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Abstract 

This paper shows new approximate ways to solve nonlinear ordinary 

differential equations using two methods that repeat steps: the Adomian 

decomposition method (ADM) and the optimal Adomian decomposition 

method (OADM). These equations are extensively utilized in fluid 

dynamics and engineering. The OADM sets itself apart by incorporating 

an optimal control parameter that enhances solution accuracy and 

accelerates convergence, providing a distinct advantage over the ADM. 

The two methods have been applied to three important equations: the 

Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation, 

and the Falkner-Skan equation. The effectiveness of the two methods 

was assessed by looking at how quickly they converged and the largest 

error remaining, while also comparing them to other numerical results 

from operational matrix methods found in existing research. The results 

demonstrate the superior accuracy of OADM, which proves its 

effectiveness in solving the nonlinear equations. All computations were 

conducted utilizing the program, which facilitated the execution and 

evaluation of the proposed methods. 

 Keywords: Adomian Decomposition Method; Optimal Adomian 

Decomposition Method; Maximum error remainder; Darcy-Brinkman-

Forchheimer Moment Equation; Blasius Equation; Falkner-Skan 

Equation.

 

 

1.Introduction 

Complex phenomena in science and engineering require accurate mathematical models. 

Nonlinear ordinary differential equations (NODEs) are essential for describing complex, 

changing behaviors, particularly in fluid flow and thermal expansion
1–3

. The ADM and OADM 

are effective for solving NODEs. It is based on the analysis of nonlinear components into 

polynomials called "Adomian polynomials", which facilitates the systematic and iterative 

construction of the solution. This method has received wide attention from researchers in recent 

years due to its accuracy and high efficiency in finding solutions
4,5

. Numerous research studies 

have employed ADM for solving many problems, including the Lane-Emden, and Riccati 

differential equations
6,7

. The convergence in this method has been given much attention by 

researchers; in 2009, studies of the convergence of the ADM with initial-value problems in the 

context of differential equations, as noted in
8
. In 2004, the ADM was extended to delay 

differential equations (DDE), where accurate approximate solutions were obtained using rapidly 

convergent series expansions, as in
9
. A recent study presented fourth- and fifth-order iterative 

schemes for solving coupled systems with nonlinear equations using the method of Adomian 

decomposition, as in
10

. While ADM is effective in addressing differential equations, studies 

indicate it may be ineffective in specific instances due to its sluggish convergence, resulting in 

imprecise or discontinuous sequential solutions
11

. Consequently, the necessity emerged to 
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enhance the convergence by adding an optimal parameter (𝑎), and its value can be determined by 

the squared residual error
11

. A nonlinear iterative formula is established, and the procedure is 

reiterated until the requisite precision is attained. The method seeks to enhance the effectiveness 

by accelerating convergence and expanding the convergence region
11

. 

The Darcy–Brinkmann–Forchheimer moment equation (DBFME) is a fundamental equation for 

modeling fluid flow in porous media, garnering considerable attention from researchers in recent 

decades; see
12

. In 2006, it was demonstrated that the DBFME can be effectively treated using 

asymptotic techniques to analyze forced convection in porous channels; refer to
13

. In 2021, 

researchers employed the optimal Galerkin-homotopy asymptotic method to solve the same 

equation; refer to
14

.  Recently, numerous approximation methods have garnered heightened 

interest for the DBFME. Among them are the Bernoulli, Bernstein, and shifting Legendre 

operational matrix method; see
2
. 

The Blasius equation has received major attention in the research community due to its 

importance in analyzing the behavior of the hydrodynamic boundary layer and the flow of 

viscous fluids in fluid mechanics
3
. Later, ADM and the differential transform method were 

employed to obtain semi-analytical solutions; refer to
15

. Furthermore, three different techniques 

were utilized in other studies: the simple perturbation technique, the Galerkin method, and the 

direct numerical method, with the advantages of each of them being evaluated based on the 

nature of the chosen field; see
16

. In addition, she employed the Crocco-Wang transform along 

with adjusted finite differences and the Wynn algorithm to obtain accurate solutions to the 

Blasius equation; see
17

. 

Numerous numerical and approximation methods have considered the Falkner–Skan equation as 

an important model in boundary layer theory. The shooting technique, a numerical method for 

solving boundary value problems was employed; refer to
18

. The ADM was utilized in 

conjunction with the Padé approximation in 2008; see
19

. Recently, A hybrid method integrating 

the Jaya algorithm with the Runge–Kutta method has been employed; see
20

. Additionally, 

operational matrix methods facilitated the acquisition of effective approximate solutions; refer 

to
1
. 

This paper is structured as follows: Section 2 addresses the essential equations of the proposed 

applications. Section 3 illustrates the proposed iterative methods, while Section 4 presents the 

convergence analysis along with approximate solutions and numerical results obtained using the 

proposed methods, whereas the last section discusses the conclusions drawn from this paper. 

 

2. The Formulation of Some Applications 

2.1. The Darcy-Brinkman-Forchheimer Moment Equation 

The Darcy-Brinkmann-Forchheimer equation is a classic example of the boundary value problem 

in the analysis of fluid dynamics within porous media, since these equations appear in various 

physical, biological, and applied sciences problems
2
. The use of porous media in contemporary 

technology is increasing, including effects on thermal insulation, direct heat exchangers, and 

nuclear waste repositories
21

. It seemed necessary to determine solutions to these equations using 

numerical or approximate methods
2
. The classical Darcy's law became ineffective in the presence 

of inertia and rigid barriers, in particular at high Reynolds numbers determined by the pore size 
13,21

. Consequently, the Darcy law was augmented to incorporate inertial and boundary effects 

with the introduction of the Brinkman and Forchheimer terms, thus enabling a more precise 

characterization of fluid flow in porous media. The results suggest that the addition of these 

effects can improve the thermal efficiency of heat exchangers
21

. The addition of these effects 

resulted in the formation of a second-order nonlinear differential equation with boundary 

conditions defined by the following formula
22

. 

   ( )      ( )        ( )  
 

 
         ( )     ( )                                                      (1) 
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where   denotes the shape parameter of the porous media,   indicates the Forchheimer number, 

and   represents the viscosity ratio. 

2.2. The Blasius Equation 

The flow showing how an incompressible fluid moves in two dimensions over a flat plate that 

continues almost infinitely is explained by the boundary layer equation represented by the 

following formula
23

: 

,| ′′( )|𝜌;  ′′( )-  
 

𝜌: 
  ( )   ( )                                                                                       (2) 

subject to the boundary constraints:  ( )    ( )      ( )                                              (3) 

The research studies' results indicate that the function  ( ) exhibits linear behavior when the 

power law coefficient is 𝜌 >  . The Blasius equation is extensively utilized in the examination of 

boundary layers in Newtonian liquids
23-25

. 

    ( )  
 

 
  ( )    ( )                                                                                                              (4) 

subject to the boundary conditions:  ( )    ( )      ( )                                                (5) 

This equation is of high importance in the field of fluid mechanics. Specifically, when studying 

the dynamical layer borders and stratified flows of fluids with viscosity. Liao found that    ( )  
  332 573, a value commonly used in scientific literature

3
. This value was derived utilizing 

precise numerical methods grounded on standard assumptions, and it will be adopted in this 

paper.  

2.3. The Falkner-Skan Equation 

The Falkner-Skan equation, a NODE of the third order, first appeared in 1931. The importance of 

this equation lies in fluid mechanics and boundary layer theory and is used in different fields, 

such as the formation of plastic panels and insulating materials, the study of polymers, and the 

examination of incompressible boundary layers in two-dimensional equations
1,18

, which is 

represented by the following formula
19

: 

    ( )   ( )    ( )  𝜃,  (  ( ))
 
-      <  <                                                             (6) 

with the boundary conditions:  ( )      ( )   𝜀   ( )      
This equation is a common example of a boundary value equation in infinite domains. The main 

problem is dealing with infinite boundary conditions. This issue is resolved by transforming the 

semi-infinite physical field into a static arithmetic field through sophisticated numerical 

methods
18

. The behavior of the Falkner-Skan equation is contingent upon 𝜃 and 𝜀, where 𝜃 

denotes the coefficient of expansion of the moving boundary and 𝜀 signifies the velocity ratio in 

the free stream. The numerical study has revealed that the values of these two parameters 

influence many solutions. For instance, three solutions emerge for 𝜃 values ranging from 0 to 

0.14, a singular solution exists when 𝜃 is between 0.14 and 0.5, and ultimately, two solutions are 

present when 𝜃 is between 0.5 and 1, illustrating the complex behaviors of solutions under 

changing parameters
26

. In reference
1
, the researchers established the initial condition    ( )  

   832666 utilizing the boundary condition   ( )    through the method of Pade  

approximation. The formula will be modified to align with this condition and will serve as the 

foundation for this paper. 

    ( )   ( )    ( )  𝜃,𝜀  (  ( ))
 
-                                                                                (7) 

with the boundary conditions:  ( )      ( )    𝜀    ( )     832666                         (8) 

 

3. The Adomian Decomposition Method and Optimal Adomian Decomposition Method 

3.1. The Fundamental Idea of the ADM 

The ADM, developed by George Adomian from the 1970s to the 1990s, is a semi-analytical 

method intended for the solution of non-linear ordinary and partial differential equations
27

. The 

method uses Adomian polynomials to analyze the nonlinear components of differential 

equations. The ADM is a fundamental method for solving nonlinear differential equations, 
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offering an efficient framework for obtaining accurate yet fast solutions, which makes it of great 

importance in addressing many mathematical and applied problems
28

. 
Consider the general nonlinear differential equation

11
:  

ℓ( )  𝒩( )  𝑓( ), 𝑏 ≤  ≤ 𝑐,                                                                                                 (9) 

with the imposition of the initial or boundary conditions of the differential equation,  

where ℓ denotes the higher-order linear differential operator, while 𝒩 indicates the nonlinear 

differential operator. where   is the function to be solved, while 𝑓( ) denotes a known analytical 

function
28

. If ℓ is the first-order operator defined by ℓ  
𝑑

𝑑𝑡
  Assuming that ℓ is invertible, then 

the inverse operator ℓ;  is given by ℓ; (∙)  ∫ (∙)𝑑𝑟
𝑡

0
. If ℓ is a second-order differential operator, 

then ℓ  
𝑑2

𝑑𝑡2
  The inverse operator ℓ;  is a two-fold integration operator given by ℓ; (∙)  

∫ ∫ (∙)𝑑𝑟𝑑𝑟
𝑡

0

𝑡

0
, and so on. Applying the inverse operator ℓ;  on both sides of Equation 9, the 

following is obtained
27

: 

  𝑔( )  ℓ; ,𝒩( )-,                                                                                                             (10) 

where 𝑔( ) is depends on the initial or boundary conditions of the differential equation, as well 

as the integral of the function 𝑓( ), a nonlinear operator 𝒩( ) is usually represented by an 

infinite series, and this series (𝐴𝑘) is called an Adomian polynomial, which is denoted by the 

next formula: 

𝒩( )  ∑ 𝐴𝑘 
∞
𝑘<0 ,  ( )  ∑  𝑘

∞
𝑘<0 ( ), for 𝑘 ≥                                                                       (11) 

The components  𝑘( ) are determined using an iterative process as follows: 

 0( )  𝑔( )  ℓ; ,𝑓( )-,                                                                                                         (12) 

 𝑘: ( )   ℓ; ,𝒩( )-,  
 𝑘: ( )   ℓ; ,∑ 𝐴𝑘 

∞
𝑘<0 -, for 𝑘 ≥                                                                                         (13) 

Replacing these components provides an approximate solution of order (𝑘):  

 ( )  ∑  𝑛
𝑘
𝑛<0 ( ) or  ( )   0( )    ( )    ( )  ⋯  𝑘( ),                                        (14) 

A primary challenge in this method lies in the calculation of Adomian polynomials, which denote 

nonlinear terms. There are two methods for computing these terms: The first method, introduced 

by Adomian, provides direct formulas for calculating these limits, where 

𝐴𝑘  𝐴𝑘 ( 0    ⋯   𝑘), represents the Adomian polynomials, which can be determined using 

the following formula
29

: 

𝐴𝑘  
 

𝑘!

𝜕𝑘

𝜕𝜆𝑘
,𝒩(∑  𝑛

∞
𝑛<0 𝜆𝑛)-|𝜆<0, for 𝑘 ≥  ,                                                                            (15) 

The 𝐴𝑘 are generated for all types of nonlinearities so that 𝐴0 depends only on  0, 𝐴  depends on 

 0 and   , and so on. The 𝐴𝑘 can be expressed as follows
29

: 

𝐴0  𝒩( 0), 

𝐴    𝒩
 ( 0), 

𝐴    𝒩
 ( 0)  

 

 
  

 𝒩  ( 0),  

𝐴3   3𝒩
 ( 0)      𝒩

  ( 0)  
 

3!
  

3𝒩   ( 0),                                                                    (16) 

⋮  
Although the original formulas presented by Adomian are a direct way to calculate nonlinear 

terms
29

, the researchers sought to develop an alternative method that would be simpler and more 

flexible. This method relies on algebraic operations and trigonometric properties, in addition to 

Taylor series, to reconstruct polynomials without relying on the original complex formulations. 

The core idea of this method involves systematically decomposing the nonlinear terms, initially 

assuming that the unknown function  ( ) is represented as an infinite series,  ( )  ∑  𝑘
∞
𝑘<0 ( ). 

The initial value of the Adomian polynomial is determined by the relation 𝐴0  𝒩( 0). 

Subsequently, the nonlinear polynomials are constructed such that the sum of the sub-indices of 

the components in each 𝐴𝑘  equals 𝑘, thereby enabling each 𝐴𝑘 to be distinctly categorized 

according to its order in the sequence.   
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In other words, in the case 𝒩( )    ( ), it is calculated based on the following steps
30

: 

Step one: representing  ( ) as an infinite string,  ( )  ∑  𝑘
∞
𝑘<0 ( ). 

Step two: compensate  ( ) in 𝒩( )    ( ), 𝒩( )  ( 0         3  ⋯) . 

Step three: expand the expression on the right-hand side, 

𝒩( )  u0
  2 0   u 

  2 0   2     2 0 3  ⋯,                                                   (17) 

Then the Adomian polynomials can be expressed as: 

𝐴0   0
 ( ), 

𝐴  2 0( )  ( ), 

𝐴    
 ( )  2 0( )  ( ), 

𝐴3  2  ( )  ( )  2 0( ) 3( ), 

⋮ 
This method makes the Adomian polynomials clear and easy to determine, eliminating the need 

for the complex formulas provided by Adomian. This paper will employ this method to calculate 

nonlinear terms in the suggested applications. 

3.2. The Fundamental Idea of the OADM 
This method builds upon the general form of the differential equation as presented in Equation 

(9), with the imposition of initial or boundary conditions. This method proposes an iterative 

scheme that introduces the optimal parameter 𝑎 to enhance the convergence speed. The initial 

solution  0(  𝑎) is defined as follows
11

: 

 0(  𝑎)  𝑔( )  𝑎 ,                                                                                                                  (18) 

  (  𝑎)  𝑎  ℓ; (𝑔( )),                                                                                                        (19) 

 𝑘: (  𝑎)   ℓ; ,𝐴𝑘( )-, for  𝑘 ≥  .                                                                                      (20) 

Use for obtaining an approximate solution to Equation 9, which is dependent on the parameter 𝑎 

utilized to control the speed of convergence. Omitting this parameter may render the ADM 

incapable of achieving an accurate result. Utilizing Adamian polynomials, which denote 

nonlinear limits, and a parameter value 𝑎, an approximate solution of the equation can be found 

as follows: 

 𝑘(  𝑎)  ∑  𝑛(  𝑎)𝑘
𝑛<0 ,                                                                                                          (21) 

For obtaining the ideal value of parameter 𝑎, it is advisable to utilize the residual error equation, 

considering this value increases convergence speed and enhances results accuracy
11

.  

There are two methods for calculating the residual error: The first method is known as the 

analytical method, which consists of calculating the variance between approximate value and 

exact value, represented by the following mathematical formula: 

𝑅𝑒 (𝑎)  ∫ ,ℓ( 𝑘( ))  𝒩( 𝑘( ))  𝑓( )- 𝑑 
𝑏

𝑐
,                                                                   (22) 

Determining the interval ,𝑏 𝑐- facilitates the minimization of this error.    
𝑑𝑅𝑒𝑠(𝑎)

𝑑𝑎
  ,                                                                                                                                (23) 

The second method, called the numerical method, is represented by the numerical Riemann 

integral and is given by the following formula: 

𝑅𝑒 (𝑎)  
 

𝜔: 
∑ 𝑔, 𝑛-Δ 𝜔

𝑛<0 ,                                                                                                     (24) 

The total interval [𝑏 𝑐] is divided into 𝑣 equal subintervals, each of length Δ , where Δ , 

represents the uniform spacing between evaluation points. In this method, the function 𝑔( ) is 

defined as 𝑔, -  ,ℓ( 𝑘( ))  𝒩( 𝑘( ))  𝑓( )- . Here, 𝑣 denotes the number of subintervals 

used in the approximation process. Nonetheless, applying analytical methods for complex 

nonlinear equations is frequently difficult. In contrast, a numerical method grounded in Riemann 

integration offers a more effective alternative, as it accelerates computations while preserving a 

high degree of accuracy, making it very valuable in advanced computational fields. 
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4. Convergence Analysis and Approximate Solutions with Numerical Results 

4.1.Convergence Analysis of the ADM and the OADM 

This subsection studies the convergence of ADM and OADM in relation to Equation 9. The 

fundamental prerequisites for achieving convergence are established, together with the 

assessment of the mistake produced by this method. The fundamental findings are delineated 

within the following theories
2,31

. To explain it, initially the following steps are selected. 

 0   0( ), 

   𝐵, 0-, 
   𝐵, 0    -, 
⋮ 
 𝑘:  𝐵, 0     ⋯  𝑘-,                                                                                                   (25) 

Consider  0( ) to denote the approximate solution derived from the initial iteration, and the 

operator 𝐵 is represented by the subsequent relation: 

𝐵[ 𝑝]  𝑆𝑝  ∑  𝑘
𝑃
𝑘<0 ,  𝑝      2 …                                                                                         (26) 

such that 𝑆𝑝 signifies the solution obtained from the proposed methods. The solution can be 

expressed using Equations 25 and 26 as follows: 

  ( )  ∑  𝑘
∞
𝑘<0 ( ),                                                                                                                    (27) 

4.1.1 Theorem  

suppose 𝐵, as defined in Equation 26, is the operator assignment from the Hilbert space H to 𝐻. 

The series  ( )  ∑  𝑘
∞
𝑘<0 ( ) is converges, if ∃  < 𝛿 <   such that ‖𝐵, 0     ⋯ 

 𝑘: -‖ ≤ 𝛿 ‖𝐵, 0     ⋯  𝑘-‖, (Specifically ‖ 𝑘: ‖ ≤ 𝛿‖ 𝑘‖ ∀ 𝑘 ∈ ℕ ∪ * +). 
Proof: see

31
. 

4.1.2 Theorem  

if the series solution  ( )  ∑  𝑘
∞
𝑘<0 ( ), as presented in Equation 27, converges, it constitutes 

the exact solution of the nonlinear Equation 9. 

Proof: see
31

. 

4.1.3 Theorem  

let the series solution ∑  𝑘
∞
𝑘<0 ( ) defined in Equation 27 be approximated by the truncated 

series  ( )  ∑  𝑘
𝑗
𝑘<0 ( ), consider the solution  ( ) of Equation 9. The maximum mistake 

𝐸𝑗( ) can be derived from the following formula
2,31

:  

𝐸𝑗( ) ≤
𝛿𝑗+1

 ;𝛿
‖ 0‖,                                                                                                                       (28) 

To summarize. 4.1.1 and 4.1.2 theorems illustrate that the nonlinear solution obtained from the 

ADM for Equation 9, using the iteration formulas defined in Equation 25, converges to the 

exact solution provided that there exists a  < 𝛿 <   such that ‖ 𝑘: ‖ ≤ 𝛿‖ 𝑘‖. In other terms, 

if the parameter values are specified for each 𝑘 ∈ ℕ ∪ * +, then: 

𝛽𝑖  {

‖𝑢𝑘+1‖

‖𝑢𝑘‖
              ‖ 𝑘‖ ≠  

                        ‖ 𝑘‖   
                                                                                                    (29) 

The series solution ∑  𝑘
∞
𝑘<0 ( ) for Equation 9 converges to an exact solution  ( ) when 

 ≤ 𝛽𝑖 <   for every 𝑖 ∈ ℕ ∪ * +. The maximum error of the truncated absolute, based on 

Theorem 4.3, is determined to be ‖ ( )  ∑  𝑘
𝑗
𝑘<0 ( )‖ ≤

𝛽𝑗+1

 ;𝛽
 ‖ 0‖, where 𝛽  𝑚𝑎𝑥 *𝛽𝑖 𝑖  

    2 …  𝑗+. 
4.2. Approximate Solutions and Numerical Results 

Based on the convergence results specified in the previous subsection, approximate solutions and 

numerical results for the proposed applications are now presented. 

4.2.1. Approximate Solution and Numerical Results for the DBFME 

Now, we will study DBFME in the case        . 

   ( )   ( )    ( )            ( )     ( )   ,                                                           (30) 
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By applying the ADM, 

   ( )    ( )   ( )   , 

ℓ    ( )   ( )        ′( )     ( )   ,                                                                         (31) 

where ℓ is a second-order differential operator, ℓ(∙)  
𝑑2𝑢

𝑑𝑡2
(∙).  

It is clear that ℓ;  is invertible and is given by ℓ; (∙)  ∫ ∫ (∙)𝑑𝑟𝑑𝑟
𝑡

0

𝑡

0
. 

Operating ℓ;  on both sides of Equation 31 and using the boundary conditions, we get: 

ℓ; (ℓ )  ℓ; (  ( )   ( )   ), 

 ( )   ( )      ( )   ∫ ∫ (  (𝑟)   (𝑟)   )𝑑𝑟𝑑𝑟
𝑡

0

𝑡

0
, 

The boundary conditions and the Maclaurin series yielded two approximate initial values: 

 3 3 278 and   3 2776, indicating the existence of double solutions
 32

. To determine the 

optimal value, the  𝐸𝑅𝑘 was calculated for each of them, resulting in      893735 for the 

negative value and 4 64344    ;9 for the positive value. This study adopted the positive value 

of its effectiveness in decreasing error. 

 ( )    3 2776  
 𝑡2

 
 ∫ ∫ (  (𝑟)   (𝑟))𝑑𝑟𝑑𝑟

𝑡

0

𝑡

0
   =                                                          (32) 

Suppose the unknown function  ( ) is represented as an infinite series:  ( )  ∑  𝑛( )∞
𝑛<0 . 

Consequently, the initial Adomian polynomial is expressed as: 𝐴0  𝒩( 0( ))   0
 ( )  

 0( )  
The alternative formula given in Equation 17 was used to calculate 𝐴𝑘. The nonlinear boundary 

is defined by the following equation: 

𝒩( )  ( 0         3  ⋯)  ( 0         3  ⋯)                                         (33) 

Based on Equations 32 and 33, the following iterations were obtained: 

 0( )    3 2776  
 𝑡2

 
, 

  ( )    3 2776    3 2775     ⋯, 

  ( )    3 2776    3 2775        66898   4  ⋯, 

 3( )    3 2776    3 2775        66898   4      833333   6  ⋯, 

⋮ 
Utilizing the OADM,  

 0( )    3 2776  
 𝑡2

 
 𝑎 , 

  ( )  𝑎  ℓ; .  3 2776  
 𝑡2

 
/, 

 𝑘: ( )  ℓ; ,𝐴𝑘-, 𝑘 ≥       and     𝒩( )  ∑ 𝐴𝑘 
∞
𝑘<0                                                              (34)  

Based on Equations 33 and 34, the following iterations were obtained: 

  ( )    3 2776  
 𝑡2

 
    (   97225  ⋯, 

 3( )    3 2776  
 𝑡2

 
    (   97225    267592 𝑎  ⋯, 

 4( )    3 2776  
 𝑡2

 
    (   97225    267592 𝑎     66898    ⋯, 

⋮ 
Due to the unavailability of the exact solution, the maximum error remainder ( 𝐸𝑅𝑘) was used 

to evaluate the accuracy of approximate solutions; it is defined as follows
2
: 

 𝐸𝑅𝑘  𝑚𝑎𝑥𝑏    |   ( )      ( )        ( )  
 

 
|,                                                           (35) 

Table 1 illustrates the considerable disparities in the maximum error remainder values between 

the ADM and the OADM, indicating the OADM's superiority in yielding satisfactory outcomes. 
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Table 1. Maximum error remainder of the ADM and the OADM for Equation 30, when 𝑘  7  
Interval 𝐌𝐄𝐑𝐤 of ADM 𝒂 𝐌𝐄𝐑𝐤 of OADM 

[0,1]   4929482649 9 59    ;6     5846823847 4 64343877 94448    ;9 

[0,2]      57765 63692669 4      929936755 8  4 5327789774 6    ;7 

[0,3]   4957 2376 6 99364    2633 985 63    25874 67 9922242 

 

Figure 1 shows the logarithmic plots for the  𝐸𝑅𝑘 values obtained by the ADM and OADM. 

The graph clearly shows that  𝐸𝑅𝑘  decreases more quickly with OADM than with ADM, 

emphasizing that OADM is better at achieving faster results and greater accuracy in the same 

number of iterations. 

 
Figure 1. Logarithmic plots for the  𝐸𝑅𝑘 when         for the DBFME by using the proposed methods. 

 

Table 2 indicates that all computed values of the ADM and OADM, which confirming their 

convergence according to the defined convergence criterion in section 4.   

 
Table 2. The value of 𝛽𝑖  to the approximate solutions of the proposed methods for 𝑘    to 7 when         

for the DBFME. 

 

The convergence rate when         for the DBFME by using the ADM and OADM was 

calculated using the following logarithmic formula: 

𝜗  log 0
 𝐸𝑅7

 𝐸𝑅6
1 ∕ log 0

 𝐸𝑅6

 𝐸𝑅5
1,                                                                                                        (36) 

The results indicate that the convergence rate for both methods is approximately one, implying 

that both ADM and OADM show linear convergence. i.e. 𝜗 ≃  . 

Additional cases of the      and    parameters will be studied at 𝑘  7. 

Case 1: The values   and   are both fixed at 1, while the selected values of   are 2 3 5, and 7. 

Table 3 demonstrates that the OADM gives better results in comparison to the ADM in all 

studied hypotheses. Increasing the value of   is associated with a continuous decrease in the 

 𝐸𝑅𝑘, signifying an improvement in the accuracy and stability of the OADM. This signifies its 

superiority and efficacy in solving the DBFME approximately. 

 

𝛃𝐢 ADM OADM 

𝛃𝟏    33235  5 29873 7      4975 49 82286283 

𝛃𝟐    84926 88 23 6826    3 55994 73 887562 

𝛃𝟑    8568848874  4562     3526    244 358 

𝛃𝟒    8272   5895 8 28    42 6 38853545265 

𝛃𝟓    8  28597437682 2    23283852  95 67  

𝛃𝟔    79836 45684 542    3449729 292527 5 
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Table 3. The comparison between the  𝐸𝑅7 when      , and versus the value of   for the DBFME. 
 

𝑭 = 𝒔 = 1,  𝑴  𝟐  𝑭= 𝒔 = 1, 𝑴  𝟑 𝟓  𝑭 = 𝒔 = 1, 𝑴  𝟕. 

Interva

l 
 𝐸𝑅7 of 

ADM 

 𝐸𝑅7 of 

OADM 

 𝐸𝑅7 of 

ADM 

 𝐸𝑅7 of 

OADM 

 𝐸𝑅7 of ADM  𝐸𝑅7 of 

OADM 

[0,1] 9 66 239
   ;8 

4 369446
   ;9 

  3 39 8
   ;8 

5 94   3
   ;   

  383677
   ;9 

8 864 498
   ;   

[0,2]        87945   5  569
   ;7 

      3  383 5 84  67
   ;7 

5 5427 8
   ;6 

3 8     8
   ;7 

[0,3]      54956 8 9  3447 
   ;6 

      952675    89426
   ;6 

      4 95639 4  543435
   ;6 

[0,4]   32 2575444     584496735    296527759     3 84 9549     84994 3 5       927 45 5 

 

Figures 2a and 2b and Table 3 illustrate that increasing the parameter   helps increase result 

accuracy and reduces error values, highlighting parameter  's impact on the accuracy of the 

solutions. The OADM, illustrated in Figure 2b, had results that were more accurate than the 

ADM results shown in Figure 2a. 

  
Figure 2(a). plots for the approximate solution the 

 𝐸𝑅𝑘 obtained by the ADM for the case 1 on ,   -. 
Figure 2(b). plots for the approximate solution the 

 𝐸𝑅𝑘 obtained by the OADM for the case 1 on ,   -. 
 

Case 2: The values   and   are both fixed at 1, while the selected values of   are       5 and 

  8. 

Table 4 shows the values of  𝐸𝑅𝑘 for the ADM and OADM of approximation solutions 

obtained from DBFME, using different values of a parameter of  . The results demonstrate a 

distinct superiority for the OADM compared to the ADM across all selected intervals, since the 

OADM generated many fewer errors than the ADM, indicating its high accuracy. These findings 

confirm the OADM as a precise and dependable instrument for solving nonlinear equations. 
Table 4. The comparison between the  𝐸𝑅7 when      , and versus the value of   for the DBFME. 

𝐌 = 𝐅 = 1, 𝐬  𝟎 𝟏  𝐌 = 𝐅 = 1, 𝐬  𝟎 𝟓  𝐌 = 𝐅 = 1, 𝐬  𝟎 𝟖. 

Interval 
MER7 of 

ADM 

MER7 of 

OADM 
MER7 of ADM MER7 of OADM MER7 of ADM 

MER7 of 

OADM 

[0,1] 
  474766
   ; 5 

7  55734
   ; 8 

2 767994 
   ;9 

5  373558
   ;   

2   58     ;7 
3 82 499
   ; 0 

[0,2] 
   474 5
   ;   

5  48659
   ; 4 

6 9 89895
   ;7 

5 8487549
    ;8 

      74264383 
  294895
   ;7 

[0,3] 
   24565
   ;7 

8  7 945
   ; 0 

    99945383      9  2  998   2899646972 9     4473  795 

 

Figures 3a and 3b and Table 4 illustrate that an increase in the parameter value   leads to 

increased error rates. Figure 3b demonstrates that the OADM provides better accuracy than the 

ADM shown in Figure 3a. 
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Figure 3(a). Logarithmic plots for the  𝐸𝑅𝑘 for the 

case 2 by applying the ADM on ,   -. 
Figure 3(b). Logarithmic plots for the   𝐸𝑅𝑘  

  for the case 2 by applying the OADM on ,   -. 

 

Case 3: The values   and   are both fixed at 1, while the selected values of   are     5 and   5. 

Table 5 demonstrates the superiority of the OADM over the ADM in all evaluated instances, as 

the OADM produced the fewest  𝐸𝑅𝑘 values. Despite the rise in values, the OADM delivered 

precise findings. In the situation of      5 and the interval ,  3-, the ADM exhibited escalating 

mistakes, whereas the OADM preserved its accuracy. 
Table 5. The comparison between the  𝐸𝑅7 when      , and versus the value of   for the DBFME. 

𝐌 = 𝐬 = 1, 𝐅  𝟎  𝐌 = 𝐬 = 1, 𝐅  𝟎 𝟓  𝐌 = 𝐬 = 1, 𝐅  𝟏 𝟓. 

Interval 
MER7 of 

ADM 

MER7 of 

OADM 
MER7 of ADM MER7 of OADM MER7 of ADM 

MER7 of 

OADM 

[0,1] 
3 775787
   ;   

  3 232 
   ; 3 

  932277
   ;7 

7 35 3 9
   ; 0 

5 597 33
   ;6 

  6 4293
   ;8 

[0,2] 
5 95 329
   ;8 

  9767 3
   ;9 

     2375945 5 6  7867    ;7      857 85999       3 27982 

[0,3]        623 67 
4 9 75 6
   ;7 

      99 4 727        77224524 43 247 3 42686   74 24493288 

 

Figures 4a and 4b and Table 5 indicate an increase in the parameter value   negatively affects 

result accuracy, as it leads to increased error rates. Figure 4b demonstrates that the OADM 

attains more accuracy after seven iterations compared to the ADM depicted in Figure 4a. 

  
Figure 4(a). Logarithmic plots for the  𝐸𝑅𝑘 for the 

case 3 by using the ADM on ,   -. 
Figure 4(b). Logarithmic plots for the  𝐸𝑅𝑘 for the 

case 3 by using the OADM on ,   -. 

 

Table 6 will examine the results from the ADM and OADM for the DBFME and compare them  

with the operational matrix methods, specifically the Bernoulli operational matrix method 

(BrOM), the Bernstein operational matrix method (BOM), and the shifting Legendre operational 

matrix method (LOM), as explained in
2
. Here, P represents the parameter under study (i.e.,  ,  , 

or  ), whereas V indicates the chosen value of that parameter. Table 6 shows the numerical 
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results obtained using these methods. The OADM demonstrates superiority over other methods, 

evidenced by the lowest values of  𝐸𝑅𝑘  across all cases, indicating its exceptional accuracy 

compared to other methods. The  𝐸𝑅𝑘 values diminish as   increases, whereas they escalate 

with rising   and  ; this signifies the impact of these parameters on the solution's accuracy. 
Table 6. The comparison between the  𝐸𝑅9 for the DBFME by proposed methods and methods in

2
. 

P V 𝐌𝐄𝐑𝟗 of BrOM
2
 𝐌𝐄𝐑𝟗 of BOM

2
 𝐌𝐄𝐑𝟗 of LOM

2
 𝐌𝐄𝐑𝟗 of ADM 

𝐌𝐄𝐑𝟗 of 

OADM 

𝐌 2 
2 8 347477 6456
   ;8 

2 8 3 4277   64
   ;8 

2 8 347478547743
   ;8 

5  4795989
   ; 0 

2 63 586
   ;   

𝐌 3 
  4228995742 77
   ;8 

  42289552727 3
   ;8 

  4228999   6226
   ;8 

8 29334942
   ;   

   73622
   ; 3 

𝐌 4 
   9   9973 76 
   ;8 

   9   7  583 6
   ;8 

   9    25652994
   ;8 

2 4723 667
   ;   

3 586 9 
   ; 4 

𝐬 
0.

5 

3  7633257  473 
   ;7 

3  764346257983 
   ;7 

3  7633259 387  
   ;7 

5 86436889
   ;   

3  583 7
   ; 5 

𝐬 2        474763 46 779        47476286 68 5        474763 462876       27 8 4 3 8 
5 3   699
   ;8 

𝐬 3        537 442844934        537 4398763 2        537 442843682     2  72 79  78 
7 54 6825
   ;6 

𝐅 0 
2 57276236   7 
   ;9 

2 56788446 6247
   ;9 

2 572762  847 9
   ;9 

5  65299 5
   ; 7 

  3972 2
   ; 8 

𝐅 2        3 354 4763332        3 35398895 24        3 354 476 723 
2 952764  5
   ;7 

2  94329
   ; 0 

𝐅 4        23 6 96539 78        23 6 9233554         23 6 96538 95 
7 2366 5329
   ;6 

5  263694
   ;9 

 

4.2.2. Approximate Solution and Numerical Results of the Blasius Equation 

This subsection discusses the efficiency of the proposed methods when applied to the Blasius  

equation in obtaining approximate solutions. 

    ( )    5    ( )  ( )   ,   ( )    ( )       ( )    332 573                                 (37) 

Applying the ADM,  

    ( )     5    ( )  ( )                                                                                                         (38) 

ℓ     5     ( )  ( )     ( )    ( )       ( )    332 573,                                         (39) 

where ℓ is a third-order differential operator, ℓ(∙)  
𝑑3𝑢

𝑑𝑡3 (∙). 

It is clear that ℓ;  is invertible and is given by  ℓ; (∙)  ∫ ∫ ∫ (∙)𝑑𝑟𝑑𝑟𝑑𝑟
𝑡

0

𝑡

0

𝑡

0
,                               

Operating ℓ;  on both sides of Equation 39 and using the initial conditions gives, 

ℓ; (ℓ )   ℓ; (  5    ( )  ( )), 

 ( )   ( )      ( )  
 𝑡2

 
    ( )     5 ∫ ∫ ∫ (   (𝑟) (𝑟))𝑑𝑟𝑑𝑟

𝑡

0

𝑡

0
𝑑𝑟

𝑡

0
, 

 ( )     66 2865      5 ∫ ∫ ∫ (   (𝑟)  (𝑟))𝑑𝑟𝑑𝑟
𝑡

0

𝑡

0
𝑑𝑟

𝑡

0
, 

 𝑘: ( )     66 2865      5 ∫ ∫ ∫ ( 𝑘
  (𝑟)  𝑘(𝑟))𝑑𝑟𝑑𝑟

𝑡

0

𝑡

0
𝑑𝑟

𝑡

0
, 

 𝑘: ( )     66 2865      5 ℓ; (𝐴𝑘), for 𝑘 ≥                                                                  (40) 

Suppose the unknown function  ( ) is represented as an infinite series:  ( )  ∑  𝑘( )
∞
𝑘<0 . 

Consequently, the initial Adomian polynomial is expressed as: 𝐴0  𝒩( 0( ))   0
  ( )  0( ) . 

The Adomian polynomials were calculated based on the following formula: 

𝒩( )  [( 0𝑡𝑡
   𝑡𝑡

   𝑡𝑡
  3𝑡𝑡

 ⋯)( 0         3  ⋯)].                                   (41) 

The following iterations were obtained using Equations 40 and 41: 

 0( )     66 2865   , 

  ( )     66 29         459425   5, 

  ( )     66 29         459425   5  2 497 9    ;6  8, 

 3( )     66 29         459425   5  2 497 9    ;6  8    4277    ;8     , 
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⋮ 
Utilizing the OADM,  

 0( )     66 2865    𝑎 , 

  ( )  𝑎  ℓ; (   66 2865   ), 

 𝑘: ( )     5 ℓ; ,𝐴𝑘- 𝑘 ≥       and 𝒩( )  ∑ 𝐴𝑘 
∞
𝑘<0 .                                                       (42) 

The following iterations were obtained using Equations 41 and 42: 

  ( )     66 29         459425  5       345893 𝑎   6  ⋯, 

 3( )     66 29         459425  5       345893 𝑎   6  2 497 9    ;6  8  ⋯, 

 4( )     66 29         459425  5  2 497 9    ;6  8        3 8833 𝑎3  8  ⋯, 

Table 7 shows that the OADM clearly outperforms the ADM over all intervals. The ADM 

failure becomes clear in the fifth interval due to an increase in error; however, the OADM 

provided a satisfying outcome over the same interval, highlighting the importance of the optimal 

parameter in enhancing results. 

Table 7. The comparison between the  𝐸𝑅7 of the proposed methods for the Blasius Equation. 

Interval 𝑴𝑬𝑹𝟕 of ADM 𝒂 𝑴𝑬𝑹𝟕 of OADM 

[0,1]    379786  24 785    ; 5       9928 35   8 4 857225732735 6    ; 7 

[0,2] 9 344835572 227 3    ;9     3 25342 26829 2 7 498526355745    ; 0 

[0,3]       977  9 9 73 7953     48587378898 4   83469 4728 5675    ;6 

[0,4]    6498 43 7 294823    4 799939 22759       87697 553 42 25 

[0,5] 9 4224 7 28848566    34 4 54 286 37    38438247797 86 6 

 

Figure 5 illustrates that the  𝐸𝑅𝑘 noticeably decreases with an increase in iterations for both the 

ADM and OADM, signifying the convergence of the solutions. However, the accuracy and 

convergence speed for the OADM are the highest. 

 
Figure 5. Logarithmic plots for the  𝐸𝑅𝑘 versus 𝑘 from 1 to 7 for the Blasius Equation on ,   -. 

 

Table 8 demonstrates that all 𝛽𝑖  values are less than 1. This confirms that they are convergent. 

Furthermore, results demonstrate the superiority of OADM compared to ADM regarding 

convergence speed. 
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Table 8. The value of 𝛽𝑖  to the approximate solutions of the proposed methods for 𝑘    to 7 for the Blasius 

Equation. 

The rates of convergence for Equation 37 were computed utilizing the ADM and OADM, in 

accordance with Equation 36, for values of 𝑘 ( from   to 7). The results indicated that both 

methods show linear convergence because the convergence rates are approximately one. 

This subsection examines how effective the proposed methods are in obtaining approximate 

solutions to the Blasius equation, using both the ADM and OADM, with results previously 

documented in
3
. Table 9 demonstrates the efficacy of the OADM in minimizing the  𝐸𝑅𝑘 

achieving 4 85722573274    ; 7. Figure 6 illustrates a rapid and continuous decrease in 

error corresponding to an increase in the number of iterations. This result confirms the 

effectiveness of the OADM in achieving accuracy and convergence. 
Table 9. The comparison between the  𝐸𝑅𝑘 versus 𝑘 from 1 to 7 for the Blasius equation on ,   -. 

 

 
 

Figure 6. Logarithmic plots for the  𝐸𝑅𝑘 for the Blasius Equation by using the proposed methods on ,   -. 
 

4.2.3. Approximate Solution and Numerical Results of the Falkner-Skan Equation 

This subsection discusses the accuracy of the ADM and OADM when they are applied to the 

Falkner-Skan equation to get approximate solutions at 𝜃    5 and 𝜀     . 

𝛃𝐢 ADM OADM 

𝛃𝟏         4457884972  762          8 933 4    432 

𝛃𝟐     545 76 44 848835       4645 8 96362 94 

𝛃𝟑     552 9438 5982292     43  797556663325 

𝛃𝟒     549899 627724247       792 346829 825 

𝛃𝟓     547  76398964747     322524 473644877 

𝛃𝟔     545 2  69597  95     2 579896763 524  

𝑘 MERkof BrOM
3
 MERkof BOM

3
 MERkof LOM

3
 MERkof ADM MERkof 

OADM 

3     48 939 7  593 73     48 939 7  592988     48 939 7  592925   7574 4 9 5
   ;7 

3  939353 65
   ;8 

4      427  5738558968      427  5738563973      427  5738558465   8275754729
   ;9 

2 272 3 654
   ; 0 

5      4 97 5975463965      4 97 5974763596      4 97 59754625 2   6866567 7 
   ;   

9 389954 92
   ; 3 

6       7 27579 892923       7 27579 9332 2       7 27579 9438 9   4328468967
   ; 3 

3 3376 7968
   ; 5 

7       25 37988894955       25 37988745927       25 379883  2 2    379786  2
   ; 5 

4 857225733
   ; 7 
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    ( )      ( )  ( )    5 0(   )  (  ( ))
 
1     ( )      ( )    9    ( )  

   832666                                                                                                                                  (43) 
By using the ADM, 

    ( )       5     ( )  ( )    5 (  ( ))
 
  ( )      ( )    9    ( )     832666  

ℓ       5     ( )  ( )    5 (  ( ))
 
,                                                                              (44) 

where ℓ is a third-order differential operator, ℓ  
𝑑3𝑢

𝑑𝑡3   

It is clear that ℓ⁻¹ is invertible and is given by  ℓ; (∙)  ∫ ∫ ∫ (∙)𝑑𝑟𝑑𝑟𝑑𝑟
𝑡

0

𝑡

0

𝑡

0
, 

Operating ℓ⁻¹ on both sides of Equation 44 and using the initial conditions gives 

ℓ; (ℓ )  ℓ; .     5     ( )  ( )     5 (  ( ))
 
/, then we get: 

 ( )   ( )      ( )  
 𝑡2

 
    ( )  ∫ ∫ ∫ .     5     (𝑟)  (𝑟)    5 (  (𝑟))

 
/𝑑𝑟𝑑𝑟

𝑡

0

𝑡

0
𝑑𝑟

𝑡

0
,  

 𝑘: ( )  

  9     4 6333    (    5 6⁄ )  3  ∫ ∫ ∫ . 𝑘
  (𝑟)  𝑘(𝑟)    5 ( 𝑘

 (𝑟))
 
/𝑑𝑟𝑑𝑟

𝑡

0

𝑡

0
𝑑𝑟

𝑡

0
, for 

𝑘 ≥                                                                                                                                             (45) 

Let us assume that the unknown function  ( ) may be expressed as an infinite series:  ( )  
∑  𝑘( )

∞
𝑘<0 . The initial Adomian polynomial is expressed as follows: 

𝐴0  𝒩( 0( ))    0
  ( )  0( )     5 ( 0

 ( ))
 
  

The Adomian polynomials were calculated based on the following formula: 

𝒩( )  0 ( 0𝑡𝑡
   𝑡𝑡

   𝑡𝑡
  3𝑡𝑡

 ⋯)( 0         3  ⋯)    5( 0𝑡
   𝑡

   𝑡
 

 3𝑡
 ⋯)

 
1.                                                                                                                                 (46) 

Based on Equations 45 and 46, the following iterations were obtained: 

 0( )    9     4 6333    (    5 6⁄ )  3, 

  ( )    9     4 6333       666667  3        375  5  ⋯, 

  ( )    9     4 6333       666667  3      3  5       462592  6  ⋯, 

 3( )  
  9     4 6333       666667  3      3  5       462592  6        6      7  ⋯, 

⋮ 
By applying the OADM,  

 0( )  (  9     4 6333    (    5 6⁄ )  3)  𝑎 , 

  ( )  𝑎  ℓ; (  9     4 6333    (    5 6⁄ )  3), 

 𝑘: ( )  ℓ; ,𝐴𝑘-   𝑘 ≥       and   𝒩( )  ∑ 𝐴𝑘 
∞
𝑘<0                                                               (47) 

Based on Equations 46 and 47, the following iterations were obtained: 

  ( )    9    4 6333        833333 3   /6 (  9𝑎  ⋯, 

 3( )    9    4 6333        833333 3     833333 𝑎  3   /6 (  9 𝑎  ⋯, 

 4( )    9    4 6333        833333 3     833333 𝑎  3   /6 (  9 𝑎  𝑎 ) 3  ⋯, 

Table 10 indicates the superiority of the OADM over the ADM in terms of accuracy, as the 

OADM maintained low error values over different intervals, while the ADM errors increased 

significantly, especially at the interval ,  3-. 
Table 10. The comparison for the  𝐸𝑅7 when 𝜃    5 and 𝜀      for the Falkner-Skan Equation by using the 

proposed methods. 

Interval 𝐌𝐄𝐑𝟕 of ADM 𝒂 𝐌𝐄𝐑𝟕 of OADM 

[0,1]    887657 759 866    ;7     476666572 8 2654  8 7427963    ;9 

[0,2]      3 9383623493 7  7      9 5  549       6954338474787769 

[0,3]      346  99 562338    896289334      78676884774 9 6 
 

Figure 7 illustrates that the  𝐸𝑅𝑘 value decreases significantly with an increase in the number 

of iterations for both the ADM and OADM, indicating the convergence of solutions. However, 
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the results demonstrate the superiority of the OADM for accuracy and convergence speed in 

comparison to the ADM. 

 
Figure 7. Logarithmic plots for the  𝐸𝑅𝑘 versus 𝑘 from 1 to 7, for Equation 43 on ,   -. 

 

Table 11 shows the convergence of approximate solutions towards the exact solution, and also 

note the superiority of OADM over ADM in the speed of convergence. 
Table 11. The value of 𝛽𝑖  to the approximate solutions when 𝜃    5 and 𝜀      for the Falkner-Skan equation by 

using proposed methods 

𝛃𝐢 ADM OADM 

𝛃𝟏     26  54 9225494635        27 6 5 632645662 

𝛃𝟐    346 58466 944827       3664692 293 4 8 3 

𝛃𝟑     837698 9  7 2667      445942798224 72 

𝛃𝟒   2 4828 7365297 73       3 79793923822 99 

𝛃𝟓    63 6 8 7  4 6353     467655 2877297 5 

𝛃𝟔     8326745655578864     4 244257639  496 

 

In addition, this subsection compared the results of iterative methods with the operational 

matrices methods, as presented in
1
, for the approximate solution of the Falkner-Skan equation. 

Table 12 illustrates a comparison between BrOM, BOM, LOM, ADM, and OADM for the 

 𝐸𝑅𝑘. The analysis demonstrates that the OADM significantly reduces the error, hence 

affirming its efficacy and precision in nearly solving the Falkner-Skan equation. Figure 8 shows 

that as the number of iterations increases, the error quickly and persistently decreases, proving 

that the OADM is effective in reaching high accuracy and better results compared to other 

methods. 
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Figure 8. The comparison of the solutions, when 𝜃    5 and 𝜀      for Equation 43 on ,   -. 

 

Table 12. The comparison for the  𝐸𝑅𝑘 between the proposed methods, when 𝜃    5 and 𝜀      for Equation 

(43) on ,   -. 

𝐤 𝐌𝐄𝐑𝐤 of BrOM
1
 𝐌𝐄𝐑𝐤 of BOM

1
 𝐌𝐄𝐑𝐤 of LOM

1
 

𝐌𝐄𝐑𝐤 of 

ADM 

𝐌𝐄𝐑𝐤 of 

OADM 

3    66382  5799 7353    66382  5799 7359    66382  5799 733         73 933       4 87 953 

4    35852 7953692 66    35852 7953692854    35852 795369  675       7 36  7       333  396 

5     3793 49969654 95     3793 499 95  758     3793 499696549 6        463448 
5 83675767 
   ;7 

6      83723 864885268      83723 864859 67       83723 864886    
   55865
   ;7 

9 356359898
   ;8 

7      34   24867987 6      34   249 439 928      34   248679977 7 
   88766
   ;7 

8 2654  8 7
   ;9 

8       744 8994   7268       744 897 8 77  4       744 8994  8396  
7 4  823
   ;9 

5 638    97
   ;   

9        3 727976  423         3 727767437 77        3 727975829925 
7 24 936
   ;   

3 8 789844  
   ;   

1

0 
9 8764546652 4 4
   ;7 

9 8736739 62497 4 
   ;7 

        56 74 745954  
4 2977 2
   ;   

  674327343
   ;   

1

1 

  7854375 6 7433 
   ;7 

  8258 669 39 2 7 
   ;7 

        4 2 784636  2 
2 6 6582
   ;   

9   38288 2
   ; 5 

 

5. Conclusions 

This paper proposed two iterative methods, namely the ADM and OADM, to solve NODEs of 

the second and third orders, including the Darcy-Brinkman-Forchheimer moment equation, the 

Blasius equation, and the Falkner-Skan equation. The study results indicated that the OADM was 

more accurate and computationally effective compared to the ADM because an optimal control 

parameter was introduced, which helped to extend the convergence interval and reduce the 

values of the  𝐸𝑅𝑘. The results revealed that the convergence criterion in the OADM exhibits 

superior speed and precision relative to the ADM, establishing it as the optimal selection for 

applications necessitating exact outcomes. The results indicate that when the value of   

increases, the accuracy of the solutions improves significantly and the  𝐸𝑅𝑘 decreases. 

Nonetheless, increases in the values of   and   adversely affect accuracy. The findings 

offer suggestions on adjusting these physical parameters to improve the accuracy of outcomes in 

the Darcy-Brinkman-Forchheimer moment equation. Besides, the proposed methods have been 

used to solve various nonlinear equations, including the Blasius equation and the Falkner-Skan 

equation. Comparison with other numerical methods has proved the superiority of the OADM in 

accuracy and convergence rate. Comparisons with the BrOM, BOM, and LOM methods 
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indicated that the OADM is remarkably good in all suggested applications. The key contribution 

of this study is the enhancement of the OADM through the addition of an optimal control 

parameter. The chosen physical applications are presented to reveal that the optimal method 

attains fast convergence with a minimal number of iterations, rendering it a useful tool for 

solving nonlinear systems in practical problems. Future research may include comparison with 

other numerical and analytical methods in evaluating the optimal method, thereby expanding its 

application in the boundary value problem and problems related to infinite intervals. 
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