancement (CSE) to be incorporated into the MOEA/D algorithm to improve its efficiency, 

stability, and convergence rate during evolution. This strategy uses information about 

community structure and explores neighboring node-internal and node-external links, guiding 

mutation operations with more structural awareness. Results show that the modified MOEA/D 

algorithm with CSE performs better regarding normalized mutual information (NMI) and 

modularity (Q) than the unmodified MOEA/D algorithm and other state-of-the-art community 

detection methods. These results justify the promise of enriching advanced multi-objective 

evolutionary optimization algorithms with the present strategy. In principle, it can be applied to 

design better algorithms for community detection in complex networks. This paper is an 

optimistic move in the design of detection strategies. 
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