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Abstract

This paper shows new approximate ways to solve nonlinear ordinary
differential equations using two methods that repeat steps: the Adomian
decomposition method (ADM) and the optimal Adomian decomposition
method (OADM). These equations are extensively utilized in fluid
dynamics and engineering. The OADM sets itself apart by incorporating
an optimal control parameter that enhances solution accuracy and
accelerates convergence, providing a distinct advantage over the ADM.
The two methods have been applied to three important equations: the
Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation,
and the Falkner-Skan equation. The effectiveness of the two methods
was assessed by looking at how quickly they converged and the largest
error remaining, while also comparing them to other numerical results
from operational matrix methods found in existing research. The results
demonstrate the superior accuracy of OADM, which proves its
effectiveness in solving the nonlinear equations. All computations were
conducted utilizing the program, which facilitated the execution and
evaluation of the proposed methods.
Keywords: Adomian Decomposition Method; Optimal Adomian
Decomposition Method; Maximum error remainder; Darcy-Brinkman-
Forchheimer Moment Equation; Blasius Equation; Falkner-Skan

Equation.

1.Introduction

Complex phenomena in science and engineering require accurate mathematical models.
Nonlinear ordinary differential equations (NODEs) are essential for describing complex,
changing behaviors, particularly in fluid flow and thermal expansion' . The ADM and OADM
are effective for solving NODEs. It is based on the analysis of nonlinear components into
polynomials called "Adomian polynomials", which facilitates the systematic and iterative
construction of the solution. This method has received wide attention from researchers in recent
years due to its accuracy and high efficiency in finding solutions*”. Numerous research studies
have employed ADM for solving many problems, including the Lane-Emden, and Riccati
differential equations®’. The convergence in this method has been given much attention by
researchers; in 2009, studies of the convergence of the ADM with initial-value problems in the
context of differential equations, as noted in®. In 2004, the ADM was extended to delay
differential equations (DDE), where accurate approximate solutions were obtained using rapidly
convergent series expansions, as in . A recent study presented fourth- and fifth-order iterative
schemes for solving coupled systems with nonlinear equations using the method of Adomian
decomposition, as in'’. While ADM is effective in addressing differential equations, studies
indicate it may be ineffective in specific instances due to its sluggish convergence, resulting in
imprecise or discontinuous sequential solutions''. Consequently, the necessity emerged to
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enhance the convergence by adding an optimal parameter (a), and its value can be determined by
the squared residual error''. A nonlinear iterative formula is established, and the procedure is
reiterated until the requisite precision is attained. The method seeks to enhance the effectiveness
by accelerating convergence and expanding the convergence region''.

The Darcy—Brinkmann—Forchheimer moment equation (DBFME) is a fundamental equation for
modeling fluid flow in porous media, garnering considerable attention from researchers in recent
decades; see'. In 2006, it was demonstrated that the DBFME can be effectively treated using
asymptotic techniques to analyze forced convection in porous channels; refer to'®. In 2021,
researchers employed the optimal Galerkin-homotopy asymptotic method to solve the same
equation; refer to'*. Recently, numerous approximation methods have garnered heightened
interest for the DBFME. Among them are the Bernoulli, Bernstein, and shifting Legendre
operational matrix method; see’.

The Blasius equation has received major attention in the research community due to its
importance in analyzing the behavior of the hydrodynamic boundary layer and the flow of
viscous fluids in fluid mechanics®. Later, ADM and the differential transform method were
employed to obtain semi-analytical solutions; refer to*®. Furthermore, three different techniques
were utilized in other studies: the simple perturbation technique, the Galerkin method, and the
direct numerical method, with the advantages of each of them being evaluated based on the
nature of the chosen field; see®. In addition, she employed the Crocco-Wang transform along
with adjusted finite differences and the Wynn algorithm to obtain accurate solutions to the
Blasius equation; see®’.

Numerous numerical and approximation methods have considered the Falkner—Skan equation as
an important model in boundary layer theory. The shooting technique, a numerical method for
solving boundary value problems was employed; refer to'®. The ADM was utilized in
conjunction with the Padé approximation in 2008; see'’. Recently, A hybrid method integrating
the Jaya algorithm with the Runge—Kutta method has been employed; see’. Additionally,
oplerational matrix methods facilitated the acquisition of effective approximate solutions; refer
to.
This paper is structured as follows: Section 2 addresses the essential equations of the proposed
applications. Section 3 illustrates the proposed iterative methods, while Section 4 presents the
convergence analysis along with approximate solutions and numerical results obtained using the
proposed methods, whereas the last section discusses the conclusions drawn from this paper.

2. The Formulation of Some Applications

2.1. The Darcy-Brinkman-Forchheimer Moment Equation

The Darcy-Brinkmann-Forchheimer equation is a classic example of the boundary value problem
in the analysis of fluid dynamics within porous media, since these equations appear in various
physical, biological, and applied sciences problems”. The use of porous media in contemporary
technology is increasing, including effects on thermal insulation, direct heat exchangers, and
nuclear waste repositories’'. It seemed necessary to determine solutions to these equations using
numerical or approximate methods®. The classical Darcy's law became ineffective in the presence
of inertia and rigid barriers, in particular at high Reynolds numbers determined by the pore size
1321 “Consequently, the Darcy law was augmented to incorporate inertial and boundary effects
with the introduction of the Brinkman and Forchheimer terms, thus enabling a more precise
characterization of fluid flow in porous media. The results suggest that the addition of these
effects can improve the thermal efficiency of heat exchangers®'. The addition of these effects
resulted in the formation of a second-order nonlinear differential equation with boundary
conditions defined by the following formula®.

u"(t) —s?u(t) — F su?(t) + % =0, u'(0)=0,u(1)=0. (1)
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where s denotes the shape parameter of the porous media, F indicates the Forchheimer number,
and M represents the viscosity ratio.

2.2. The Blasius Equation

The flow showing how an incompressible fluid moves in two dimensions over a flat plate that
continues almost infinitely is explained by the boundary layer equation represented by the
following formula®:

[l @ (O + -5 u@®u"(©) = 0 2)
subject to the boundary constraints: u(0) = u'(0) =0, u'(0) =1 (3)
The research studies' results indicate that the function u(t) exhibits linear behavior when the

power law coefficient is p > 1. The Blasius equation is extensively utilized in the examination of
boundary layers in Newtonian liquids®™.

() + > u(®) u' () =0 (4)
subject to the boundary conditions: u(0) = u'(0) = 0,u’() =1 (5)
This equation is of high importance in the field of fluid mechanics. Specifically, when studying
the dynamical layer borders and stratified flows of fluids with viscosity. Liao found that u"'(0) =
0.3320573, a value commonly used in scientific literature®. This value was derived utilizing
precise numerical methods grounded on standard assumptions, and it will be adopted in this
paper.

2.3. The Falkner-Skan Equation

The Falkner-Skan equation, a NODE of the third order, first appeared in 1931. The importance of
this equation lies in fluid mechanics and boundary layer theory and is used in different fields,
such as the formation of plastic panels and insulating materials, the study of polymers, and the
examination of incompressible boundary layers in two-dimensional equations"'®, which is
represented by the following formula':

u" () +u) u’(t) +6[1 - (u’(t))z] =0,0<t< oo, (6)

with the boundary conditions: u(0) = 0,u’(0) = —¢&,u' () = 1.

This equation is a common example of a boundary value equation in infinite domains. The main
problem is dealing with infinite boundary conditions. This issue is resolved by transforming the

semi-infinite physical field into a static arithmetic field through sophisticated numerical
methods'®. The behavior of the Falkner-Skan equation is contingent upon 6 and &, where @
denotes the coefficient of expansion of the moving boundary and ¢ signifies the velocity ratio in
the free stream. The numerical study has revealed that the values of these two parameters
influence many solutions. For instance, three solutions emerge for 6 values ranging from 0 to
0.14, a singular solution exists when 8 is between 0.14 and 0.5, and ultimately, two solutions are
present when @ is between 0.5 and 1, illustrating the complex behaviors of solutions under
changing parameters™. In reference', the researchers established the initial condition u''(0) =
—0.832666 utilizing the boundary condition u’'(c0) =1 through the method of Pade’
approximation. The formula will be modified to align with this condition and will serve as the
foundation for this paper.

u”' () +ue) u”(t) + 6[e? — (u’(t))z] =0, (7
with the boundary conditions: u(0) = 0,u'(0) =1 — &,u''(0) = —0.832666 (8)

3. The Adomian Decomposition Method and Optimal Adomian Decomposition Method

3.1. The Fundamental Idea of the ADM

The ADM, developed by George Adomian from the 1970s to the 1990s, is a semi-analytical
method intended for the solution of non-linear ordinary and partial differential equations®’. The
method uses Adomian polynomials to analyze the nonlinear components of differential
equations. The ADM is a fundamental method for solving nonlinear differential equations,
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offering an efficient framework for obtaining accurate yet fast solutions, which makes it of great
importance in addressing many mathematical and applied problems™®.

Consider the general nonlinear differential equation':

(W) +Nw)=f(t),b<t<c, 9)
with the imposition of the initial or boundary conditions of the differential equation,

where £ denotes the higher-order linear differential operator, while ' indicates the nonlinear
differential operator. where u is the function to be solved, while f(t) denotes a known analytical

function®®. If £ is the first-order operator defined by £ = %. Assuming that € is invertible, then

the inverse operator £~ is given by £71(-) = [ Ot (-)dr. If £ is a second-order differential operator,
2

then £ = %. The inverse operator £~ is a two-fold integration operator given by £71(-) =

fot fot (-)drdr, and so on. Applying the inverse operator £~1 on both sides of Equation 9, the

following is obtained””:

u=g) -t NI (10)
where g(t) is depends on the initial or boundary conditions of the differential equation, as well
as the integral of the function f(t), a nonlinear operator N'(u) is usually represented by an
infinite series, and this series (4y) is called an Adomian polynomial, which is denoted by the
next formula:

N(W) = XroAr,ult) =X our (t), fork =0 (11)
The components u (t) are determined using an iterative process as follows:

uy(t) = g) + L Hf (D], (12)
Ups1 (D) = =27V (W],

U1 (8) = =07 [Xro Ay ], fork = 0 (13)
Replacing these components provides an approximate solution of order (k):

u(t) = Xk_oup () oru(®) = up(t) + ug (&) + up(8) + -+ + e (1), (14)

A primary challenge in this method lies in the calculation of Adomian polynomials, which denote
nonlinear terms. There are two methods for computing these terms: The first method, introduced
by Adomian, provides direct formulas for calculating these limits, where
A = A (U, uq, -+, uy), represents the Adomian polynomials, which can be determined using
the following formula®:

ak o
Ay = %W [V (22t A)] |1, for k = 0, (15)

The A, are generated for all types of nonlinearities so that A, depends only on u,, A; depends on
u, and u,, and so on. The A4}, can be expressed as follows®’:

AO = N(uO)a
Ay = u; N (up), .
Ay = wp W () + 22N (o),
I 143 1 nr
Az = uzN'(ug) + ugup, V" (ug) + guf]\f (uo), (16)

Although the original formulas presented by Adomian are a direct way to calculate nonlinear
terms”, the researchers sought to develop an alternative method that would be simpler and more
flexible. This method relies on algebraic operations and trigonometric properties, in addition to
Taylor series, to reconstruct polynomials without relying on the original complex formulations.
The core idea of this method involves systematically decomposing the nonlinear terms, initially
assuming that the unknown function u(t) is represented as an infinite series, u(t) = X.r—o U (t).

The initial value of the Adomian polynomial is determined by the relation Aq = N (ug).
Subsequently, the nonlinear polynomials are constructed such that the sum of the sub-indices of
the components in each Ay equals k, thereby enabling each A, to be distinctly categorized
according to its order in the sequence.
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In other words, in the case V' (u) = u?(t), it is calculated based on the following steps™’:

Step one: representing u(t) as an infinite string, u(t) = Y=o U (t).

Step two: compensate u(t) in N (u) = u?(t), N (w) = (ug + uy + uy + uz + -+ )>2.

Step three: expand the expression on the right-hand side,

N (W) = ud + 2uguy + u? + 2ugu, + 2uquy + 2ugug + o, (17)
Then the Adomian polynomials can be expressed as:

Ay = ug (),

Ay = 2uo(t)uy (1),

Az = uf(t) + 2up(Huy(b),

Az = 2u; (Du, (t) + 2u (Dus(t),

This method makes the Adomian polynomials clear and easy to determine, eliminating the need
for the complex formulas provided by Adomian. This paper will employ this method to calculate
nonlinear terms in the suggested applications.

3.2. The Fundamental Idea of the OADM

This method builds upon the general form of the differential equation as presented in Equation
(9), with the imposition of initial or boundary conditions. This method proposes an iterative
scheme that introduces the optimal parameter a to enhance the convergence speed. The initial
solution uy (t, a) is defined as follows'":

uy(t,a) = g(t) — at, (18)
u,(t,a) = at + £71(g(t), (19)
U1 (t,a) = =074 (D)], for k > 1. (20)

Use for obtaining an approximate solution to Equation 9, which is dependent on the parameter a
utilized to control the speed of convergence. Omitting this parameter may render the ADM
incapable of achieving an accurate result. Utilizing Adamian polynomials, which denote
nonlinear limits, and a parameter value a, an approximate solution of the equation can be found
as follows:

Uy (t! a) = Z‘ﬁ:O un(t! Cl), (21)
For obtaining the ideal value of parameter a, it is advisable to utilize the residual error equation,
considering this value increases convergence speed and enhances results accuracy''.

There are two methods for calculating the residual error: The first method is known as the
analytical method, which consists of calculating the variance between approximate value and
exact value, represented by the following mathematical formula:

b
Res(a) = [ [¢(u(t)) + NV (e (1) — (O] dt, (22)
Determining the interval [b, c] facilitates the minimization of this error.

dRZZ(a) —0, (23)

The second method, called the numerical method, is represented by the numerical Riemann
integral and is given by the following formula:

Res(a) = ——%%_ glt,]As. (24)
The total interval [b,c] is divided into v equal subintervals, each of length As, where As,
represents the uniform spacing between evaluation points. In this method, the function g(t) is
defined as g[t] = [£(u,(t)) + N (ug(t)) — f(t)]?. Here, v denotes the number of subintervals
used in the approximation process. Nonetheless, applying analytical methods for complex
nonlinear equations is frequently difficult. In contrast, a numerical method grounded in Riemann
integration offers a more effective alternative, as it accelerates computations while preserving a
high degree of accuracy, making it very valuable in advanced computational fields.
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4. Convergence Analysis and Approximate Solutions with Numerical Results
4.1.Convergence Analysis of the ADM and the OADM

This subsection studies the convergence of ADM and OADM in relation to Equation 9. The
fundamental prerequisites for achieving convergence are established, together with the
assessment of the mistake produced by this method. The fundamental findings are delineated
within the following theories®®". To explain it, initially the following steps are selected.

Uy = uO(t)v

uy = Blue],

Uy = Blug +uql,

U1 = Blug +ug + -+ uyl, (25)
Consider u,(t) to denote the approximate solution derived from the initial iteration, and the
operator B is represented by the subsequent relation:

Blu,| =S, — Xh-our, p =0,1,2, ... (26)
such that S, signifies the solution obtained from the proposed methods. The solution can be
expressed using Equations 25 and 26 as follows:

u(t) = Xio ux (1), 27)
4.1.1 Theorem

suppose B, as defined in Equation 26, is the operator assignment from the Hilbert space H to H.
The series u(t) = Yo ux (t) is converges, if 30 <8 <1 such that ||Bluy+u; + -+
U1l < 6 NIBlug + uy + -+ wi]ll, (Specifically [[ugsqll < Sllukll, v k € N U {0}).

Proof: see’".

4.1.2 Theorem

if the series solution u(t) = X;7-o ux (t), as presented in Equation 27, converges, it constitutes
the exact solution of the nonlinear Equation 9.

Proof: see’'.

4.1.3 Theorem

let the series solution };7_,u, (t) defined in Equation 27 be approximated by the truncated

series u(t) = {(,:0 uy (t), consider the solution u(t) of Equation 9. The maximum mistake

E;(t) can be derived from the following formula®®*:

5j+1
Ei(t) < = lluoll, (28)
To summarize. 4.1.1 and 4.1.2 theorems illustrate that the nonlinear solution obtained from the
ADM for Equation 9, using the iteration formulas defined in Equation 25, converges to the
exact solution provided that there exists a0 < § < 1 such that ||u,4 1| < &|lug|l. In other terms,
if the parameter values are specified for each k € N U {0}, then:

gl

—_— ugl||l #0
5 - [ [

0, lugll = 0

The series solution Y37, u, (t) for Equation 9 converges to an exact solution u(t) when
0 <pB; <1 for every i € NU{0}. The maximum error of the truncated absolute, based on
Theorem 4.3, is determined to be ||u(t) — Xi_ow @) < % lluoll, where B = max{B;,i =
0,12,..,j}

4.2. Approximate Solutions and Numerical Results

Based on the convergence results specified in the previous subsection, approximate solutions and
numerical results for the proposed applications are now presented.

4.2.1. Approximate Solution and Numerical Results for the DBFME

Now, we will study DBFME inthecase M =s =F = 1.

u'(®) —u()—ui(@)+1=0, u'(0)=0u(1)=0, (30)

(29)
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By applying the ADM,

u"(t) = u?(t) +ut) — 1,

fu=u?(t)+ul)—1, v'(0)=0u(l) =0, (31)
2

where ¢ is a second-order differential operator, £(-) = 271; ).

It is clear that £~ 1 is invertible and is given by £71(:) = fot fot (-drdr.
Operating =1 on both sides of Equation 31 and using the boundary conditions, we get:
£71(0u) = 07 (W () +u(t) — 1),
u(® —u(0) —tw'(0) = [, [;@2(r) +u(r) — Ddrdr,
The boundary conditions and the Maclaurin series yielded two approximate initial values:
—3.30278 and 0.302776, indicating the existence of double solutions *2. To determine the
optimal value, the MER, was calculated for each of them, resulting in 0.000893735 for the
negative value and 4.64344 x 10~° for the positive value. This study adopted the positive value
of its effectiveness in decreasing error.

2
u(t) = 0.302776 — t? + fot fot(uz (r) + u())drdr = (32)
Suppose the unknown function u(t) is represented as an infinite series: u(t) = Yp— Up (t).
Consequently, the initial Adomian polynomial is expressed as: Ay = N (uo(t)) = ud(t) +
U (0).
The alternative formula given in Equation 17 was used to calculate Aj. The nonlinear boundary
is defined by the following equation:
Nw)=(ug+ug +uy +us+--)%+ o +u +uy, +ug +-+) (33)
Based on Equations 32 and 33, the following iterations were obtained:

2

uy(t) = 0.302776 — %
u,(t) = 0.302776 — 0.302775 t2 — .-,
u,(t) = 0.302776 — 0.302775 t?> — 0.066898 t* + ---,
uz(t) = 0.302776 — 0.302775 t*> — 0.066898 t* + 0.00833333 & + ---,

Utilizing the OADM,
2
up(t) = 0.302776 —— —at,
2
u,(t) = at + £ (0302776 — <),

uk+1(t) = ‘g_l[Ak]: k = 1! and N(u) = Z;:;OA]{ (34)
Based on Equations 33 and 34, the following iterations were obtained:

2
u(t) = 0.302776 — — + t2 (0197225 — -,
2
us(t) = 0302776 — — + t2 (0197225 — 0.267592 at — -,
2
us(t) = 0302776 — — + t2 (0.197225 — 0.267592 at — 0.066898 t2 + ---,

Due to the unavailability of the exact solution, the maximum error remainder (MER,,) was used
to evaluate the accuracy of approximate solutions; it is defined as follows?:

MER,, = max,<<c |u”(t) —s? u(t) — F s u?(t) +% , (35)

Table 1 illustrates the considerable disparities in the maximum error remainder values between
the ADM and the OADM, indicating the OADM's superiority in yielding satisfactory outcomes.
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Table 1. Maximum error remainder of the ADM and the OADM for Equation 30, when k = 7.

Interval MER of ADM a MER; of OADM

[0,1] 1.492948264909159 x 10°¢ —0.05846823847 4.64343877194448 x 107°
[0,2] 0.0005776516369266904 —0.10929936755 8.140532778977416 x 1077
[0,3] 0.49570237616199364 —0.26331985063 0.02587416719922242

Figure 1 shows the logarithmic plots for the MER;, values obtained by the ADM and OADM.
The graph clearly shows that MER, decreases more quickly with OADM than with ADM,
emphasizing that OADM is better at achieving faster results and greater accuracy in the same
number of iterations.

0.100
0.001|

~

‘g 1075} # ApDM
10-7 ® OADM

Figure 1. Logarithmic plots for the MER;, when M = s = F = 1 for the DBFME by using the proposed methods.

Table 2 indicates that all computed values of the ADM and OADM, which confirming their
convergence according to the defined convergence criterion in section 4.

Table 2. The value of ; to the approximate solutions of the proposed methods fork = 1to 7when M =s=F =1
for the DBFME.

B; ADM OADM

B1 0.03323500502987307 0.0004975049182286283
B, 0.08492618802306826 0.030559941730887562
B3 0.08568848874114562 0.01352610112440358
Bs 0.08272010589508128 0.04206038853545265
Bs 0.08102859743768202 0.02328385201951671
Bs 0.0798360456841542 0.03449729129252715

The convergence rate when M = s = F = 1 for the DBFME by using the ADM and OADM was
calculated using the following logarithmic formula:

0 =log || /log [i57e) (36)

The results indicate that the convergence rate for both methods is approximately one, implying
that both ADM and OADM show linear convergence. i.e. ¥ =~ 1.

Additional cases of the F, s, and M parameters will be studied at k = 7.

Case 1: The values F and s are both fixed at 1, while the selected values of M are 2, 3.5, and 7.
Table 3 demonstrates that the OADM gives better results in comparison to the ADM in all
studied hypotheses. Increasing the value of M is associated with a continuous decrease in the
MER,,, signifying an improvement in the accuracy and stability of the OADM. This signifies its
superiority and efficacy in solving the DBFME approximately.
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Table 3. The comparison between the MER, when F = s = 1, and versus the value of M for the DBFME.

F=s=1 M=2. F=s=1 M = 3.5. F=s=1,M=17.

Interva | MER, of MER, of MER; of MER; of MER, of ADM | MER, of

I ADM OADM ADM OADM OADM

[0,1] 9.661239 4.369446 1.303908 5.940003 1.383677 8.8641498

x 1078 x 107° x 1078 x 10711 x 107° x 10712

[0,2] 0.0001187945 1.500569 0.0000301383 5.840067 5.542708 3.8101008
x 1077 x 1077 x 1076 x 1077

[0,3] 0.0005495618 | 9.134470 0.0000952675  1.189426 0.00004095639 | 4.0543435
x 1076 x 1076 x 107°

[0,4] 0.3202575444 0.00584496735  0.0296527759 | 0.00308419549 0.00849940315 0.000192704505

Figures 2a and 2b and Table 3 illustrate that increasing the parameter M helps increase result
accuracy and reduces error values, highlighting parameter M's impact on the accuracy of the
solutions. The OADM, illustrated in Figure 2b, had results that were more accurate than the
ADM results shown in Figure 2a.

& M=2 N EY)
® M=35 & M=35
+* M=7 el +* M=7
1 2 3 4 5 6 7
k k
Figure 2(a). plots for the approximate solution the Figure 2(b). plots for the approximate solution the
MER, obtained by the ADM for the case 1 on [0,1]. MER, obtained by the OADM for the case 1 on [0,1].

Case 2: The values M and F are both fixed at 1, while the selected values of s are 0.1,0.5 and
0.8.

Table 4 shows the values of MER, for the ADM and OADM of approximation solutions
obtained from DBFME, using different values of a parameter of s. The results demonstrate a
distinct superiority for the OADM compared to the ADM across all selected intervals, since the
OADM generated many fewer errors than the ADM, indicating its high accuracy. These findings

confirm the OADM as a precise and dependable instrument for solving nonlinear equations.
Table 4. The comparison between the MER, when M = F = 1, and versus the value of s for the DBFME.

M=F=1s=0.1. M=F=15=0.5. M=F=15=0.8.
MER, of | MER, of MER, of

Interval ADM OADM MER, of ADM MER, of OADM | MER, of ADM OADM
1474766  7.155734 27679940  5.1373558 _,  3.821499

O 1015 X107 x 107 x 10712 2.015801 x 1077 "4 )10
1147415 5148659  6.9089895 5.8487549 1.294895

02 oz w10ty 10e7 > 10-8 0000074264383 /™

[0,3] 1'22041565 i‘11701_?§5 0.0199945383 ' 0.000901201998 0.289964697209 0.01447301795

Figures 3a and 3b and Table 4 illustrate that an increase in the parameter value s leads to
increased error rates. Figure 3b demonstrates that the OADM provides better accuracy than the
ADM shown in Figure 3a.
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E: W 5=0.1 B 5=0.1
~10
=10 =05 & =05
10—[3
* 5=0.8 * 5=0.8
10716 -
1 2 3 4 5 6 7 1 2 3 4 5 6 7
k k
Figure 3(a). Logarithmic plots for the MER,, for the Figure 3(b). Logarithmic plots for the MER,,
case 2 by applying the ADM on [0,1]. for the case 2 by applying the OADM on [0,1].

Case 3: The values M and s are both fixed at 1, while the selected values of F are 0, 0.5 and 1.5.
Table 5 demonstrates the superiority of the OADM over the ADM in all evaluated instances, as
the OADM produced the fewest MER,, values. Despite the rise in values, the OADM delivered
precise findings. In the situation of F = 1.5 and the interval [0,3], the ADM exhibited escalating
mistakes, whereas the OADM preserved its accuracy.

Table 5. The comparison between the MER, when M = s = 1, and versus the value of F for the DBFME.

M=s=1,F=0. M=s=1F=0.5. M=s=1F=1.5.
MER, of MER, of MER, of
Interval = OADM. | MER;Of ADM  MER,0of OADM  MER;0f ADM [ o7
[0.1] 3.775787 1.312321 | 1.932277 7.351319 5.597033 1.604293
’ x 10712 x 10713 x 1077 x 10710 x 1076 x 1078

5.951329 1.976703

[0,2] % 10-8 % 102 0.000237594505 6.078670 x 10~7 | 0.000857085999 0.00003027982
[0,3] 0.000016230: 191%7_5716 0.001099141727 0.0000177224524 43.24703142686 0.74124493288

Figures 4a and 4b and Table S indicate an increase in the parameter value F negatively affects
result accuracy, as it leads to increased error rates. Figure 4b demonstrates that the OADM

< & F=0 B F=0
= p0 ® F=05 ® F=0s
101 * F=15 & F=15
I 2 3 4 5 6 7 I 2 3 4 5 6 1
k k
Figure 4(a). Logarithmic plots for the MER,, for the Figure 4(b). Logarithmic plots for the MER,, for the
case 3 by using the ADM on [0,1]. case 3 by using the OADM on [0,1].

Table 6 will examine the results from the ADM and OADM for the DBFME and compare them

with the operational matrix methods, specifically the Bernoulli operational matrix method
(BrOM), the Bernstein operational matrix method (BOM), and the shifting Legendre operational
matrix method (LOM), as explained in. Here, P represents the parameter under study (i.e., M, s,
or F), whereas V indicates the chosen value of that parameter. Table 6 shows the numerical
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results obtained using these methods. The OADM demonstrates superiority over other methods,
evidenced by the lowest values of MER,, across all cases, indicating its exceptional accuracy
compared to other methods. The MER,, values diminish as M increases, whereas they escalate

with rising s and F; this signifies the impact of these parameters on the solution's accuracy.
Table 6. The comparison between the MER,, for the DBFME by proposed methods and methods in®.

P V | MERg of BrOM’ MER, of BOM® MER, of LOM® MER, of ADM “O"igl"vl"f
M 2 2.8034747706456 2.8030427701164 2.80347478547743 5.04795989 2.631586
x 1078 x 1078 x 1078 x 10710 x 10712
M 3 1.4228995742077 1.4228955272713 1.42289990016226 8.29334942 1.073622
x 1078 x 1078 x 1078 x 10711 x 10713
M 4 1.0910099730761 1.0910070058316 1.09101025652994 2.47230667 3.586190
x 1078 x 1078 x 1078 x 10711 x 10714
s 0. 3.0763325700473 3.0764346257983 3.0763325903870 5.86436889 3.058317
5 x 1077 x 1077 x 1077 x 10712 x 10715
C
s 2 0.0000047476304617 0.0000047476286068 0.0000047476304628 0.000027081403C i'gl%l_269J
. 7.5416825
s 3 0.0000153714428449 0.0000153714398763 0.0000153714428436 0.0021172079017 % 10-6
F 0 2.572762360107 2.5678844606247 2.5727621084709 5.16529915 1.397212
x 107° x 107° x 107° x 10717 x 10718
F 2 0.0000030354047633 0.0000030353988951 0.0000030354047617 1'91502_364015 ioltiﬁsigg
F 4 0.0000123160965391 0.0000123160923355 0.0000123160965380 1'21366_%05329 i'01206_3;694

4.2.2. Approximate Solution and Numerical Results of the Blasius Equation
This subsection discusses the efficiency of the proposed methods when applied to the Blasius
equation in obtaining approximate solutions.

u" (@) +05u"(t) u(t) =0, u(0) =u'(0) =0,u"(0) = 0.3320573 37)
Applying the ADM,

u'’(t) = =0.5u""(t) u(t) (38)
fu=-0.5 u"(t) u(t), u(0) =u'(0) =0,u""(0) = 0.3320573, (39)

where ¥ is a third-order differential operator, £(+) = % .

It is clear that £~ is invertible and is given by £71(-) = fot fot fot(-)drdrdr,
Operating £~ on both sides of Equation 39 and using the initial conditions gives,
£71(fu) = —16"1(0.5 u''(t) u(t)),
2
u(t) —u(0) — tw'(0) — = u""(0) = —0.5 L0 L (' @) drdr dr,
u(t) = 0.16602865 t> — 0.5 [ [ [ (u"(r) u(r))drdr dr,
U1 (t) = 0.16602865 t2 — 0.5 [ [ [ (ufy (r) we(r))drdr dr,
Ups1(t) = 0.16602865 t2 — 0.5 £71(4,,), for k > 0. (40)
Suppose the unknown function u(t) is represented as an infinite series: u(t) = Yy U (t).
Consequently, the initial Adomian polynomial is expressed as: Ay = N (uo (t)) = ug (t) uo(t) .
The Adomian polynomials were calculated based on the following formula:
Nu) = [(uott +uy, Uy, tus, + )t ug tu; +uz+ )] (41)
The following iterations were obtained using Equations 40 and 41:
uo(t) = 0.16602865 t2,
u;(t) = 0.166029 t2 — 0.000459425 t>,

u,(t) = 0.166029 t% — 0.000459425 t> + 2.49719 x 107° ¢8,
uz(t) = 0.166029 t% — 0.000459425 t°> + 2.49719 X 1076 t® — 1.4277 x 1078 ¢11,
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Utilizing the OADM,
uo(t) = 0.16602865 t2 — at,
u; (t) = at + £71(0.16602865 t2),
uk+1(t) = —0.5 ‘B_l[Ak],k >1, and N(U) = ZIO(O=O Ak . (42)
The following iterations were obtained using Equations 41 and 42:
u,(t) = 0.166029 t? — 0.000459425 t> + 0.000345893 a? t — -,
uz(t) = 0.166029 t? — 0.000459425 t> — 0.000345893 a? t® + 2.49719 x 10768 + .-,
u,(t) = 0.166029 t? — 0.000459425 t°> + 2.49719 x 107° t& — 0.0000308833 a3 t& + ---,
Table 7 shows that the OADM clearly outperforms the ADM over all intervals. The ADM
failure becomes clear in the fifth interval due to an increase in error; however, the OADM
provided a satisfying outcome over the same interval, highlighting the importance of the optimal
parameter in enhancing results.

Table 7. The comparison between the MER., of the proposed methods for the Blasius Equation.

Interval = MER, of ADM a MER, of OADM

[0,1] 1.137978600240785 x 10715 0.000199281350018 4.85722573273506 x 107
[0,2] 9.344835572022703 x 107° 0.003125342126829 2.70498526355745 x 10710
[0,3] 0.00009771091907317953 0.014858737889814 1.834691472815675 x 107
[0,4] 0.06498143170294823 0.040799939122759 0.0010876971553042125
[0,5] 9.422407028848566 0.134141540286137 0.13843824779718616

Figure 5 illustrates that the MER,, noticeably decreases with an increase in iterations for both the
ADM and OADM, signifying the convergence of the solutions. However, the accuracy and
convergence speed for the OADM are the highest.

104
‘ ]0—7 !
& o
S B ADM
10-13 !
O OADM

10—16 I

Figure 5. Logarithmic plots for the MER,, versus k from 1 to 7 for the Blasius Equation on [0,1].
Table 8 demonstrates that all 5; values are less than 1. This confirms that they are convergent.

Furthermore, results demonstrate the superiority of OADM compared to ADM regarding
convergence speed.
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Table 8. The value of B; to the approximate solutions of the proposed methods for k = 1 to 7 for the Blasius

Equation.
ADM OADM
0.000010445788497210762 0.000001180933040111432
0.005450761440848835 0.0011464518096362094
0.005520943815982292 0.004300797556663325
0.005498991627724247 0.001079203468290825
0.005470076398964747 0.003225241473644877
0.005450210695970095 0.002157989676305241

The rates of convergence for Equation 37 were computed utilizing the ADM and OADM, in
accordance with Equation 36, for values of k (from 1 to 7). The results indicated that both
methods show linear convergence because the convergence rates are approximately one.

This subsection examines how effective the proposed methods are in obtaining approximate
solutions to the Blasius equation, using both the ADM and OADM, with results previously
documented in’. Table 9 demonstrates the efficacy of the OADM in minimizing the MER),
achieving 4.85722573274 x 10717, Figure 6 illustrates a rapid and continuous decrease in
error corresponding to an increase in the number of iterations. This result confirms the

effectiveness of the OADM in achieving accuracy and convergence.
Table 9. The comparison between the MER,, versus k from 1 to 7 for the Blasius equation on [0,1].

k

3

4

MERof BrOM’ MERof BOM’ MERof LOM’ MER,of ADM = MERof
OADM

0.01481939170059307: 0.014819391700592988 0.0148193917005929 1.7574041905 3.1939353065
x 1077 x 1078

0.01142701573855896! 0.011427015738563973 0.0114270157385584 1.8275754729 2.272030654
x 107° x 10710

0.00041970597546396. 0.000419705974763596 0.0004197059754625 1.6866567171 9.389954092
x 10711 x 10713

0.00017127579189292; 0.000171275791933212 0.0001712757919438 1.4328468967 3.337607968
x 10713 x 1071°

0.00002513798889495. 0.000025137988745927 0.0000251379883112 1.1379786002 4.857225733
x 10715 x 1077

= ﬁ — T T T
104 —a-

# # MERgom

® MERgoym
& MERoym

4 MERapm

Figure 6. Logarithmic plots for the MER,, for the Blasius Equation by using the proposed methods on [0,1].

4.2.3. Approximate Solution and Numerical Results of the Falkner-Skan Equation
This subsection discusses the accuracy of the ADM and OADM when they are applied to the
Falkner-Skan equation to get approximate solutions at & = 0.5 and € = 0.1.
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W) + w' () u(t) + 0.5 [(0.1)2 - (u’(t))z] = 0,u(0) = 0,u'(0) = 0.9,u"(0) =

—0.832666 (43)
By using the ADM,

W () = —0.005 — u”'(£) u(t) + 0.5 (' (©)’,u(0) = 0,u'(0) = 0.9,u"(0) = —0.832666.
fu = —0.005 —u" () u(t) + 0.5 (w' (D)’ (44)
where ¥ is a third-order differential operator, fu = %.

It is clear that £* is invertible and is given by ¢~(-) = [\ [ [ () drdrdr,
Operating £~* on both sides of Equation 44 and using the initial conditions gives
£71(fu) = ¢71 (—0.005 —u"(t) u(t) +0.5 (u’(t))z), then we get:

u(t) = u(0) — tu'(0) =+ u’(0) = fj Ji J (=0.005 — u" () u(r) + 0.5 (w'(r)”) drdr dr,

U1 (1) =
0.9t 0416333 > — (0.005/6) £ + [; [ [ (u () we(r) + 05 (u ()" ) drdrar,  for

k>0 (45)
Let us assume that the unknown function u(t) may be expressed as an infinite series: u(t) =
Ym0 Uk (t). The initial Adomian polynomial is expressed as follows:

12} ! 2
Ao = N(uo(®) = —ug () up(t) +0.5 (up(t))”.
The Adomian polynomials were calculated based on the following formula:

N) = [—(uott Uy, +up, +us, +o ) o Fuy Fup +uz + )+ 0.5(ug, +uy, +uy, +

uy, + ) (46)
Based on Equations 45 and 46, the following iterations were obtained:

uy(t) = 0.9t —0.416333 t2 — (0.005/6) t3,

u,(t) = 0.9t —0.416333 t% + 0.0666667 t3 + 0.0000375 t°> — -+,

u,(t) = 0.9t —0.416333 t2 + 0.0666667 t3 — 0.003 t°> + 0.000462592 t° — -+,

us(t) =

0.9t —0.416333 t% + 0.0666667 t> — 0.003 t° + 0.000462592 t° + 0.000161111 ¢t7 — ---,

By applying the OADM,

uy(t) = (0.9t — 0.416333 t2 — (0.005/6) t3) — at,

u, (t) = at +£71(0.9t —0.416333 t* — (0.005/6) t3),

uk+1(t) = ‘F_l[Ak]J k = 1! and N(u) = Zlcio=0Ak (47)
Based on Equations 46 and 47, the following iterations were obtained:

u,(t) = 0.9t — 0.416333t? — 0.000833333t3 + 1/6 (0.9a — -+,

uz(t) = 0.9t — 0.416333t? — 0.000833333t3 + 0.0833333 a?t> +1/6 (09 a — -,

u, (t) = 0.9t — 0.416333t? — 0.000833333t3 + 0.0833333 a?t3 + 1/6 (0.9 a — a?)t3 + -+,
Table 10 indicates the superiority of the OADM over the ADM in terms of accuracy, as the
OADM maintained low error values over different intervals, while the ADM errors increased
significantly, especially at the interval [0,3].

Table 10. The comparison for the MER, when 6 = 0.5 and € = 0.1 for the Falkner-Skan Equation by using the
proposed methods.

Interval MER, of ADM a MER, of OADM

[0,1] 1.088765707590866 x 1077 0.01476666572 8.265401807427963 x 10~°
[0,2] 0.00030938362349317017 0.01190500549 0.00006954338474787769
[0,3] 0.11134611991562338 0.08962893340 0.01786768847740916

Figure 7 illustrates that the MER; value decreases significantly with an increase in the number
of iterations for both the ADM and OADM, indicating the convergence of solutions. However,
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the results demonstrate the superiority of the OADM for accuracy and convergence speed in
comparison to the ADM.

# ADM

& OADM

Figure 7. Logarithmic plots for the MER,, versus k from 1 to 7, for Equation 43 on [0,1].

Table 11 shows the convergence of approximate solutions towards the exact solution, and also
note the superiority of OADM over ADM in the speed of convergence.

Table 11. The value of g; to the approximate solutions when 8 = 0.5 and ¢ = 0.1 for the Falkner-Skan equation by
using proposed methods

B; ADM OADM

By 0.0026005419225494635 0.000002706051632645662
B, 0.03461584661944827 0.0036646920293140813
B3 0.008376981911702667 0.010445942798224172

By 0.20482807365297173 0.013079793923822199

Bs 0.06306081710416353 0.004676550287729715

Bs 0.008326745655578864 0.004124425763910496

In addition, this subsection compared the results of iterative methods with the operational
matrices methods, as presented in', for the approximate solution of the Falkner-Skan equation.
Table 12 illustrates a comparison between BrOM, BOM, LOM, ADM, and OADM for the
MER,,. The analysis demonstrates that the OADM significantly reduces the error, hence
affirming its efficacy and precision in nearly solving the Falkner-Skan equation. Figure 8 shows
that as the number of iterations increases, the error quickly and persistently decreases, proving
that the OADM s effective in reaching high accuracy and better results compared to other
methods.
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0.01 [+ ¥y n
08 n & MERgom
g 10-8 R ® MERgom
= 10-11 & MER_om
10-14 4 MERApMm
T T ¥ MERoan
k

Figure 8. The comparison of the solutions, when 8 = 0.5 and € = 0.1 for Equation 43 on [0,1].

Table 12. The comparison for the MER,, between the proposed methods, when 8 = 0.5 and ¢ = 0.1 for Equation
(43) on [0,1].
I 1 ! MER of MER| of
k MERy of BrOM MER, of BOM MERy, of LOM ADM OADM
3 | 0.06638210579917353 0.06638210579917359 0.06638210579917331 0.0001073093 0.00014187095
4
5

0.0358521795369206€ 0.03585217953692854 0.03585217953690067 0.0001713611 0.00003331139

0.01379314996965419 0.01379314991950075 0.01379314996965491 0.0000146344 i'i?ﬁz57671
6 | 0.0008372318648852€ 0.00083723186485906 0.0008372318648861( i11505_§65 1'31506_3;59898
7 10.00034011248679871 0.00034011249043919 0.00034011248679977 101%8366 i'21605_201807
8 | 0.00007441899401172 0.00007441897180771 0.00007441899400839 1'?%9%23 i.(;%%%?1097
9 1 0.00000307279760042 0.00000307277674371 0.00000307279758299 121%(1??6 i.81(())7_?(1384410
(1) ‘)3(.2;706_%5466521414 ‘)3(.81703_?73916249714 0.00000156074174595 121%71112 i.fj)1704§227343
} 1.71%5_33750617433 3(.81205_2306691391207 0.00000141217846361 i(;(())6151§2 ‘)9(.11(2)3_213528802

5. Conclusions

This paper proposed two iterative methods, namely the ADM and OADM, to solve NODEs of
the second and third orders, including the Darcy-Brinkman-Forchheimer moment equation, the
Blasius equation, and the Falkner-Skan equation. The study results indicated that the OADM was
more accurate and computationally effective compared to the ADM because an optimal control
parameter was introduced, which helped to extend the convergence interval and reduce the
values of the MER,.. The results revealed that the convergence criterion in the OADM exhibits
superior speed and precision relative to the ADM, establishing it as the optimal selection for
applications necessitating exact outcomes. The results indicate that when the value of M
increases, the accuracy of the solutions improves significantly and the MER, decreases.
Nonetheless, increases in the values of s and F adversely affect accuracy. The findings
offer suggestions on adjusting these physical parameters to improve the accuracy of outcomes in
the Darcy-Brinkman-Forchheimer moment equation. Besides, the proposed methods have been
used to solve various nonlinear equations, including the Blasius equation and the Falkner-Skan
equation. Comparison with other numerical methods has proved the superiority of the OADM in
accuracy and convergence rate. Comparisons with the BrOM, BOM, and LOM methods
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indicated that the OADM is remarkably good in all suggested applications. The key contribution
of this study is the enhancement of the OADM through the addition of an optimal control
parameter. The chosen physical applications are presented to reveal that the optimal method
attains fast convergence with a minimal number of iterations, rendering it a useful tool for
solving nonlinear systems in practical problems. Future research may include comparison with
other numerical and analytical methods in evaluating the optimal method, thereby expanding its
application in the boundary value problem and problems related to infinite intervals.
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