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Abstract

Community structures are fundamental in understanding the structure and functionality of
complex networks. Different optimization algorithms, including both single-objective and multi-
objective approaches, have been employed to address the challenge of community detection.
Recently, multi-objective evolutionary algorithms (MOEAS) have attracted many researchers to
identify communities in static networks. Many algorithms have been proposed to find a solution
that achieves a trade-off between exploring new areas of the solution space and improving the
quality of existing solutions. In this trade-off is crucial; whereas exploitation improves existing
solutions, it may fail to find better solutions from insufficiently explored regions of the solution
space. Therefore, mutation in evolutionary algorithms greatly impacts community detection
within social networks. Conventional mutation methods usually tend to apply too much
randomness, which results in convergence being less precise about finding a suitable optimum
solution. This paper introduces a new mutation called community strength enhancement (CSE)
to enhance the search efficiency of the Multi-Objective Evolutionary Algorithm with
Decomposition (MOEA/D) and speed up the convergence of the suggested algorithm. Moreover,
the proposed algorithm overcomes the limitations of traditional MOEA/D by accurately and
effectively identifying communities across a wide range of social networks. The enhanced
algorithm was evaluated on two groups of datasets (twenty synthetic and four real-world) using
normalized mutual information (NMI) and modularity (Q) across five baseline models.
Integrating the CSE mutation strategy led to significant improvements in performance,
particularly under high mixing parameters and in large-scale networks, as evidenced by
increased NMI and modularity scores.
Keywords: Multi-objective optimization, Evolutionary algorithms, Community detection,
Metaheuristic, Hybrid, Social network.

1.Introduction
Networks represent a robust framework for modeling and analyzing various real-world
systems, such as social network platforms, biological systems, transportation infrastructure, and
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information systems (1). These frameworks effectively capture both the components of these
systems and their interactions (2). When identifying communities, the number of connections
within a community is denser than those outside the communities (3-5). Therefore, this study
employs two objective functions in the MOEA/D algorithm: the first objective function aims to
maximize the intra connections within a community and the second objective function aims to
minimize the inter connections connecting a node to other communities. To build interconnected
communities, increasing internal connections and reducing external connections is necessary (6,
7). Evolutionary optimization algorithms inspired by the principles of natural selection, due to
the iterative and adaptive exploration of large solution spaces, can carry out this task according
to (8). Among the core components of evolutionary algorithms, mutation operators play a crucial
role in introducing diversity into the population and preventing premature convergence (9).
Many social network analysis studies have aimed to capture the evolution of the community
structure (10). For example, (11) unsigned and unweighted networks, (12) with the signed
network, and (13) with the positive and negative weight networks. Despite the success of current
evolutionary-based identification algorithms, they still exhibit a speed problem and face the
challenge of assigning the weak node to the true community. Several researchers have attempted
to improve the performance of MOEA/D algorithms by developing mutation strategies. A need
for techniques that depend more on the structural properties of the network remains. The study in
this context introduces the new mutation strategy Community Strength Enhancement (CSE),
which focuses on intra-neighbor characteristics of nodes, thus helping the effectiveness of
community detection. The contributions in this paper are listed below.

e We state the problem as a multi-objective community detection algorithm based on the
MOEA/D framework. Two conflicting objective functions are employed to solve the problem
of single-objective functions, which most existing state-of-the-art methods adopt.

e We introduce a new mutation operator based on the initialization process of neighbor nodes
and their relationships to assign nodes to more suitable communities. The latest mutation
strategy can improve the efficiency of the mutation process and make the algorithm converge
faster.

e We conducted a comparative evaluation by applying the traditional and the proposed algorithms
across five models. The results revealed that integrating the proposed strategy consistently enhanced
the performance of all models, achieving superior results on real-world networks compared to existing
state-of-the-art methods. We organize the paper as follows. Section 2 introduces the problem of
community detection; Section 4 presents the original framework of the MOEA/D algorithm
and the proposed mutation operator to identify communities. Section 5 shows the results of
the experiments on the proposed method and its comparison with other methods; Section 6
covers the paper's conclusion.

1.1. Preliminaries

This section presents the basic concepts of community detection in complex networks. In

complex networks, communities present a vital substructure, depicting a set of nodes with

significantly greater internal connections than external connections with the rest of the network.

The network structure represents the system as a graph (G). For a static, unweighted, and

undirected network, G = (V, E), where V is the set of nodes, E is the set of edges connecting

these nodes, N is the number of nodes in the network N = |V|, k is a number of subgroups and
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m is the number of all edges m = |E|. An adjacency matrix (Ay,y) can also represent the graph;
let A = [A;;] where A;; is given by:

1, ifthere is an edge between nodes i and j
Aij = {0, otherwise
You can use the adjacency matrix to calculate a community or a node's internal and external
edges.
The primary objective of community detection is to divide the network into subgroups C =
{Cy,C,,...,C} so that each community demonstrates significantly stronger internal connections
than external ones. In other words, nodes that belong to the same community are very densely
connected, whereas the links between different communities are comparatively less dense.
To determine whether a subset S < V represents a valid community (Measuring Community
Strength), we compute the number of internal edges E;;,, and the number of external edges E,,;
for this subset: E;,(S) = X jes Aij Eout (S) = Xies, jes Aij- For node e, represents the number
of internal edges of a node within the same community and e,,,; represents the number of edges
connecting the node to nodes outside the community. If E;,,(S) > E,,:(S), the subset S can be
considered a well-defined community.
1.2. The Objective Function
The purpose of partitioning a network into groups of vertices is to ensure that the edge density
within each group exceeds the edge density between groups. For this purpose, we require an
objective function that increases the number of connections within each cluster and another
objective function that reduces the number of connections between the other clusters. Evaluate
how well the generated communities capture the original structure and properties of the data.
Additionally, any problem with a single objective function has a unique solution. At the same
time, the Pareto front is the result of multiobjective optimization efforts to find exact solutions
under many conflicting objectives simultaneously. This study presents the formulation for
identifying communities as a task involving two optimization objectives. It was formulates the
community detection problem as a maximization problem with two objectives (14). The first
objective is the community score (CS), and the second is the community fitness (CF).

1 in(V) "
CS(©) = Ther o= Tuec, (S27) X Ein(Ce) (1)

The parameter r controls the size of the communities to increase the weight of the degree of the
internal node within a community and community size|Cy|. Thus, the CS calculated by the
summation of a local score for each community Ck.

_wK Ein(Cg)
CF(C) = Xk=1 (Ein(Ck)"'Eout(Ck))a "

Where «a is a positive number that determines the size of communities. If « is significant, the
network will be split into small communities; otherwise, large communities will be the most
prevalent.

Where « is a positive number that determines the size of communities. If o is significant, the
network will be split into small communities; otherwise, large communities will be the most
prevalent. For example, in 2020, (15) and (16) incorporated these two objectives into their
research as a multiobjective optimization model. It was formulated the community detection
problem as a multi-objective minimization problem by (17). They considered modularity (Q) as
two conflicting objectives that measure the degree of internal connectivity and interconnectivity.
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Therefore, they define two objectives that should be minimized as follows. The first measures the
intra-connection

Intra(C) =1 — Zle% (3)
While the second measures the degree of inter-connections:

k [E€]?
Inter(C) = k=1[ - ] 4

They have shown that optimizing these two objectives simultaneously can produce a wide range of
possible community structures, with more or less emphasis on connections within and between
communities. Since modularity is a weighted sum of two objectives, it is clear that the partition
that maximizes modularity must be a member of the Pareto set. The two objectives are also
adopted by other researchers. For example, in 2015, (18) and (19) minimize the kernel k-means
(KKM) and the ratio cut (RC).

KKM(C) = 2(N — K) — zgzl%j’” (5)

RC(C) = TK_ ET;—(T’J 6)

Which is used additionally in recent literary research (19-22).

It was proposed a local information-based multiobjective evolutionary algorithm (LMOEA) by
(23). A similar framework as MOEA/D is adopted to simultaneously optimize the two
conflicting objectives of the negative ratio association (NRA) and ratio cut (RC). In addition,
(24, 25) used the same objectives.

NRA = — Yk E‘TC(CI") )

It was proposed a new model that is based on the Hidden Markov Model (HMM- MODCD)
consisting from finy, and finer With the Multi-Objective Evolutionary Algorithm and it proved
effective in enhancing the performance of dynamic community detection by (7).

i (€) = 2(N = K) = by = Ve, (o) ®)

ein(W)+eg(v)

Cr}lag(} eout(v.Cr)

finrer () = 254 c; |Zvecj D ©
1.3 Evolutionary Algorithm with Decomposition for Multiple Objectives (MOEA/D)

The MOEAV/D is used for solving multi-objective optimization by maximizing a limited set of
scalar optimization sub-problems to get uniformly spread Pareto solutions. MOEA / D algorithm
achieves this objective by distributing resources using pre-specified weight vectors (w). The
decomposition and selection of the weight vector will collaborate to promote diversity in the
population (P), thus improving the quality of the solution. MOEA/D also studies the effect of
constraints on mating coordination on the relationship between exploration and exploitation.
MOEA/D ensures that solutions are exchanged synchronously through local interactions and
safeguards the optimization process against being stopped prematurely. In this, the MOEA/D
procedure presents a convenient optimization process where innovation flourishes in complexity
(C) and methodological composition delivers solutions (26). Many studies have shown that
MOEA / D-based algorithms show a very high level of success in solving MOP (27, 28).
Because of this, researchers have applied it to the problem of detecting a community (CD), in
which at least two target functions (f1, f2, . . ., f) either need to be maximized or minimized. The
algorithm below briefly describes the principal MOEA/D phases.
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Algorithm 1: General framework to MOEA/D Algorithm for Community Detection
Input:
* Number of objectives (Objective Dimension)
Population size (Pop Size)
Number of generations (Generations)
Mutation Probability (pm)
* Crossover Probability (px)
Initial Ideal Point based on Fitness Model (minimization or maximization)

Output:
* Near Pareto Optimal Sets (Non-dominated solutions)

* All solutions detected
MOEA/D Loop
For Generation Counter = 1 to Generations do

Step 1: Update Reference Points (Ideal Point, IndivPoint);

Step 2: Initialize Results and Near Pareto Optimal Set;

Iteration Loop (ProblemCounter = 1 to PopSize)
Step 3: Selection Operator — Choose two parent solutions (Parentl, Parent2);
Step 4: Crossover Operator — Generate child solution from parents;
Step 5: Mutation Operator — Apply mutation to the child solution;
End loop

Step 6: Decode Child Population — Convert child solutions to meaningful representations

(Individual2ClusterDecoding);
Step 7: Evaluate Fitness — Calculate fitness values for the child population
(ComputeFitnessCollectionParallel);
Step 8: Update Reference Points — Update IdealPoint and IndivPoint based on child population;
Step 9: Update Population — Combine parent and child populations based on fitness
(UpdateProblem);
Step 10: Update Near Pareto Optimal Set — Add non-dominated solutions from child population
(UpdateNearParetoOptimalSet);
Step 11: Store Results — Save Near Pareto Optimal Set for current generation;
End for

End loop

1.4. Related work

Various evolutionary algorithms and optimization frameworks have been used to address the
problem of community detection in complex networks. Current mutation strategies may fail to
adequately explore solution spaces or preserve meaningful community structures, which can
negatively impact the quality and efficiency of the detection process. Researchers address this
issue by integrating a local search strategy with the evolutionary algorithm, which can make
evolutionary algorithms much better at finding communities. Given the importance of mutation,
several studies have proposed improvements to mutation operators designed explicitly for
community detection. It was presented a new formulation for the intra-neighbor community
detection score and the intra-neighbor score, and a migration operator method with MOEA/D
(29). It was suggested a new multi-objective generational genetic algorithm (MOGGA+)
integrated with three types of mutation operators (30). In each execution, choose a random
mutation from one of these. This algorithm optimized two objectives, the modularity and
the conductance measure. RAMESH and SRIVATSUN proposed a framework that integrates the
MOEA/D algorithm with a new mutation operator that uses community labels of cliques as
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genes rather than cliques (31). This algorithm optimizes Kernal K-mean (KKM) and Ratio Cut
(RC) objectives. It was. suggested a multi-objective community identification method based on a
pigeon-inspired optimization algorithm, MOPIO-Net, and this algorithm minimizes two
objectives, RC and Negative Ratio Association (NRA). The algorithm was combined with the
suggested boundary node variation strategy to enhance the detection effectiveness (25). Despite
many approaches that have led to meaningful progress, there are still challenges, particularly in
designing mutation strategies that can be deeply aligned with the structural characteristics of the
networks. Most existing methods involve general or random mutation mechanisms, which are
not conducive to effectively preserving meaningful community structures. Thus, more targeted
strategies that consider the local topology of nodes are called for. Table 9 summarizes the
difference between the state-of-the-art and our proposed CSE mutation strategies.

2. Materials and Methods

In this section, we present the framework of our algorithm and introduce a proposed mutation
that would improve its efficiency and effectiveness. This mutation encourages the diversity of
efficient solutions that contribute positively to the community detection task across different
kinds of networks.
2.1. Framework structure

@ ®®@ : Solution Initialize population
@ @ ®® —_— ——> | Representation ——> (Decoding)
@ @ @ @@ : (Encoding)
®@®@@@@ : l
@ @ @ @ 3 [ intrascore |
@@ @ @ \ Objective Function
@ @ @ | Interscore | L/ l
Network Adjacency matrix Compare between two individual solutions

Pareto Dominance

in at least one objective and not worse in
others)

€

Selection from the

neighbor

&P

Uniform Crossover

’ Canonical Mutation

Mutation

’ (CSE) Strategy Mutation

1

Update population
based on fitness

!

Output Network

Partitions (pareto front)

Figure 1. The framework of the proposed Algorithm

In Figure 1, the graph is first transformed into an adjacency matrix to represent the relationships
between nodes. The next step is the genetic representation. The initialization step in which an
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initial set of potential solutions is generated to ensure diversity of solutions and a broader
exploration of the solution space. It will be attained and evaluated against the chosen objective
function, which helps to point out the solution capable of achieving the most initial balance with
objects. In the next stage, solutions are selected based on neighborhood relation- ships, and then
genetic operations such as cross-over and mutation are performed to introduce new solutions and
increase diversity within the population. The population is updated based on fitness evaluations
performed over multiple generations, culminating in the final network partition, which can be
visualized as a Pareto front of optimal solutions.

2.1.1. Chromosome Representation (chromosome encoding)

The representation of the chromosome is crucial to the effectiveness of evolutionary algorithms
(EA). The genotype encoding used here follows a locus-based adjacency representation (14). It is
the most commonly used approach and has been proven to be effective in previous research.

2.1.2. Population Initialization (Decoding)

In the first phase of population decoding, the genetic representation of each individual is
converted into a community structure. The individual chromosomes represent the relationships
between the nodes and should be used to assign the nodes to different clusters.

2.1.3. Uniform Crossover

It generates offspring by exchanging genes between two parents. In this method, each gene in an
offspring chromosome is determined with some given prespecified probability of recombination.
This operation is repeated for all genes on the chromosome, where, for each position, a random
number between 0 and 1 is generated. If it is less than or equal to P, the gene in the position
copies its allele from Parentl. Otherwise, it copies its allele from Parent2. The genes thus
selected are then joined in order of selection itself to form the offspring chromosome.

2.1.4. Enhanced Mutation Operator (Community Strength Enhancement (CSE))

The mutation operator in the traditional version of MOEA/D is employed to enhance the current
optimal solution in a random manner. In this case, the exchange of node location between
communities occurs randomly, meaning each node of the current solution is replaced by a
random selected node from the neighboring nodes. The exchange occurs when the randomly
generated value less than the mutation probability (pm). Randomly detecting nodes reduces the
effectiveness of the search.

To improve the efficiency of community evaluation solutions in networks, we propose to
implement a Community Strength Enhancement (CSE) strategy that provides greater precision in
assigning nodes to their actual communities. This strategy illustrates the interconnection of
nodes, both within and among communities. The CSE strategy is calculated as follows:

Vheighbour .
CSE(U: Ck) = Vneighbour * Zizlghb €in (l: Ck) (10)
Vneighbour , defined by
Vneighbour = Zveck | e(v)| (11)

CSE(v, Cy) refers to the computation of the reassignment rate of the current vulnerable node v in
the neighboring community Cy , where Vicisnnour represent the neighbor nodes of node v in the
community Cy and e;, (i, Cx) represents the internal connections of each neighbor nodes of the
vulnerable node with each C,community.

The CSE reassignment strategy is partitioned into three separate scenarios, see Figure 2.

e In the first scenario, if the community to which the vulnerable node is assigned has a lower
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reassignment rate than other communities in its vicinity, the node will be reassigned to the
community with the highest reassignment rate.

e In contrast, the second scenario occurs when multiple communities have a shared maximum
occupancy rate across all surrounding communities of the vulnerable community. In this
circumstance, we assign the node to one of these communities at random based on the
probability of mutation (Pm).

e In the third scenario, when a node has equal internal and external connections, it will be
reassigned to the community with the highest reassignment rate. This is because the strategy
looks at the neighborhood strength and the internal connections of neighborhood, providing a
better understanding of the structural context. Thus, even if the internal and external degrees
look seemingly equal, this additional information layer enables more accurate and context-
aware community assignments.

This study examines the distinction between canonical mutation operators and enhanced
mutation operators. The key difference lies in the enhanced mutation strategy ability to
potentially migrate a specific node to another suitable cluster according to the above three
scenarios. In contrast, the canonical mutation selects and relocates a random node towards a
randomly selected cluster. The procedure of the suggested mutation strategy is provided in
algorithm 2. In order to enhance the community’s local search capability and increase the quality
of the network community division, therefore, the (MOEA/D) can be applied to address the
challenge of community detection as well as other optimization problems. In this work, we used
the canonical and enhanced mutation strategy independently.

Community8 _—

l .<;\

\ 2 )

Community3

Node 11 2 3 45 6 7 8 9% 0u 12

Intra-degrec of node |3 23 121222 23 1

R

Communityl=1*3 =3
Community2=1*1 =1

s Community3=2%(2+2) =8

l | So node 12 goes to community 3.

1
7) / ( |
3

Community2 o o ~—

P, — A Community2
Communityl - Communityl

(a)Community structure before apply CSE mutation (b)Community structure after apply CSE mutation

Figure 2. Explain application of Community Strength Enhancement Mutation.
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Algorithm 2. The Proposed Community Strength Enhancement Mutation

Input: Number of nodes in the network, degree of each node, mutation probability, individual (partition)
Output: Child (partition)
For Node i=1to N do
For Node j =1 to NumConnectedNodes (Node i) do
Calculate intra-connection for nodes;
End for
End for
For Node i=1toN do
If NumConnectedNodes (Node i) > 0 and rand <Pm then
If k Node i in <k Node i out then
For ConnectedNodeCounter = 1 to NumConnectedNodes (Node i) do
Calculate Vpeighoor from Equation (10) for each community;
Calculate the intra-connection for Vyeignoor (11) for each community;
End for
End if
temp = 0;
NewCluster =1;
Fork,=1:k do
Calculate CSE from Equation (10) for each community;
If temp < CSE then
temp = CSE;
NewCluster = k;
Else
Go to canonical mutation;
End if
End for
End for
End for
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34

Number of nodes in the network

N, degree of cach node,
mutation probability pm,
individudl

-~
7

NumConnectedho
des for node >0
S&rond s Pm

K-Nodciin s
k Node | out
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Calculate CSE tor

N
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\lr Out

IsC=>
number ot
community

Bigpest CSE
cqual CSE for
yeak communi

Apply
Migrate weak node to canenical
community with mutation

bippest CSE

EMR

Figure 3. Flowchart for the main steps of the Algorithm 2.

3. Results and Discussion

In this section, we present and discuss the results that demonstrate the effectiveness of our
improved MOEA/D algorithm compared to other state-of-the-art algorithms. We applied
MOEA/D with canonical mutation and with the proposed mutation for these models (MOGA-
NET, MODPSO, LMOEA, HMM-MODCD), all of which are mentioned in Section 3.1.
Furthermore, Table 8 includes the equations used and the period to which they were applied. In
each case, a table compares the different mutation strategies and describes the determinants and
pathways used in each case.
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For fear comparison, we determined the population's size, or an excessive amount of potential
solutions, to be 300. We additionally set each solution's size, or number of neighbors, to five.
The mutation probability is 0.6, and the crossover probability is 0.8. We settled on 300
generations as the upper limit. The results were set to the mean of 10 simulated trials. The good
non-dominated solution from each iteration saved with certain validity conditions into the Near
Pareto Optimal Set (PS) archive. It was used to compute the average outcome for ten runs. We
first illustrate the (MOEA/D) algorithm on 24 networks divided into two groups of networks
(real networks and synthetic networks).

3.1 Dataset description.

This section describes the dataset that was employed in this study. It consists of 24 datasets
divided into two groups. The first group examined four real networks. Zachary's network was
constructed by examining the friendship connections between 34 club members with 78
relationships within the network (32). The second network consists of 62 bottlenose dolphins
from New Zealand and is called the Bottlenose Dolphins Network. This network contains 159
connections with two significant groups (33). Girvan and Newman (34) rated the game of
American football (2000) as the third most famous network. The 115 teams that competed in the
Football 2000 championship games make up this network. Teams were divided into 12 groups,
each representing a different geographic location. The ultimate network consists of the
compilation of Krebs' publications on American politics, authored by Krebs himself (35). The
105 books on politics that make up this network from the United States are available on
Amazon.com.

The second group consists of synthetic networks. Girvan and Newman (34) introduced a
computer-generated benchmark that includes graphs of different levels of complexity. This
benchmark was further developed by (36). The initial set of LFR benchmarks consists of a
network with 128 nodes, built to accommodate four communities, each with 32 nodes. We
evaluated the efficacy of the algorithms on networks produced between 0:05 and 0:5. The
networks are referred to as LFR128. The next set of LFR benchmarks has been used to evaluate
the four models using larger networks that closely match real-world networks. The benchmarks
comprise 10 networks, each containing 1000 nodes. We refer to this set as LFR1000. According
to (36), the size of the mixing parameter is between 0.5 and 0.05.

3.2. Experiment on Real Networks.

This section employs four types of real networks to test our algorithm. We show the result and
discuss it. Table 1 shows the results of applying the MOEA/D algorithm to the five models with
canonical mutations. These results show how canonical mutations influence the algorithm's
performance in different models and serve as a comparison point with the results of applying the
proposed CSE strategy in Table 2. The results of the tables show that the CSE strategy improves
the performance of the MOEA/D algorithm by reassigning nodes to a more appropriate
community. Speed up the convergence of the algorithm to the optimum solution. Table 1. The
maximum and average values of Normalized Mutual Information (NMI) and Modularity (Q) were

evaluated for the five models. These models are tested on four real-world networks with canonical
mutation.
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Table 1. The maximum and average values of Normalized Mutual Information (NMI) and Modularity (Q) were
evaluated for the five models. These models are tested on four real-world networks with canonical mutation

Dataset Measure ~ MOCD MOGA-NET MODPSO  LMOEA HMM-MODCD
Zachary NMI ax 0.8371 0.8371 0.8371 0.8371 0.8372
NMl,, 0.8371 0.8371 0.8371 0.8371 0.8365
Qmax 0.4188 0.4188 0.4188 0.4188 0.3109
Qav 0.4188 0.4172 0.4188 0.4188 0.3079
Dolphin NM I max 0.9065 1 1 1 1
NMl,, 0.8888 1 1 1 1
Qmax 0.5178 0.5052 0.5008 0.5246 0.3339
Qav 0.5032 0.4931 0.5008 0.4994 0.3339
Football 2000 NM I max 0.7571 0.6838 0.7598 0.7420 0.5493
NMl,, 0.7315 0.6759 0.7292 0.7141 0.3487
Qmax 0.4727 0.4332 0.4713 0.4797 0.2799
Qav 0.4660 0.4231 0.4538 0.4573 0.2743
Krebs NM I max 0.6263 0.6285 0.6103 0.6921 0.5934
NMl,, 0.6014 0.6174 0.6019 0.6264 0.5934
Qmax 0.5123 0.5104 0.5189 0.5247 0.3569
Qav 0.5118 0.5060 0.5135 0.5177 0.3569

Table 2. The maximum and average values of Normalized Mutual Information (NMI) and Modularity (Q) were
evaluated for the five models. These models are tested on four real-world networks with community strength
enhancement mutation.

Dataset Measure MOCD MOGA-NET MODPSO LMOEA HMM-MODCD
NMI ax 1 1 1 1 0.8589
Zachary NMly, 0.8372 1 1 1 0.8365
Qmax 0.4188 0.4107 0.4198 0.4174 0.3079
Qav 0.409 0.4033 0.4126 0.4174 0.3079
NMI max 1 1 1 1 1
Dolphin NMl,y 1 1 1 1 1
Qmax 0.5178 0.5144 0.5178 0.5163 0.3339
Qav 0.5032 0.507 0.5172 0.5163 0.3339
NM I nax 0.9273 0.8599 0.9269 0.9309 0.7961
NMl,, 0.9273 0.8559 0.9177 0.8946 0.7961
Foothall2000 5 x  0.6036 0.5847 0.6044 0.6044 0.3237
Qav 0.6036 0.5806 0.6044 0.5950 0.3237
NMI max 0.6772 0.6314 0.6299 0.6705 0.6313
Krebs NMly,, 0.6174 0.594 0.6299 0.6099 0.5979
Qmax 0.5248 0.5249 0.5178 0.5253 0.3539
Qav 0.5246 0.5211 0.5138 0.5145 0.3539

In the Zachary dataset, all nodes in the actual partition are strong nodes. Two nodes (3 and 10)
connect equally within and between the communities. The NMI achieved by all models using
traditional mutations was about the same (0.8371), except for the HMM-MODCD model with a
slightly better result of 0.8372, indicating that very little diversity was achieved in solution
exploration before application of heuristic mutations. Now, the results of the best mutated
versions by heuristics are much better, all reaching NMI = 1, which means that the method
improves the quality of the results concerning how well the technique achieves community
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detection. The HMM-MODCD with the traditional mutation method is not the best regarding
heuristic mutation. It has now been improved only to 0.8589, possibly due to some inherent
weaknesses in its functioning.

In the dolphin dataset, all nodes in the actual partition of the dolphin dataset are strong nodes,
except node (40), which has equal connections inside and between communities. All models
achieved NMI = 1 for the Dolphin network except the MOCD model, which had 0.9065 with the
traditional mutation. However, after applying our custom mutation, all models, including
MOCD, reached NMI = 1, demonstrating their effectiveness in enhancing community detection
precision.

The football dataset has 15 weak nodes; some of them (12, 25, 51, 59, 60, 64,70, 81, 83, 98)
have internal connections smaller than their external connections; on the other hand, nodes
(22.93, 43, 91, 111) have internal connections of zero, but there are several external connections.
In the football network, the results under traditional mutation produced notable variation, with
the HMM-MODCD model having the lowest value of NMI at 0.5493, while MODPSO had the
highest at 0.7598. These results show a lack of exploratory diversity in traditional mutation
methods. However, after applying the proposed mutation, a significant improvement followed;
LMOEA led with the highest value of 0.9309, while HMM-MODCD was 0.7961. This
substantial improvement did not raise the NMI to one level, which reflects the complexity of
network characteristics, the different responses of models to optimization processes, and the
ultimate partitioning conditions that are sensitive and sometimes hard to attain.

The Krebs dataset has 15 weak nodes. For these nodes (8, 19, 29, 51, 78, 86), the number of
internal connections is smaller than the number of external connections; on the other hand, in
nodes (30, 50), the internal connections of each node are equal to the number of external
connections. Thus, the Krebs network was represented the highest by LMOEA with NMI =
0.6921 using a traditional mutation, while its lowest value was recorded at 0.5934 by HMM-
MODCD. After its application, some models improved, whereby MOCD achieved the highest
value of 0.6772. However, LMOEA dropped to 0.6705 and MODPSO had the least at 0.6299,
further underscored by the variation in some models' response towards the optimization strategy.

Figure 4. Zachary dataset, A- Correct partition and with CSE mutation, B- Canonical mutation.
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Figure 7. Krebs dataset (A) Canonical mutation (B) Heuristic mutation

The visual representations (Figures 4, 5, 6 and 7) present precise comparisons of the performance
of the method being considered in the Football and Krebs networks, respectively. The figures
portrayed the correct partitions along with the results drawn from the application of the
traditional mutation and the CSE strategy, highlighting their effects on quality in community
detection. When NMI = 1, the CSE mutation perfectly fits the correct partition.
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Table 3. Real world dataset characteristics

Dataset Nodes Edges Communities

Zachary 34 78 2

Dolphin 62 159 2

Football 115 613 12
Krebs 105 440 3

3.3. Experiments on Synthetic Networks

In this paper, we mainly perform experiments on the two groups of Synthetic Networks called
the computer-generated benchmark network and the LFR benchmark network. We then
displayed and discussed the result. Table 4 presents the Performance of the five models on
synthetic LFR-128 networks without CSE mutation for maximum and average values of NMI
and modularity Q, which is shown to gradually decrease as the degree of the mixing parameter p
increases. Thus, it becomes more challenging to correctly recognize the existing community
structures within the network as the mixing parameter increases. Throughout the variety of
models tested, under all p levels, it is only at the lowest mixing parameter value that LMOEA
outperforms HMM- MODCD in terms of NMI and Q; the value is 0.9498 at p = 0.05. However,
the relative ability of HMM-MODCD to other models is seen to decline significantly,
particularly when the level of mixing is increased. It does not seem to perform well when the
model has to be applied to very complex networks

Table 5 presents comparison of the models with the suggested mutation strategy CSE. There is a
significant improvement in the performance of models due to the incorporation of CSE for
nearly all the models and levels of p. Some models, for example, maintain an NMI of 1.0 up to p
= 0.25, a much more visible enhancement over Table 4, whereas the average modularity values
over the different runs are more coherent and higher than pre-update runs, showing stronger
community quality. These provide evidence that the CSE strategy maintains the quality of the
solution as the difficulty increases.

Results of the models on larger-scale synthetic networks (LFR-1000) using canonical mutation
are shown in Table 6. There is a notable decrease in NMI and modularity as network size and p
increase, validating the scalability challenge faced by evolutionary models in community
detection compared to the smaller networks. However, LMOEA maintains a relatively strong
performance, compare to other models. The Q values drop significantly when p exceeds 0.3,
showing more pain in preserving meaningful community partitions.

Table 7 shows the impact of the CSE strategy on the same large-scale networks. A clear
improvement is observed across most models, especially in NMI scores, where many models
keep high values (close to or equal to 1.0) up to p = 0.3. LMOEA, in particular, maintains both
high accuracy and modularity in challenging settings, thus confirming the fact that the strategy is
scalable and robust. Moreover, the performance gap between the models is reduced, which
means that CSE helps equalize their exploration-exploitation balance and make them work
towards optimal solutions.
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Table 4. Performance metrics including maximum NMI, average NMI, maximum Q, and aver- age Q for synthetic
networks were presented for all models, excluding CSE.

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD

NMmax 1 1 1 1 1
Qmax 0.7012 0.7012 0.7012 0.7012 0.4131
LFR-128-0.05 NMlav 1 0.9874 1 0.9975 1
Qav 0.7012 0.7012 0.6945 0.6999 0.4131
NMImax 0.9076 0.8868 0.9431 0.9498 0.9076
Qmax 0.6014 0.5669 0.618 0.6307 0.3662
LFR-128-0.1 NMlav 0.8837 0.8478 0.9182 0.8982 0.8451
Qav 0.5837 0.5419 0.5987 0.5935 0.3528
NMImax 0.7862 0.729 0.873 0.8435 0.7565
Qmax 0.453 0.4441 0.4985 0.5 0.3037
LFR-128-0.15 NMlav 0.7587 0.7104 0.8125 0.7636 0.5295
Qav 0.4431 0.4199 0.4778 0.4545 0.2887
NMImax 0.6502 0.6316 0.7139 0.6961 0.5356
Qmax 0.3634 0.3281 0.4012 0.3827 0.2929
LFR-128-0.2 NMlav 0.6288 0.5656 0.6638 0.6254 0.4239
Qav 0.3521 0.3177 0.3658 0.3343 0.2657
NMImax 0.5629 0.462 0.5894 0.5682 0.4188
Qmax 0.2764 0.2491 0.3019 0.2875 0.25
LFR-128-0.25 NMlav 0.5239 0,405 0.5568 0.523 0.354
Qav 0.2666 0.1965 0.2713 0.259 0.25
NMImax 0.5054 0.3653 0.5331 0.5189 0.3955
Qmax 0.2322 0.1766 0.2413 0.2498 0.25
LFR-128-0.3 NMlav 0.4641 0.3428 0.4558 0.4448 0.3119
Qav 0.215 0.1398 0.2176 0.2068 0.25
NMImax 0.4514 0.087 0.4062 0.3949 0.29
Qmax 0.1846 0.0229 0.1949 0.1852 0.25
LFR-128-0.35 NMlav 0.3812 0.0087 0.3779 0.3677 0.239
Qav 0.1759 0.0023 0.17010 0.1654 0.25
NMImax 0.3593 0.087 0.3444 0.4063 0.2525
Qmax 0.1636 0.021 0.1613 0.1613 0.25
LFR-128-04 NMlav 0.3151 0.0087 0.32 0.3167 0.2065
Qav 0.1462 0.0021 0.1446 0.1432 0.25
NMImax 0.2878 0.03 0.3198 0.307 0.208
Qmax 0.1339 0.0015 0.1333 0.1324 0.25
LFR-128-0.45 NMlav 0.264 0.02 0.2344 0.2415 0.171
Qav 0.1287 0.001 0.1274 0.1245 0.25
NMImax 0.2585 0.03 0.26 0.2418 0.2445
Qmax 0.1349 0.0015 0.1262 0.135 0.25
LFR-128-0.5 NMlav 0.2214 0.02 0.2132 0.1891 0.161
Qav 0.1215 0.001 0.1165 0.1169 0.25
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Table 5. Performance metrics including maximum NMI, average NMI, maximum Q, and aver- age Q for synthetic
networks were presented for all models, including the CSE heuristic.

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD

NMmax 1 1 1 1 1
Qmax 0.7012 0.7012 0.7012 0.7012 0.1431
LFR-128-0.05 NMlav 1 1 1 1 1
Qav 0.7012 0.7012 0.7012 0.7012 0.1431
NMmax 1 1 1 1 1
Qmax 0.6533 0.6533 0.6533 0.6533 0.3892
LFR-128-0.1 NMlav 1 1 1 1 1
Qav 0.6533 0.6533 0.6533 0.6533 0.3892
NMmax 1 1 1 1 0.8679
Qmax 0.5995 0.5995 0.5995 0.5996 0.3447
LFR-128-0.15 NMlav 1 1 1 0.9707 0.8571
Qav 0.5995 0.5931 0.5995 0.583 0.3447
NMmax 1 1 1 0.9748 1
Qmax 0.5508 0.5508 0.5508 0.5389 0.3379
LFR-128-0.2 NMlav 0.9666 0.95 1 0.8622 0.8622
Qav 0.5355 0.5292 0.5508 0.4726 0.3252
NMmax 1 0.9325 1 0.9247 0.8571
Qmax 0.5 0.4728 0.5 0.4713 0.3027
LFR-128-0.25 NMlav 0.922 0.8974 1 0.7601 0.651
Qav 0.4669 0.4574 0.5 0.3851 0.2871
NMmax 0.9452 0.9247 1 0.7999 0.5911
Qmax 0.4149 0.4247 0.4502 0.3719 0.2705
LFR-128-0.3 NMlav 0.8408 0.8791 1 0.5704 0.4947
Qav 0.3738 0.4046 0.4502 0.2567 0.2594
NMmax 0.9248 0.8682 1 0.5819 0.5002
Qmax 0.3212 0.3556 0.4023 0.2554 0.25
LFR-128-0.35 NMlav 0.6842 0.7584 0.9422 0.4691 0.3238
Qav 0.2883 0.3129 0.382 0.2049 0.25
NMmax 0.5531 0.686 0.6667 0.436 0.3017
Qmax 0.2118 0.2638 0.2441 0.1843 0.25
LFR-128-04 NMlav 0.4323 0.5665 0.6085 0.338 0.2319
Qav 0.1777 0.2227 0.2227 0.1537 0.25
NMmax 0.42 0.3 0.6667 0.3475 0.2375
Qmax 0.1615 0.0015 0.1973 0.1531 0.25
LFR-128-0.45 NMlav 0.2939 0 0.395 0.2582 0.1734
Qav 0.1396 0 0.1703 0.1319 0.25
NMmax 0.2585 0.03 0.3868 0.2978 0.1636
Qmax 0.1707 0.0015 0.1692 0.1255 0.25
LFR-128-0.5 NMlav 0.2133 0 0.2609 0.1891 0.13281
Qav 0.1327 0 0.1474 0.1169 0.25
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Table 6. Performance metrics including maximum NMI, average NMI, maximum Q, and average Q for synthetic
networks were presented for all models, with canonical mutation.

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD

NMmax 0.9321 0.9259 0.931 0.9367 0.9369
Qmax 0.7353 0.7501 0.7709 0.7605 0.3907
LFR-1000-0.05 NMlav 0.7353 0.7501 0.7709 0.7605 0.3907
Qav 0.9221 0.9147 0.9274 0.936 0.6261
NMmax 0.8624 0.8506 0.8726 0.8635 0.8411
Qmax 0.6353 0.5897 0.64 0.6237 0.3288
LFR-1000-01 NMlav 0.8577 0.8402 0.8657 0.8635 0.8307
Qav 0.6257 0.5875 0.6277 0.6175 0.3288
NMmax 0.7915 0.7613 0.78 0.7709 0.7203
Qmax 0.5 0.4828 0.4909 0.4813 0.2554
LFR-1000-015 NMlav 0.7736 0.7509 0.7771 0.7672 0.645
Qav 0.4846 0.4675 0.4726 0.4726 0.2497
NMmax 0.709 0.692 0.7033 0.7017 0.6221
Qmax 0.3966 0.384 0.3831 0.3865 0.2186
LFR-1000-02 NMlav 0.7018 0.6829 0,7012 0.7017 0.5486
Qav 0.3909 0.3712 0.38 0.3865 0.214
NMmax 0.6314 0.6053 0.646 0.6316 0.4753
Qmax 0.3293 0.3046 0.3209 0.3181 0.2056
LFR-1000-025 NMlav 0.6265 0.5981 0.6408 0.6316 0.39
Qav 0.3213 0.2928 0.3135 0.3181 0.2049
NMmax 0.5801 0.5738 0.593 0.5769 0.4332
Qmax 0.2617 0.2562 0.2608 0.2553 0.2051
LFR-1000-03 NMlav 0.5747 0.5397 0.5839 0.5638 0.3577
Qav 0.2614 0.2418 0.2566 0.2529 0.2051
NMmax 0.5211 0.4945 0.5313 0.5151 0.3464
Qmax 0.2182 0.1997 0.2055 0.206 0.2072
LFR-1000-035 NMlav 0.5132 0.4815 0.519 0.5136 0.3105
Qav 0.2122 0.1907 0.2018 0.2029 0.2072
NMmax 0.474 0.4336 0.464 0.467 0.3048
Qmax 0.1716 0.1581 0.1714 0.1673 0.2174
LFR-1000-04 NMlav 0.4585 0.3955 0.4653 0.467 0.2344
Qav 0.1705 0.1389 0.1684 0.1665 0.2125
NMmax 0.4185 0.3772 0.4296 0.4285 0.2442
Qmax 0.1475 0.1233 0.143 0.1375 0.2204
LFR-1000-045 NMlav 0.4073 0.3219 0.4147 0.3973 0.1852
Qav 0.1468 0.0982 0.1408 0.1466 0.2204
NMmax 0.4003 0.2858 0.3857 0.3703 0.2443
Qmax 0.1305 0.0709 0.1281 0.1285 0.2287
LFR-1000-05 NMlav 0.3747 0.2141 0.3787 0.3727 0.1426
Qav 0.1285 0.0428 0.1235 0.1205 0.2287
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Table 7. Performance metrics including maximum NMI, average NMI, maximum Q, and aver- age Q for synthetic
networks were presented for all models, with the CSE heuristic.

NETWORK MEASURE MOCD MOGA-NET MODPSO LMOEA HMM-MODCD
NMmax 1 0.9839 1 1 0.9942
Qmax 0.8602 0.8942 0.9101 0.9101 0.4645
LFR-1000-0.05 NMlav 0.9992 0.9784 1 0.9977 0.9934
Qav 0.8587 0.8896 0.9101 0.9098 0.4645
NMmax 1 0.9392 1 0.9857 0.9832
Qmax 0.8602 0.8602 0.8602 0.8542 0.4382
LFR-1000-01 NMlav 0.9992 0.938 1 0.9823 0.9832
Qav 0.8602 0.8022 0.8602 0.8533 0.4382
NMmax 1 0.8953 1 0.9727 0.9878
Qmax 0.8099 0.7234 0.8098 0.7959 0.4138
LFR-1000-015 NMlav 1 0.8892 1 0.9727 0.9878
Qav 0.8098 0.7098 0.8098 0.7959 0.4138
NMmax 1 0.8519 1 0.9652 0.9522
Qmax 0.7624 0.6486 0.7624 0.7419 0.387
LFR-1000-02 NMlav 1 0.8448 1 0.9652 0.9522
Qav 0.7624 0.63337 0.7624 0.7419 0.387
NMmax 1 0.8364 1 0.9202 0.9359
Qmax 0.7131 0.5768 0.7131 0.687 0.3618
LFR-1000-025 NMlav 1 0.8364 1 0.9202 0.9359
Qav 0.7131 0.5706 0.7131 0.687 0.3618
NMmax 0.992 0.8137 0.9843 0.9259 0.9145
Qmax 0.6661 0.5327 0.6661 0.6194 0.3371
LFR-1000-03 NMlav 0.9901 0.7969 0.9917 0.9119 0.8716
Qav 0.6661 0.5258 0.6661 0.6031 0.3358
NMmax 1 0.7466 1 0.9802 0.4994
Qmax 0.6154 0.4582 0.6153 0.6089 0.2812
LFR-1000-035 NMlav 0.9988 0.7281 0.9939 0.9802 0.4994
Qav 0.6153 0.4421 0.6153 0.6089 0.2812
NMmax 0.9699 0.699 0.9723 0.8246 0.292
Qmax 0.5619 0.414 0.5614 0.4919 0.2548
LFR-1000-04 NMlav 0.9661 0.6861 0.9675 0.8021 0.1568
Qav 0.5614 0.4051 0.5614 0.4619 0.25483
NMmax 0.9962 0.6705 0.9955 0.6474 0.2809
Qmax 0.5151 0.348 0.5152 0.3498 0.253
LFR-1000-045 NMlav 0.9933 0.6611 0.9836 0.6474 0.2809
Qav 0.5149 0.344 0.5142 0.3498 0.253
NMmax 0.9855 0.6294 0.9626 0.492 0.2206
Qmax 0.467 0.3117 0.4671 0.251 0.25
LFR-1000-05 NMlav 0.95 0.5891 0.967 0.492 0.1108
Qav 0.4665 0.3007 0.4665 0.251 0.25

Table 8. A comprehensive overview of the applied model: its name, formula and when it is applied

Name Model functions References used the model
MOCD CS Eql and CF Eqg2 (14, 15, 16)
MOGA-Net Intra Eq3 and Inter Eq4 (28, 18)
MODPSO KKM Eg5 and RC Eq6 (19, 22, 21)
LMOEA RC 6 and NRA 7 (23, 24, 25)
HMM-MODCD fintra 8 and finter 9 @)
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Table 9. Comparative table summarizing the difference between state-of-the-art mutation strategies mentioned
in Section | and our CSE proposed mutation strategy.

Name of The role of the pronosed strate The limitation of the mutation
Reference mutation prop 9y method

to improve theevolutionary algorithm
strategy P yalg

1. Focusing on binary
relationships only may lead to
ignoring network complexities

L . This method shows that a weak and an imbalanced distribution
Migration mutation

(11, 30) operator node joins the community to which of information.
most of its neighbors belong. 2. Difficulty in handling highly
interconnected networks,
thereby reducing the accuracy of
community detection.
. L 1. Unexpected changes in
This method modifies a whole . -
: . community structure influence
community. One community is selected solution stability
Community at random and its cohesion is assessed. ' .
. o : 2. May lead to lower diversity
(31) Based mutation If it is weak, a small group is )
. . and lower-quality outcomes.

operator transferred to the highly cohesive ) C

neighboring community as identified by ~ S- Strengthening a community is

Weighted Roulette Selection. not a guarantee of the best

solution for all scenarios.

This Mutation occurs where nodes at 1, Based on boundary node

the boundary of different communities identification and mutation, it

have  connectivity =~ with  multiple increases the complexity of the

communities, irrespective of the algorithm.

(25) Mutation strategy  number of internal connections. They 2 Reclassification of nodes can
are assigned to the majority community be done wrongly in cases where
among their neighbors to improve e congitions for mutation are
clustering accuracy in  complex not accurately defined.
networks
Our strategy is to measure the proximity 1. The increase in the number of
of each node to different communities communities makes
within the network. This proximity is identification more difficult.

Community delfln.ed hk?y assessing the strucrt]ural 2. The complexity of the

Our Strength relations |p§ rt:te)ztween OInor:JIes, suc i ai process comes from  the

mutation enhancement common neighbors, and the strength o comparison of  proximity

strategy (CSE) their connections. Therefore, each node
gets signed to the community for which
such relatedness is at its maximum, that
is, optimally assigning communities,
based on relational proximity.

between communities.

459



IHIPAS. 2025,38(4)

Maximum best NMI Average best NM|
1 . Siccn a i e 1 < » .
B $ © e
0sf ‘. 0ar s *>~co-a °
- ol
b ® = S ) 08 \ o
& * \
0.8 . ) °
- : \
: . 07} L
0.7+ & e \®
S o N
0.6
. .
06 > . \: . .
L] =
H . b S os- :
“ 05l | —®—MocD 8l —e—MOCD N .
®— MOGA-Net b, i ®— MOGA-Net v o
¢ MODPSO > . d ¢ MODPSO o 8- \
04l *— LMOEA > ° —— LMOEA ] ~3 \
MOEA-CD . - 0.3 MOEA-CD . ~3._ e
----MOCD H - --®--MOCDH ‘f\' °
03 ~-®-- MOGA-Net H L » 3 o --®—-MOGA-Net H \ e
¢ MODPSOH : ¢ - MODPSOH \ .
® - LMOEAH ‘ LMOEA H
02F | MOEACDH| 01 MOEA-CD H \

04 . . L . . . L | | 0 I 1 I . L . o ——8——_
0.05 041 015 0.2 0.25 03 0.35 04 0.45 05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05
Mixing Parameter y Mixing Parameter y
(a) LFR-128-maximum NMI (b) LFR-128-average NMI
Maximum best NMI Average best NMI

1 2 - - L m— 3 ° G e 2 =
S ° & . . A | S . . o g $- °
B PO, <, K]
09 s % v S . .
3 @ 0.9 .
i @ >3 \ R
- 5 .
L ] 0.8 i . °
- - \ & ’ -
07+ Sy ‘. ol N, .
2 . " 7 = .”"""
06 \ Ne } R, R
\ L 3 ~.
. ~ ° 0.6} . °
= 5 B = 3
s 05| ~_ of B ——
—e— MOCD . o Y dElL ®— MOCD ~
—&— MOGA-Net E: e ®— MOGA-Net e SN *
04 #— MODPSO e ’ ! 3 * MODPSO Qo P
*— LMOEA \ L R 04l *— LMOEA N N
\ ' - . =
03l MOEA-CD \ Y MOEA-CD N =9
---MOCDH R - MOCD H .
--®—- MOGA-Net H \ 03! -~ —- MOGA-Net H
021 & MODPSO H ¢ MODPSOH
® - LMOEAH \ : - LMOEAH o
01l MOEA-CD H " » 02 MOEA-CD H
Te————»
0 L 1 L L L L L 1 01 | | | | L L
0.05 0.1 0.15 0.2 0.25 03 0.35 04 0.45 05 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 045 05
Mixing Parameter y Mixing Parameter y
(c) LFR-1000-maximum NMI (d) LFR-1000-average NMI

Figure 8. Overall performance of all models based on their maximum and average NMI. The results with the
community strength enhancement (CSE) are shown by dashed lines, whereas the results without it are represented
by solid lines.

4. Conclusion

This work presents a new mutation operation called community strength-based
enhancement (CSE) to be incorporated into the MOEA/D algorithm to improve its efficiency,
stability, and convergence rate during evolution. This strategy uses information about
community structure and explores neighboring node-internal and node-external links, guiding
mutation operations with more structural awareness. Results show that the modified MOEA/D
algorithm with CSE performs better regarding normalized mutual information (NMI) and
modularity (Q) than the unmodified MOEA/D algorithm and other state-of-the-art community
detection methods. These results justify the promise of enriching advanced multi-objective
evolutionary optimization algorithms with the present strategy. In principle, it can be applied to
design better algorithms for community detection in complex networks. This paper is an
optimistic move in the design of detection strategies.
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