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Abstract

The ground-state properties like the nuclear densities and the root mean square (rms) radii
for exotic neutron-rich nuclei **B and *®N have been investigated using the Skyrme Hartree-
Fock and Bear-Hodgson calculations to study the structure of these nuclei. The results of the
evaluation are contrasted with the experimental data that is currently available. It found that a
common feature of the neutron and matter densities for the above-selected exotic nuclei is the
long tail behavior. We assumed that both *B and ‘N have a structure of the core nuclei *B
and *'N plus a valence neutron. It found that the structure of the valence one-neutron of B
and N is a pure 2s, /2 Configuration. The elastic charge form factors of the above selected
exotic nuclei are evaluated using the plane wave Born approximation and compared with
those of their stable isotope '°B and *N.
Keywords: Exotic nuclei, Elastic form factors, Bear-Hodgson, The Skyrme-Hartree-Fock.

1. Introduction

The study on the structure of short-lived nuclei far from g-stability has become a hot point
in nuclear physics due to its exotic properties (1-4). The resulting discovery of neutron halo
in certain anomalous light neutron-rich nuclei was in ®He, ''Li, 'Be, Be, *°C, etc (5-7). The
nuclear halo is a quantum effect that arises from the very weak binding of the valence
nucleons and their occupation on the orbits with | = 0, 1 (low angular momentum), which
allows the wave function of these valence nucleons to take on an extended radial dimension
(8). The primary characteristic of the nuclear-matter density distribution in halo nuclei is the
presence of a low-density tail at vast radial distances (9).
The information about such nuclear structure can be extracted from the fragment momentum
distribution of fragmentation reaction, total reaction cross section, Coulomb dissociation, and
quadrupole moment (10, 11). Additional information on the nuclear structure can be obtained
by the proton elastic scattering at intermediate energies. It gives insights into both the
nuclear-matter density distribution and the nuclear-matter radius (12). This technique is well-
established for the study of stable nuclei and may also be used to investigate unstable nuclei
when applied to inverse kinetics with radiation beams. The methodology has been effectively
utilized to examine the isotopic ****Be (9) and ®**'Li (13).
The two-body (Core + n) and three-body (Core + 2n) models utilizing wave functions of
various potentials have been employed to examine the ground state characteristics, including
proton, neutron, and matter densities, of several halo nuclei, like as N, 20, “Be, and ''B,
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etc (14-18). Also, the associated rms radii of these exotic nuclei have been studied by these
models. The calculated results have been provided for the halo structure for the considered
exotic nuclei.

In this work, the characteristics of the ground state pertaining to exotic **B and N nuclei,
such as the proton [pp (r)], neutron [p,, (r)] and matter [p,,(r)], the corresponding root mean
square (rms) radii, and elastic charge form factors (F.;,(q)), will be investigated using the
Hartree-Fock (HF) and Bear-Hodgson (BH) calculations. We will examine the reaction cross-
sections (o) for that nucleus use the Kox formula (KF) and Glauber model (GM).

2. Materials and Methods
The p,, (r) of exotic nuclei is (19):

pm(1) = pc(r) + py(7) 1)
where p.(r) (core density) and p, (1) (halo density) are expressed as (19):
i 2
Pe() = — Tnes N& | Rugs ()] 2)
_1 nej 2
Pr(r) = —Xnej Ny |Rnej ()] (3)

where R, (r) and N™J denote the occupation number of the orbit n#j, respectively.
The Ry, (r) taken from Schrodinger equation of this solution of radial part and using BH
potential (20):

d?*Rpej(r) | 2m
dr? n2 |“nti ( ) 2m  r2

Where ¢,,,; and the V (r) given as (21):

h2 £(£+1)

| Rnej(r) = 0 (4)

V() = Vo(r) + Veo (1) L.S + V(1) (5)
Vo (r) the central potential taken from following from (21):
=V
Vo(r) = Tir=rovas] (6)
V., (r) is the spin orbit potential (21):
11d 1
Voo (1) = Vso > [E (1+eRso)/aso) (7)
V.(r) (for protons only) is Coulomb potential (21):
ze? for r>R,

Vo) =X Lo2ps 2 (8)

‘ ze [E - — for r <R,

Rc L2 2R2

and V,.(r) = 0 for neutrons.

The V, is potential depth [in Equation 6] takes the BH form (22):

Vo=V, for  —15<g,,; <0 (9)
Vo =V,"P — B(ensj +15)  for Enej < —15 MeV (10)
The potential depth for neutrons (Vg*) and protons (V) whereas the f is constant.

The Skyrme force are given by (23):

Vskyrme = Yi<j Vij = to(1 + %P )8 +2 (1 + x1 P[5 + k25(P)] +

t,(1 + x,P,)k. 8Pk + “t3(1 + x3P)p"(R)S(F) + ityk'.6(F)(6; + 6;) x k, (11)
P, represents is space operator exchange, & is the vector comprising the Pauli spin matrices
5(7) denotes the delta function, k indicates is relative, and to, ty, ta, t3, ta, Xg, X1, Xo, X3,
and a represent the parameters associated with the Skyrme force.

The charge, as well as the densities of protons or neutrons with the range of the Skyrme HF
methodology, are articulated by (24):
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pg(P) = Lpegwpi () Yp (), g =mnp,ch (12)
where g is the wave function of a single particle and wgdenotes the probability of
occupation for the state .

The nucleus charge distributions [p., ()] can be obtained from the following folding relation
(25):

pen(r) = J pp(Mfp (' =) dr, (13)
where p,, () and f,, are proton density.

Where f,, takes from following form of Gaussian (26):

f,(r) = (ﬁipf e(-7%/ap) (14)

The core (R,), matter (R,,,), proton (Rp) and neutron (R,,) rms radii are obtained by (27):

Ry = (22 = [Loza0er]
g g J pg(r)ar

In PWBA, the elastic charge form factor (F,;,(q)) is given by (28):

g =cmmn,p,ch (15)

Fen(@) = 2 J,” pen(rjo(qrirdr, (16)
The oy use the GM (29) and KF (30) given, respectively, as:
ogr = 2m [[1—T(b)]bdb, a7
2| .1/3 1/3 a? :/3 ’ B
— 14 [
Orp =TT, lAp +At +GW—C(E)l ( —a) (18)
3. Results

The ground-state characterizes nuclear densities, and the rms radii for exotic neutron-rich

nuclei **B and *®N have been investigated in the framework of the HF and BH calculations.
The elastic F,;,(q) of above selected exotic nuclei are evaluated using the PWBA. We use the
KDEX Skyrme parameterization within HF calculations in this work. The values of the
KDEX parameterization employed in our calculations are t, =—1419.8304, t, =
309.1373, t, = —172.9562, t; = 10465.3523, x, = 0.1474, x,; = —0.0853, x, =
—0.6144, x3 = 0.0220, W, = 98.8973, y = 0.4989 (31). The densities of both core and
tail (halo) parts in HF and BH calculations are described by radial wave functions for the HF
and BH potentials, respectively. We assumed that both B (J%, T=2",2) and N (J", T=1",2)
have a structure of the core nuclei **B (J", T=3/27,3/2) and YN (J%, T=1/2",3/2), with
configurations {(1s12)*, (1psr)’, (1p12)*}and {(1s12)*, (1psr)®, (1p12)®, (1ds12)?}, respectively
plus valence one neutron . The valence neutron of both **B and ®N is assumed to be in a pure
251/, Orbit.
Table 1 displays the values of the BH parameters utilized in the present calculations for
selected nuclei. The potential depth for neutrons (V") and protons (V?) in core nuclei has
been used the default of the NushellX@MSU program (32) has been used, where the V* for
valence neutron and other parameters, provide the experimental e of the last neutron as well
as a matter (rms) radial for exotic nuclei. The parameter B has been fixed at a value of 0.51

(22).

Table 1.The BH parameters.
P Vg’n (MEV) dp=dso o=l Ie
Nuclei Core Halo Vo (MeV) m m m
g 53.172 48.73 7.0 0.520 1.316 1.2
e\ 64.496 35.92 7.0 0.621 1.465 1.2
log 55.70 7.0 0.620 1.236 1.2
“N 55.70 7.0 0.620 1.236 1.2
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The calculated ¢ for both protons and neutrons are presented in Table 2 together with the

Eexp. (33) Of the valence neutron.
Table 2.The calculated «.

Nuclei ne. Proton Neutron Eexp.(MeV)
j Vo (MeV) & (MeV) Vo (MeV) & (MeV) (33)
) 151, 67.78 -43.676 70.13 48289 -
1pap 54.89 -18.400 56.70 21.947 e
1Py e 53.28 -15.223 -
25, e e 48.05 -0.97 -0.97
i\ 151, 92.67 -70.285 96.09 76994 e
1psp 79.76 -44.947 82.63 50589 -
1pws 77.45 -40.447 80.38 -46.166 -
s e — 70.17 -26.139 -
P - 35.92 -2.828 -2.828

The HF and BH calculations for the core (R.), matter (R,,), proton (Rp) and neutron (R,,)
rms radii (in fm) of selected halo nuclei are presented in Tables 3 and 4. For comparison
purposes, the corresponding experiment rms radii (34-37) are also given in these tables. From
these tables, we noted that the calculated results of our present study agree reasonably within

the quoted error with the experimental results.
Table 3. The calculated R.and R,, rms radii and experimental ones.

Nuclei R, (fm) R, (fm)
HF BH Exp. (34) HF BH Exp. (34, 35)
g 2.42 2.44 2.46+0.12 2.89 2.77 2.77+0.04
=\ 2,57 2.57 2.49+0.15 2.87 2.80 2.80+0.04

Table 4. The calculated R, and R,, rms radii and experimental ones.

NUClei R, (fm) R,, (fm)
HF BH Exp. (36) HF BH Exp. (37)
) 2.46 2.40 2.4610.07 3.12 2.95 3.27+0.16
e\ 2.58 21510 H— 3.03 2.98 2.925+0.067

The calculated matter densities obtained by both HF (left part) and BH (right part)
calculations for exotic **B and *®N nuclei and core **B and *'N nuclei, along with the tail
(one-neutron halo) part, are shown in Figure 1. The blue, black, and dashed-red curves
represent the core, tail part, and matter densities, respectively. The experimental matter
densities for B (38) and *®N (39) are presented in this figure by a grey area for comparison.
Figure 1a and b show the densities for **B, while Figure 1c and d correspond to those for
¥N. A common feature of the dashed-red curves, which can be shown in Figure 1, is the
long tail behavior. Clearly, the dashed-red curves obtained with both HF and BH calculations
lie within the experimental uncertainties and agree well with the experiment.

Figure 2 a-d summarize the calculated proton (black curve) and neutron (blue curve)
densities in **B (upper panel) and *®N (lower panel) obtained by the HF and BH calculations.
From these figures, it can be clearly seen that the neutron densities of **B and *®N have a long
tail with respect to the proton densities. This means that **B and *®N are neutron-halo nuclei.
Figure 3a-d compare the calculated results of matter densities for unstable **B and *®N
(dashed red distributions) and stable °B and **N (blue distributions) isotopes. From these
figures, we can observe that, there is a difference in the behavior of the blue and dashed red
distributions. This demonstrates a long tail in dashed red distributions and supports the halo
structure of **B and *®N nuclei.
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Figure 1. The matter, core and halo density for halo nuclei *B and **N.
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Figure 2.The matter, proton and neutron density for halo nuclei **B and **N.
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Figure 3. The matter for isotopes ***“B and ***8N.

Figure 4a-d depicted the results of the longitudinal form factors (C0+C2) of °*B (upper
panel) and ***®N (bottom panel) isotopes calculated by HF and BH calculations. Therein, the
blue and red curves refer to CO+C2 of unstable and stable isotopes, respectively. While the
calculated results of CO and C2 for unstable **B and ‘N nuclei are given by the dashed and
black curves, respectively. For comparison the experimental F,,(q) for stable isotopes *°B
(40) and N (41) are given by dotted symbols. The agreement is shown to be very well
between the results of our calculations with the experimental data for 1°B and **N. First one
can see from figures and the dashed red distributions decreases faster than the black
distributions with increasing g. This is attributed to the charge density pulls out due to the
addition of neutrons to *°B and **N and thus the form factors decrease with increasing g.

In this work, the o5 of the exotic **B and *®N nuclei on target *2C are studied by the KF and
GM with the OLA and summarized in Table 5 along with experimental results (42). The HO
densities are used in GM calculations. It is demonstrated that the experimental data
satisfactorily well by our calculations obtained by GM while the extracted op by Kox
formula closely agree with those experimental data within quoted error.
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Figure 4. The longitudinal form factors of isotopes '***B and ***N.

Table 5. The reaction cross sections of the exotic **B and *®N nuclei on target **C.

o (Cal.) (mb)

Halo nuclei Energy (MeV) (42) KE GM or (Exp.) (mb) (42)
“g 790 961 937 929+26
=\ 1020 1.077 1062 1046+8

The Q and u moments for ****B and **®N isotopes are calculated in psd-model space using
PSDMK interaction (43) and tabulated in Table 6 together with the experimental data (44).

The effective charges of NuShellX@MSU code (NS) (ef’” = 1.5, e’/ = 0.5¢) and free-
nucleon g factors have been used to evaluate the Q and u moments, respectively. In general,

the theoretical and experimental results of Q and u moments agree reasonably for all selected

nucleus.
Table 6. Calculated and experimental results of Q and u moments.

Nuclei Q Exp. (44) u Exp. (44)
) 4.45 2.98+0.008 0.986 1.18+0.005
o5 9.07 8.47+0.006 1.82 1.80+0.006
e\ 1.97 2.70+0.004 -0.107 -0.135+0.015
“N 1.08 1.93+0.008 0.333 0.403+0.006

4. Conclusion

The ground-state properties like the nuclear densities and the rms radii for exotic neutron-
rich nuclei **B and N have been investigated in the framework of the HF and BH
calculations. This study draws the following conclusions:
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The evaluated results are compared with available experimental data. It is found that both the
HF and BH calculations are capable of providing theoretical predictions on the structure of
exotic nuclei (considered in this study) and provide a satisfactory description of experimental
data.

The halo structure of the above exotic nuclei is emphasized through exhibiting the long tail
performance in their calculated matter density distributions, where this performance is
considered a distinctive feature of halo nuclei.

It is found that the major difference between the calculated form factor of unstable nuclei
(**B,™N) and those of stable nuclei (:°B, **N) is attributed to the charge density pulls out due
to the addition of neutrons to 1°B and *N, and thus the form factors decrease with increasing
g. The calculated results of the reaction cross sections using the Kox formula and the Glauber
model with an optical limit approximation are in good agreement with experimental data at
high energy. The calculated results of the nuclear magnetic dipole and electric quadrupole
moments using the Shell model calculations within the two-body effective interactions are in
reasonable agreement with experimental data.
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