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Abstract

This paper presents the formulation and investigation for a stage-structured prey-predator
system. We consider the stage- structure in both prey and predator populations, specifically
dividing the population of prey into two distinct groups: immature prey and mature prey. We
also divide the predator population into immature and mature groups. We assume that only
immature predators are capable of attack, so they consume each immature and mature prey.
Additionally, the rate of growth for immature prey based on the amount of mature prey, as
immature prey does not have reproductive capability. We applied Holling Type | and Holling
Type IV response functions to describe the consumption of immature and mature prey by
immature predators, respectively. We conducted a mathematical analysis: boundedness of the
solution, the presence of equilibrium points, and both local and global stability of the
proposed system with respect to these equilibrium points. We also performed numerical
simulations to verify the theoretical results.
Keywords: Prey - Predator System, Stage Structure, Holling type, Harvesting, Fear Effect.

1. Introduction

In recent years mathematical models have been become more important and effectiveness
for understanding how populations change over time. Since the development of the Lotka-
Volterra model, significant advancements in multi-species analysis and modeling have been
made, often without considering stage structure. However, recent investigations have focused
on stage-structured prey-predator systems for both species, analyzing their dynamic behavior
under the effect of fear.
Many studies have focused on researching the dynamics of stage structure populations by
modeling the two stages, whether they are prey, predator, or both , For example, Chauhan et
al(1) studied the stage structure in fishery model. Bhattacharjee et al (2) predator species are
analyzed in accordance with stag structure. Mortoja at el (3) examined stage structure in both
species. Pang and Gao (4) explored the stage structure in prey species. Nasra at el (5)
developed the stage structure prey predator model in four dimensions. Such that more
research discussed prey- predator system in several group like immature and mature species,
see (6-10).
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Ecological models widely use the predator's response to fluctuations in prey relationships,
known as the functional response, which can take various forms. Stage structure prey-
predator relationships exhibit several well-known functional responses. For instance, Shi at el
(11) examined at the prey-predator concept of stage structure with Holling Type 1l functional
response.. Lu at el (12) proposed periodic solution for the prey predator system involving
stage structure and Crowley-Martin response function. Chen and Chen (13) established stage
structure prey predator model with Holling Type 111 functional response. Pandey at el (14)
developed delay stage structure prey predator model with Holling Type | and type Il
functional response Didiharyono at el (15) studied the global stability to prey predator system
with Crowley-Martin and stage structure in the predator. The response of predators to
changes in prey availability is a critical aspect of ecological dynamics. Researchers have
studied predator feeding behaviors and predation habits extensively, (16-20)

Harvesting is a great strategy for regulation predator and prey populations for ensuring
healthy development while generating economic benefits (21-25)

Prey’s fear of predators is an essential component of the prey-predator system, describing the
relationship between predators and their prey. This fear results from cooperative hunting
behaviors among predators, which make prey more afraid of them. Recently, several
researchers have begun investigating how fear alters the behavior of prey-predator system.
For example, it was examined the impact of fear within the context of the prey predator
Scavenger system by (26). It was studied the impact of fear within a prey-predator system
including refuge of prey and gestation delay (27). It was analyzed a predator-prey model that
includes fear in prey, cooperative hunting among predators, and harvesting (28). It was
looked into how stable a fear-based predator-prey model is when there is interfering
behaviour or common defence by (29). Additionally, it was examined stability and Hopf
bifurcation in a delayed prey-predator system that includes fear, cooperative hunting, and the
Allee effect by (30).

This work proposes and analyzes a prey-predator system with stage structured that
incorporates the fear effect and several fundamental parameters. These parameters
significantly influence interactions between immature prey, mature prey, immature predators,
and mature predators.

This work is structured in this way: Section 2.1 provides the assumptions and formulation for
the system. Sections 2.2-2.5 discuss the system's dynamic behavior, including the
boundedness and existence of solutions, as well as the system's stability analysis.
Additionally, Section 3 includes numerical simulations to support the theoretical findings.
The conclusion is given in the last section.

2. System Formulation
This section presents a mathematical model for an ecological prey—predator system,

incorporating biological aspects based on the following assumptions:

- The stage structure of both predator and prey divides the population of prey, M, into two
classes: immature prey (x;) and mature prey (x,), so: M = x; + x,. Similarly, the
predator population, P, is categorized into immature predators (y;) and mature predators
(y,), resulting in: P = y; + y,.

- In the absence of predators and fear, the rate of birth for mature prey is directly
proportional to the population of immature prey species. On other hand, a predatory fear
of this spcies can have numerous implications. Specifically, the fear function represented

1
by 1+f y2

affects the growth of mature prey, where f denotes the fear parameter.
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- We recognize that only mature individuals are capable of reproducing. Therefore, the
reproduction rate depends on the presence of the mature age class within a specific
community. We assume that the density of prey (or predators) influences the reproduction
rate. However, the rate at which immature prey (or predators) mature is independent of
density. In our model, the transfer rate is solely dependent on density variables that
influence predator growth.

- The immature predator is responsible only for attacking, utilizing Holling's Type |
functional response for the intake of immature prey and Type IV functional response for
matures prey.

- Assume that interspecies competition occurs only among prey species and that mature
individuals are harvested solely by external forces.

The system is structured based on the previous assumptions as follows:

La_ 2 gx? —qux; — yx1y

at 17y, 1 1X1 1Y2

dx, 2 C X2V,

— = x4 — bx5 — — h{x

dt 1M1 2 140432 1+2. (1)
dyq B2c x2¥2

—— = f1yx1Y, + —ayy; —d

at B1Yx1Y- 1402 2V1 1YV1,

dy,

%)~ dyy, — haYys.
From a biological perspective, the initial condition (X;(0), X,(0),Y;(0),Y,(0)) must be in
the first quadrant. Table 1 below displays the system (1) parameters, which should have

positive value:
Table 1. Parameters Description.

Parameter Biological Description

r The maximum growth rate per capita of mature prey.

f The fear level of immature prey of mature predator.

a The strength competition between immature prey.

b The strength competition between mature prey.

a, The rate maturity from immature prey to mature prey.

a, The rate maturity from immature predator to mature predator.
B The conversion from immature prey towards immature predator.
B The conversion from mature prey towards immature predator.
0 Level of defense.

y The rate attack of the mature predator to the immature prey.

c The rate attack of the mature predator to the mature prey.

dy The rate natural death of immature predator.

d, The rate natural death of mature predator.

hy The rate harvest of mature prey.

h, The rate harvest of mature predator.

2.1. System Boundedness

The system domain is defined as R} = {(xq, %2, y1,v2) € R* . x,(0) = 0,x,(0) =
0,y,(0) = 0,y,(0) = 0} We assume that the functions x; (t), x,(t), y,(t), and y,(t), along
with their derivatives, are continuous for all t > 0. This continuity implies that these
functions are Lipschitz continuous in R%, which ensures the existence of a unique solution to
system (1). The following theorem defines the boundaries for the solution of this system (1).
Theorem 1. The solutions to system (1), starting in R%, are uniformly bounded.

Proof. let M = x; + x,, then:
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dM dx;  dx,

a T dr | dt
=1 -T—x;yz —ax? —yx,y, — bxs — 1049_5249)’;% — hyx,.
The next, we get:
c;—n: < (x; —ax?) + (rx, — bx2) — hyx, — x3.
Therefore, we have concluded the following:
HOES @)

where B = % + g ;and g = min{1, h,}.

Now, let w(t) = x;(t) + x,(t) + y1(t) + y,(t),
then, differentiating it with respect to time yields:

d
d_‘: = 1:;;2 — (1 =Byx1y, — (1= B7) if;zg — hixy —diy; — (dy + hy) yo,
‘Z_Vtv S er - h1x2 - d1)’1 - (dz + hz) yz - T‘Xl + T‘xl,
d
d_vtv <1r(x; +x3) —rx; — hyx, —dyy; — (dy + hy) ys.
Thus, by applying the bound in Equation 2, we obtain:
dw B
—+ Nw <r—,
dt q

where N = min{r, hy,dy,d, + h;},
Therefore as t— oo, w(t) < % , S0 the proof completed.

2.2. Existence of Equilibrium

For system stability, it is important to establish equilibrium points. We present the
equilibrium point of system (1) below:

- The free of population equilibrium point (FPEP), S, = (0,0,0,0), exist in always.

- The predator free equilibrium point (FPDEP), S; = (x;, X, 0,0), where:

7, = 2entn) (3.2)
Yet, x; isa +ve root for 4th-order equation is as below:
wles + wited + wilez + wile = o, (3.b)
where
A %ZZD <0 )
I/]/2[1] — —ZaSal <0

[1] rahl a?b ( (3.c)
W™ =—-(—+-7)<0
Wy = a; - alrhl )
So, Equation 3.b gives only single positive root if the following condition is satisfied:
r>h,. (3.d)

3- The interior equilibrium point (IEP), S, = (x1,y5,V1,V5), Where
a2(1+9x§2) (d2+h2)+d1(1+9x§2) (d2+h2)—a2[32cyx§(d2+h2)

xi‘ = - bx;

azﬁly(1+9x§2) (4.)
“2035; * *
- — h{x5,
(1+9x;2)(d2+h2)Y1 172
. “1(0—’2+d1)(1+9x§2)(d2+h2)—(h1+bx§)(1+9x§2)“231)’353—0-’1052ﬁ25x§(d2+h2)
yi= ) (4.b)

azBicyx;
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E aZyI
Y2 = peny) ! (4.)

while, x,* is a +ve root of the following 12th order equation:
W1[2]x§12 + VVZ[Z] x11 + W[ ] *10 + W[Z] + W[Z] ;8 + M/ﬁ[z]xéﬂ + W7[2]x§6

W s® + et Wit + Wit - il + Wil = o,
where Wi[z], Vi=0,1,..,13, are determined using MATLAB. Their complexity and large
size prevent us from presenting them here.

Then, the sign discarding rule ensures that Equation 4.d has a just single positive root when

any of the following requirements are met:

(4.d)

A>0and w¥ <o, i=2..,13

or ’
2 <0and w >0, i=2,..,13
and if
x1 >0

ay(ay +d)(1+ 0x3°)(dy + hy)(dy + hy) > (hy + bx3) (1 + 0x3%)azByyx;
+a,a,0,¢cx5(dy + hy).
So, the (IPE) exists in the R%.
2.3. Local Stability Analysis:-
The section uses the linearization procedure for analyzing the local stability of the suggested
system. System (1) located at (x4, x5, y1,y>) has the following Jacobian matrix (J.M):
a;; Q12 0 agy

Ji = a1 Q2 0 ay (5)
l z1 A3z A3z A3y
0 0 Qg3 Qg

where
r rfx
a;; = —(2ax; + ay +vy,), Uz = 1, Ga = _((nyz)z + vx1),
cy,+3cl x3y cxy
a21 = a1 y a22 = _(bez + W"‘ h1)1 a24 (1+9x )
Bacy,(1-6x2)
azq = P1yyz, A3z = W, azz = —(ay + dy),

Bacx;
azq = P1yx; + (1+6x2)’ Au3 = U3.

If all the eigenvalues at an equilibrium point are negative, the point is referred to as locally
asymptotically stable (LAS). Accordingly, the following theorem provides the conditions for
local stability at each equilibrium point.

Theorem 2. The FPEP is LAS if the following conditions are met:

r < h;. (6)
Proof. The J.M at FPEP can write as:
—a r 0 0
a, —hy 0 0
Jo={ 0 0 —(a,+dy) 0
0 0 a, —(d, + h,)

The characteristic equation of J is:

[—(ay +dy) — A][—(d, + hy) — A][A% + tryA + det,] = 0,

where tr; = —(a; + hy) , det; = a;(hy — 7).

So, using the trace —determinate stability certain, FPEP is thought to be LAS if condition (6)
is met. If not is called a saddle point.
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Theorem 3. The FPDEP is LAS if the below conditions holds:

cf2%;

a, (Bryx, + (1+9f§)) <(a; +dy)(d; + hy) (7)
Proof. The J.M at FPDEP is:
—(2ax; + aq) 0 0 —(rfx, + yx)
a, —(2bx,+hy) O — (14(::?25)
& 0 0 —(ay+dy)  Pryx + (fj;f;%)
0 0 a, —(d, + hy)

Then characteristic equation of J; is:
[-(2bX, + hy) — A][—(2ax; + a;) — A][A% + tryAd + det,] = 0,
Suchthat, tr, = —(ay +d; +d, + hy) ,

Bacx; >

det2 = (afz + dl)(dz + hz) —_ az (:Blyfl + (1-{-—6_)?%)

Then, according to the trace-determinant stability criterion, the FPDEP becomes (LAS) when
condition (7) is satisfied. If not, it is a saddle point.
Theorem 4. The IEP is LAS inthe Q € R? if the following condition satisfies:

Bi—=Dyy: <2axi+yy;

r : (B2—30 x§2—9 x}zfz—l)cyg < ZbX; n hl
1+fy2 (1+6x§2) .
|

((1;;;)2 (T:é?;%) %+ (A B)yxi <dy + by |
Proof: At PEP, the J.M is written as:

a1 a;z 0 aj,

az; a3 0 az

(8)

J2 = az; a3 A3z Az’
0 0 aiz Qi
where
T rfxs
a;l = _(zax; +a; + Vy;)v aiz = 1+fy5 aLl- = _((1+fy2§)2 + yxik)i
* * b * Cy;+3c9 x;zyg h x Cx;
A1 = Q1,03 = —(2bx; + ———F=+hy), A =—7"—"om,
(1+6x§ ) (1+6x2 )
Bacy;(1-6x37)
azy = P1yyz, Az = — 7 a3z = —(az +dy),
(1+9x§ )

Bacxs
azq = P1yx1 + —(1 - AT A3 = Az, azs = —(d; + hy).

+6x5 )

If the conditions are satisfied, we will apply the Gershgorin theorem (31).
lai;| > lag | + |a§1| + |ai,l,

|a§z| > |a;2| + |a§2| + |a22|,

|a§3| > |ai3| + |a§3| + |a23|,

|af}4| > |a"1‘4| + |a§4| + |a§4|.

Consequently, all the eigenvalues of J, at IPE are present in Q, where

|

Q=uU {U* € C: |U* —aj| < Y ajj
i#j
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Thus, each eigenvalue of J, lies within the disk centered at a;;. Since the diagonal elements
are negative and condition (8) is satisfied, every eigenvalue WI|| be located in the left half-
plane, contributing to the local asymptotic stability (LAS) of the IPE.

2.4 Global Stability Analysis

The theorem below analyzes the global stability (GAS) at each equilibrium point in system
(1). If the Lyapunov function is satisfied, then the system is GAS.

Theorem 5. Suppose the FPEP is LAS in R% . If the condition (6) is satisfied, then it is GAS.
Proof. Assume this positive value is a definite function:

Up(t) = x1(t) + x2(t) + y1(2) + y2(2).

Such that U,(t):R* - R is continuously differentiable with U,(0,0,0,0) =0
and Uy (x4, X2, ¥1,¥2) > 0,V (x4, x2,y1,¥2) # (0,0, 0, 0).

Further,
dUy Xy ¢ X2 Y5
i ST, axf — ayx; —yx1y, + ayx; — bx — T+ 622 hix,
B2C X2,
+.81yx13’2 + — ayy1 — d13’1 + a,y, — dz}’z _ hz}’z-

1+ 0x2

After conducting additional calculations, we arrive at the following outcome:

d
dlio < —(hy = 71)x; —dyyr — (dy + hy)y,.

So, U, is a Lyapunov function when we get ¢ < 0 from condition (6), which implies that

the FPEP is GAS.
Theorem 6. Consider FPDEP as LAS, thus, in the sub region it is GAS when:
X1 < Xq
Xy < Xy
Bryxi < dz + hy ( ©)
Vi, < 4vyv1,
Where v,,, v11, V5, are given in the proof.
Proof. Assume this positive value is a definite function:
x; — %)% (xy —xy)?
v = & : D’ : )
Where U;(t):R} > R is continuously differentiable  with U, (X, %,,0,0) = 0
and Uy (x4, X2,¥1,¥2) > 0,V (x1, X2, ¥1,¥2) # (%1, X2, 0,0).

Also,

du, dx; _ . dx, dy, dy,

— = —+ +———+—==

dt (%1 xl) (X2 = %2) dt = dt dt

B = (x, — )( —ax? — ayx; — yx1yy) + (xy — %) (@, — bxk — =222
W X1 1+f 1 1X1 —VX1)2 2 2 1X1 27 Tiox2

Bacx2y2

d
—hix3) + B1yx1Y, + Troxd ay; — diy; + % +azy, — dyy, — hyys.
On completing far more calculations, we find the below result:
au _ _ _
d_tl < —[Vvig (0 — %) — Vv (xp — %)12 — (rxafy, + vxyy, (L + fy2)) (g — %)
—(1-52) e (xz —X3) — (dy + hy — B1yx1)y, — diy1,

1+60x32

where

V11 = apa(x; —X%y), vp =71+ a1(1 + fy2), V22 = b(xy + X;) + hy.

Consequently, when we estimated 22 < 0 from condition (9), that means U, is Lyapunov
function, which implies that FPDEP is GAS.
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Theorem 7. Under the assumption that the IEP is LAS, the basin of attraction meets these
conditions:

3911 922 2 iz )
i911 933 = Jis
‘911 944 = Jia
; 922 933 = 933
% 922 Jas = G54

4

5 933944 = 934
922 >0
23>0

924 >0 J
such that all symbols g;; ,i,j = 1,2,3,4 have been identified in proof.

Proof. let this positive value be a definite function:
LAY _¥)2 a2 A *\2
UZ (t) — (xq 2?61) + (x2 2?62) + (1 23’1) + (2 23/2) .
Such that U,(t):R* - R is continuously differentiable with U,(x;,x3,y;,v3) = 0,

and U (x1,x2,¥1,¥2) > 0,V (x1,x2,y1,¥2) # (X1, X3, Y1,Y3).

(10)

Then
=) D (1) 2 9D Dt 0y
Therefore, by using system (1) and manipulating the algebra, we can describe d—L;Z as
follows:
T2 < [ B~ ) — a1 — ) + 22 G — 7]
—[&m — %)% = g13Ces — %) 01— ¥1) +g§3( y1 =)
~[Bh = 1 + grar — D02~ ) + T 0 = v
- @uz X3+ G232 = X — ) + B2 0 = i)
- @uz x5+ gaa(ta = X2 — ) + T (2 — )
- @(yl )2 = gaan — ¥y (2 — yz)+g44( 2=y

So, applylng condition (10) get the following:
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dUu, d11 N 922 N 1’
WS_[ ?(x1—x1)— T(xz—xz)_
12
911 N 933 N
—[ ?(x1—x1)— T(yl_yl)_
- 12
g N g “
- /i(xl —x1) + ﬁ()’z -¥3)
L 3 3 .
- 12
g N g “
- ﬁ(xz —x;) + ﬁ()ﬁ -y1)
L 3 3 .
- 12
922 « Ga4 .
- T(xz —x3) + T()’z - ¥3)

2
g . g .
_[ %()’1_3’1)_ %(3’2_3’2)] .

Where
g11 = alxy +x7) —ay + vy,
912 = Tyl + aq,
913 = B1vYy2,
—_ T
914 = Wiy patrys Yy,
_ " cy;+cO x5y5(xy+x5—1) _
922 - b(xz +x2) + (1+9x;2)(1+9x%) hl’
_ Bacy;(0x5(x4+x5—-1)—1)
Y23 (1+9x§2)(1+6x§)
_ cxz(1-6x3)
924 = (1+9x§2)(1+9x§)’
gs3 = (az +dy),
Bacxy(1+6x3)

34 = P1yx1 +az + (

Jas = (dz + hy).
Consequently, in the region where condition (10) is satisfied, U, behaves as a Lyapunov

1+6x§2)(1+6x§)’

function, and % < 0 implies that the IEP is globally asymptotically stable (GAS).

3. Numerical Simulation

This section presents a numerical analysis of the dynamic behavior of the proposed system
(1), conducted using MATLAB R2009b software. Due to the absence of actual data for all
system parameters, hypothetical values have been assigned to each parameter as follows:
r=09, f =0.05, a=001 a; =03, B =0.04,
B, = 0.02, 6 =03, y=0.09, b=01, a,=0.05, (11)
hy =0.01, hy;=0.002, (¢=0.01, d, =0.004, d,=0.02.
When analyzed with the specified parameter values and a variety of initial conditions, system
(1) clearly meets the current requirements of IEP. The path of system (1) converge
asymptotically to the point S, = (6.4, 4.249,0.877,1.993) from a range of distinct initial
points, are shown in Figure 1.
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(a) (b)
11 10 —_—
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g1
=
-9
ol
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Figure 1. Asymptotic global stability to IEP for data (11) across a variety of initial conditions. (a) Immature
prey paths. (b) Mature prey paths. (c) Immature predator paths. (d) Mature predator paths. (e) Every individual
path.

Obviously, Figure 1 confirms the theoretical results, showing that the IEP is GAS. However,

if h, = 1.0, the path of system (1) asymptotically converges to FPEP, S, = (0,0,0,0), as
displayed in Figure 2.
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Figure 2. Asymptotic global stability to FPEP for data (11) across a variety of initial conditions. (a) Immature
prey paths. (b) Mature prey paths. (¢) Immature predator paths. (d) Mature predator paths. (e) Every individual
path.

Furthermore, numerical simulations show that decreasing the parameter to r = 0.4, for the

data in (11) causes the path of system (1) to converge to the globally stable fixed point
FPDEP, S; = (4.023,3.424,0,0), as seen in Figure 3.

418



IHJPAS. 2025,38(4)
(a) (b)
9 . - 10 :
started at 1.5 started at 2.5
8 started at 4.5 9 started at 5.5 |
started at 6.5 started at 8.5 ||
7} started at 9.5 | 8 started at 10.5
=~ 7t
29 g
’E. ‘5 6
£ 5f v
¢ & 5
Z4 g
= 2 34
E =
E3 B
3
2 al
1f 1t
0 : . : 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 5000 10000
Time Time
(¢)
10¢ T 14 @ . -
started at 3.5 started at 4.5
9t started at 1.5 started at 1.0
gl started at 6.5 12} started at 7.5 n
_ started at 9.5 [ started at 10.5
=7 ~ 10F 1
T S
5 2
& -
g -3
g g
=
E g
E g
1000 LU O S 0 1000 2000 3000 4000 5000 6000 7000
Time Time
(e)
6 r » .
—— immature prey (x1)
mature prey (x2)
5t —— immature predator (y1) |
[ mature predator (y2) H
_‘ +
]
2
=
=3
-3
z
&
2
1
0 |
0 2000 4000 6000 8000 10000
Time

Figure 3. Asymptotic global stability to FPDEP for data (11) across a variety of initial conditions. (a) Immature
prey paths. (b) Mature prey paths. (c) Immature predator paths. (d) Mature predator paths. (e) Every individual
path.

To examine how altering a single parameter affects the dynamic behavior of system (1), we
obtained the following results.

By changing the parameter a > 0.06, with reminder the other parameter value as in  data
(11), then system (1) approaches asymptotically at FPDEP S; = (¥;, X,,0,0), as shown in
Figure 4. Additionally, when a; increases to a value in the range a; = 1.2, with the other
parameters kept the same as in data (11), system (1) asymptotically approaches the fixed
point S; = (X, X5, 0,0), as shown in Figure 5.

Finally, the trajectory of system (1) asymptotically approaches the FPDEP S; = (i, X,,0,0)
when using the parameter values from data set (11) with d, varying in the range d, > 0.05,
as illustrated in Figure 6.
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Figure 6.The solution to system (1) in data (11) over time, with different d, values. (a) Globally asymptotically

stable IEP for d, = 0.02. (b) Globally asymptotically stable FPDEP for d, = 0.05.

4. Conclusion

In this paper, we developed a stage-structured prey-predator ecosystem model for both
species, incorporating immature and mature stages. To construct a four-dimensional system,
we made several assumptions: the immature predator is solely responsible for attacks, while
only the mature species undergoes harvesting. We examined the boundedness of system (1)
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and defined existence conditions for all three equilibrium points. Local and global stability
analyses were then conducted for these points. Finally, numerical simulations were used to
evaluate the parameters influencing system dynamics and to verify the analytical findings.
Using the hypothetical data in (11), which aligns with the outcomes of the numerical
simulation, we obtained the following results:

System (1) has no periodic behavior; rather, the solution converges asymptotically to any of
the equilibrium points.

By making immature prey more competitive such that a value greater than 0.06 (a=
0.06), the IEP becomes destabilized, and system (1) asymptotically approaches the
equilibrium point FPDEP.

Increasing the maturity rate of prey to a value greater than 1.2 (a; = 1.2) destabilizes the
IEP, causing system (1) to asymptotically approach the fixed point FPDEP.

Increasing the d, > 0.05 destabilizes the IEP, and the system (1) approaches to FPDEP
asymptotically.

As previously explained, system (1) demonstrates notable sensitivity to changes in specific
parameters, making it highly controllable.
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