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Abstract

Using SHA256 in the Blockchain system for security purposes, as it is important in
linking blocks and preventing tampering efficiently and securely. In order to further confirm
the security of SHA256 and protect it and increase its susceptibility to resist threats that it is
exposed to in one way or another, its algorithm was developed by utilizing the modified skew
tent map (MSTM). The developed SHA256 algorithm (D-SHAZ256) is distinguished by two
essential features: less time and more enhanced security than its predecessor SHA256. This
distinction arises from the strongly chaotic behavior and the highly randomness properties of
the MSTM. Moreover, the proposed D-SHA256 algorithm consist of 32 rounds while
preserving the randomness properties of the compression function by combining 48 hash
constants and 48 words with the MSTM to obtain high randomness with less rounds. D-
SHAZ256 guarantees that in the event of small changes that may occur in the input message
leading to large changes in the output hash digest, while confirming the preservation of the
properties of the cryptographic hash, containing collision resistance and ideal confusion and
diffusion. The proposed algorithm was compared with SHA256 and other current hash
algorithms, the results showed that D-SHA256 has increased collision resistance, higher
output randomness, better cryptographic hashing properties, and lower execution time.
Keywords:SHA256, Blockchain, Skew tent chaotic map, NIST randomness tests, and
Compression function.

1. Introduction
Blockchain is a decentralized and distributed ledger technology that securely records transactions
across multiple computers in a way that prevents any changes or tampering (1, 2). It contains of:

» Data: Transaction information.

» Hash: A unique digital representation of the block.

» Previous Block Hash: Refers to the hash of the block that precedes it in the chain.
Blocks are linked using hashes, a numerical value extracted from the contents of the block,
making it impossible to modify any block without changing all the blocks that follow it (2,
3). Blockchain systems are useful in many fields, such as healthcare, banking transactions,

424

—G)
© 2025 The Author(s). Published by College of Education for Pure Science (Ibn Al-Haitham),

University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License



https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu
https://orcid.org/0000-0001-7659-1407
mailto:Raghad.k.Salih@uotechnology.edu.iq
https://orcid.org/0000-0002-4764-2946
mailto:ali.abd@sc.uobaghdad.edu.iq
https://orcid.org/0009-0009-9394-5698
mailto:m.yasin@najah.edu
https://orcid.org/0009-0001-6294-9305
mailto:hadihamad@najah.edu

IHJPAS. 2025,38(4)

and many other applications that require a high level of security (2-6). Figure 1 illustrated
how to link a blockchain. SHA256 is the most widely used hash function in blockchains due
to its efficient properties. Therefore, many researchers have improved the security of this
function (7-9) and some of them have developed hash functions (10-12) and encryption
methods (13, 14) by using chaotic maps (15, 16), because chaotic systems are highly
sensitive to parameters and initial conditions and are characterized by random paths (17) with
strong confusion and diffusion properties that satisfy Shannon's principles (18). However,
many existing hash functions neglect running time computation, which is critical for efficient
and reliable performance. Our work introduces a strong hashing algorithm to enhance the
security of SHA256 and achieve a secure blockchain by preventing tampering of the join
blocks. The developed SHA256 algorithm (D-SHA256) using modified skew tent map
(MSTM) ensures that any modification to the data of any block changes its hash. Hence
maintains the integrity of the information within each block and prevents any changes. D-
SHAZ256 provides strong resistance to collisions and has efficient confusion and diffusion. D-
SHAZ256 has 32 rounds, and by using MSTM in the compression function a balance between
security and efficiency was achieve. Reducing D-SHA256 execution time improves data
integrity verification. The programs for evaluating the performance of developed hash
algorithm were implemented in MATLAB R2023b. This paper covers the following: Section
2 offers the developed hash algorithm. Section 3 offers the results, and Section 4 discusses
the results of the proposed hash algorithm. Finally, section 5 concludes the work.

Block 1 Block2 | Block 3
™~

Header \\ Header I~ Header

== =

Hash of Parent Hash of block 1 Hash of block 2

T Block Header Header Header

Merkle Root Hash ABCD Merkle Root

A A

Transactions Hash AB Hash CD Transactions

Figure 1. Diagram showing how to link a blockchain.

2. Materials and Methods

2.1. Hash Function

The Secure Hash Algorithm 256 bit (SHA256) belongs of the SHA-2 family. It converts the
inputs data into a fixed value of 256 bits (32 bytes). This function works in a one-way,
meaning that the original data cannot be obtained from the hashed value. In SHA256, the data
is divided into blocks of 512 bits, and each block is split into 16 words of 32 bits. After that,
padding is added to ensure that the length of the data is divisible by 512 (2,19,20). The initial
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values of SHA256 are introduced in Equation 1 (19). Any ideal hash function should have
the properties below (2, 20).
i. Collision resistance, which is defined as the impossibility of finding two different
inputs that generate the same resulting hash value.
ii. Preimage resistance, which means that for a given hash, finding the original input is
almost impossible.
iii. Second preimage resistance ensures that for a given hash value, it is very hard to find
another input message that generates the same hash.
The hashing algorithm with output values of length m needs 2™ operations to find a preimage
or second preimage, while finding a collision by a birthday attack needs 2™? operations
(2,21,22).
h{? = A = 6a09e667
h{” = B = bb67ae85
h{® = C = 3c6ef372
h{® = D = a54ff53a
h{” = E = 510e527f
hY = F = 9b05688¢
h$” = G = 1f83d9ab
h¥ = H = 5be0cd19
The maximum length inputs of SHA256 it can handle is — 1 bit. These inputs are
partitioned to (m™, m@®,...,m™), n > 1 blocks, each one is partitioned into 16 words of

32 bits as mY = wy, w,, ..., wi, 1 <j < n. Then the words extended into (64) words of
32 bits as shown in Equation 2 (19).

1)

264

m® 1<i<16
Wi - (256) l (256) ) = 1F2F N, L=
0,77 (Wisp) + Wiy + 0,777 (Wig5) +Wi_ge 17 <0 <64
1,2,...,64, 2
0259 (x) = ROTR (x) ® ROTR™3(x) ®x » 3 , ?)
o%5% (x) = ROTRY (x)® ROTR'(x) ® x > 10, (4)

ROTRM(x) is the rotate right operation of x by N positions to the right and x>>N =SHR"(x) is
the right shift operation of x. Thereafter, the blocks m™,m®), ..., m®™ are treated one after
another by constructing the updated 8 state variables out of 64 rounds, using the constants
K;,i =1,...,64 which represent the fixed SHA-256 key values (16). The update values can
be obtained by using new values 4, B, ..., H. After the block m™ has been treated, the output
hash H ,k =1,2,..8 is: SHAzs6 = HV || HSV| HS || HV | HED )| HEP | HEV || HEY,
where °||” represents the operation of connection hash values in computation (11,19). Figure
2 described how SHA256's algorithm works (11).
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Figure 2. llustrates a single round of the SHA256 algorithm process.

2.2.Skew Tent Map.

The one-dimensional skew tent map (STM) is defined in Equation 5 (23-25).
o qf 0<x, <

Xn+1 :{@ L.]{ P 5)
s p<x,=<1

Where p € (0,1)andn =0,1,2,... . The STM has some drawbacks. If the control

parameters or initial conditions are not chosen carefully or go beyond certain limits, the

chaotic behavior may weaken or disappear, leading to the cancellation of chaos (26). A

modification of STM (MSTM) was shown in Equation 6.
mod (% (xn+p2 (xn—l)),l) if 0<x,<p

mod(p(xn+ (11'_—’:;),1) if p<x,<1
MSTM exhibits a more evenly distributed chaotic sequence and operates over a broad control
parameter range, p € (—o, ) —{0,0.5,1}, effectively avoiding blank areas. In Equation 6,
Xo represents the initial value within n=0,1,2,.... Figure 3 illustrates the chaotic behavior of
MSTM.

(6)

Xn+1 =

Bifurcation Diagram for MSTM Lyapunov Exponent of MSTM

1
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(a) (b)

Figure 3. Chaotic behavior of MSTM (a) Bifurcation diagram and (b) Lyapunov Exponent (LE).
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2.2.1. NIST Statistical Suite Tests

The NIST suite (27) comprises 15 statistical tests for evaluating the randomness of binary
sequences. In this analysis, 100 binary sequences, each containing10°® bits, are derived from
100 distinct MSTM sequences binary sequences of Equation 6. We apply the threshold
function T(x) as defined in Equation 7 to find binary sequences. The results are assessed by
comparing the P-values where P > 0.01, as summarized in Table 1.

0 if x<0.5
T = { 1 o];herwise (7)
Table 1. NIST test of 10°-bit binary sequence of MSTM.
No. .M.STM Xo=0.1 and r=999
Statistical Tests P- Values Result
1 Frequency Monobit 0.79177 v
2 Block Freq. 0.76693 v
3 Runs 0.019287 v
4 Long Run of Ones 0.06776 v
5 Binary Matrix Rank 0.93068 v
6 DFT (Spectral) 0.31276 v
7 Non-Overlapping Templates 0.28969 4
8 Overlapping Templates 0.37208 v
9 Maurer's Universal Statistical 0.15794 v
10 Linear Complexity 0.61058 v
11 Serial test 0.44381 v
12 Approximate Entropy 0.748247 v
13 Cumulative sums test 0.56396 v
14 Rand. Excursions 0.34042 v
15 Rand. Excursions Variant 0.17102 v
Pass rate 15/15

2.3. A Novel Development of SHA256

The suggested algorithm D-SHA256 has the same output size as SHA256 and treats inputs of
up to 2% — 1 bit. The message is split into n-blocks, each one is split into 16 words similar to
the structure used in SHA256, as described in Section 2. To enhance the speed, security and
randomness of SHA256, D-SHA256 integrates the compression function of SHA256 with
MSTM with working an additional modification to increase the randomness of the state
variables and ensure strong resistance to current attacks. Additionally, the proposed algorithm
employes 32 rounds with 8 working variable and 48 hash words and constants (K). D-
SHAZ256 algorithm offers efficient calculations, reduced running time, strong security, and a
uniform distribution of output data.

2.3.1. The D-SHA256 Algorithm

Input: The message (M)
Output: The D-SHA256 value in hexadecimal.

1: Start

2: Use ASCII stream to convert the M into its binary form.

3: Append a '1' bit to the message and then append '0" bits until the total length is 448 mod
512.

4: Split the padded message in Step 3 into 512-bit blocks (m®, m®,..., m™),n > 1,

5: Ensure the last 64 bits of the final block in Step 4 store the original message (M) length
in bits.
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6: Use Equation 6 with Equation 7 to compute the binary sequence of MSTM by taking
X0=0.1, p=999 and the number of iterations is 1536.
7: Split the sequence in step 6 into (Sy, Sy, ..., Ssg), Keeping in mind that each part of
S;,i=1,2,...48 contains 32 bits.
8: v m® to m™ block apply the steps below:

I. Forj=1ton

ii.  Define the message schedule W; as:

W; = (256) mg}(lse) 17S<i 'S<128
0 Wi_2) + wi_7 + g, Wi1s) + Wis16 + S Sts
ili.  Set up the intermediate state variables A, B, ..., H by utilizing the initial value in
Equation 1 as:

A=H™Y

B=HJ

¢ = 0D

D=H{™Y

E=HIV

F=H)V

G=HI

H=HJ™"

I For i=2:2:32

{
Ty = h+ X%OE) + Ch(E, F,G) + KZO+Wi_y + S;_,
T, = Y%(4) + Maj(4,B,C)
T 3 = Y5OE) +K5° + W, + 5,
H=G,G=F,F=E+T,,E=D+T,,D=C,C=B,B=AandA=T; + T3
}
Fori=33:48
{

Ty = h + X29(E) + Ch(E,F,G) + K& + W, + S,

T, =329(4) + Maj(4,B,C)

H=G G=F F=E,E=D+T;,D=C,C=B,B=AandA=T.,+ T,
»%9(4) = ROTR?(A)® ROTR'3(A) ® ROTR?(A),
Y ?*)(E) = ROTR®(E)® ROTR'(E) ® ROTR?*(E),
Maj(A,B,C) = (ANB) ® (AAC) ® (BAC),
Ch(E,F,G) = (EAF)® (~EAG)

}

ii. Compute j" intermediate hash working value as:

429




IHJPAS. 2025,38(4)

HY =4+ HI™)
HY =B +HY ™Y
HY =c+H]™V
HY =p +HI™V >
HY = E + HY™
HP =F + HY™
HY =G +HY™V
HY = H+H{™)
End For j
iii.  Represent the D-SHA256 value of the M, after processing the final block m™, as:

D — SHAys6 = HP || HSV| HSY || HSP | HEP | HED) | HSP || HEY
9: End

Input Message of maximum
length 2% — 1 bit

}

Preprocessing:
1- Padding the message.
2- Parsing the padded message into n 512-bit blocks(m™, m®,...,m™)
3- Set the eight initial hash values of SHA256

}

Use Eq. (6) and (7) to compute the chaotic binary
sequence of MSTM (s;) where each one has 32 bits

}

— For j=1:n

}

Message Schedule (W;)

}

Developed SHA256 iterative
compression function based on <«—— The constants K;
MSTM with reducing rounds to 32

}

Intermediate j' hash values h%

}

Message Digest h™ (256 bits)

Figure 4. Construction of the D-SHA256 structure.
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3. Results

3.1. Hash Value Distribution

To evaluate D-SHA256 algorithm security, tests were conducted using both random and
extreme plaintext messages. For instance, Figure 5a illustrates the use of random characters
with ASCII values primarily in the range 50 to 95 as input. Figure 5b demonstrates the use
of identical characters with unchanged ASCII values. As shown in Figures 5c and d, the
plaintext messages are limited to a finite range, while their corresponding hash values are
distributed randomly and evenly. The results offers that a compression function based on
MSTM in D-SHA256 algorithm effectively conceals the statistical properties of the plaintext,
making it impossible to infer the plaintext from the hash value.

Random Input (ASCII Values [50, 95]) o Same Character Input (ASCII 65)
250 E T T T ] T T T T
200 - 855 -
g g
% 150 §
z 2 6
% B
¥ad 2
B45
50 [
D L | 1 | 1 | Bd 1 1 | 1
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Character sequence number Character sequence number
(a) (b)
" Hash Values for Random Input 5 Hash Values for Input "A"
I s . " . . T T T R
14 = . . . - 14 = + . *
D) . + .. + ¢ &
g 12 g 19+
;3: 10 + + . E 10+
2 8-+ + g L
T = 8
[ g
g o £,
he] . . . * . [}
T T
3 4r % 4be
I + [
2 . + T
2 L
D L L L 1 1 D | | |
0 10 20 30 40 50 60
1
Position in D-SHA256 Hash 0 ’ = " ‘30 0 0 &
© Position in D-SHA256 Hash
(d)

Figure 5. D-SHA256 value distribution.

3.2. D-SHA256 Sensitivity
To illustrate the sensitivity of the D-SHA256 algorithm, six trials were done, each including
small changes. C1 is the input message, while C2—C6 are its altered of C1.

a) C1: The original message: “The Department of Mathematics and Computer Science”

b) C2: C1 with delete space between "of Mathematics™.

c) C3: Replace the first letter 'T" in "The" with 't'.

d) C4: Remove the letter 'r' from " Computer ".

e) C5: Add adot (.) at the end.

f) C6: Replace 'a' in "and" with 'A'.
Table 2 presents the hash digest values in hexadecimal format and the number of altered bits
for the D-SHA256 algorithm. The results, as illustrated in Figure 6, highlight the suggested
hash algorithm's high sensitivity to minor changes in the input message bits.
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Table 2. The output of the D-SHA256 algorithm and the number of bits altered relative to the C1.

c D-SHA256 Change
bits
C1  8CBCL19118029E394A2E3EF484CA2A2AB3504EACCB0AAAE7BDA8559D0D64832A -
Cc2 228B227878E11070816852D313562E2E1C8E2ESB6F7964CCD2844A519D334C16 133
C3  B3EF7E0405A55D8F89622C0B46171D4B67F6B69ADES3ADFFCEBA4834900D9IBI3 137
C4  7DB90SEA2524A57D86935F56AE2E34DDE2DBE64203B64C89078A649CCIIFE0A3 132
C5  77C54EBFF292F0CF18607DB158DC58174B7FDA707233BE82D756CF7B723DEBF1 139
C6  BA368EBDEEF802C875E73D8D5486B086440D18F29A01829F37AB8FFI645COFIC 129

D-SHA256 Sensitivity Analysis

c1

0 50 100 150 200 250
Bit Position
c2

0 50 100 150 200 250
Bit Position
C3

0 50 100 150 200 250
Bit Position
c4

0 50 100 150 200 250
Bit Position
C5

0 50 100 150 200 250
Bit Position
cé

0 50 100 150 200 250
Bit Position

Figure 6. The representation of output of D-SHA256 for C1-C6.

3.3. Confusion and Diffusion of D-SHA256
Claude Shannon’s principles (18) of confusion and diffusion, avalanche effect, are necessary
for secure hash design. Confusion obscures the link between input and hash, while diffusion
guarantees that small input changes affect the entire hash value. Secure hash algorithms must
produce uniformly distributed values, with an ideal 50%-bit change probability for binary
hashes, making them resistant to collision attacks and computational weaknesses. The goal of
the confusion and diffusion test is to statistically analyses how hash values change when
small perturbations are made to input messages. This done by the steps below:

1. Use D-SHAZ256 algorithm to compute the hash digest value of an original message.

2. Swap one bit of the original message and recalculate the output hash value.

3. Make a comparison between the original and altered hash values.

4. Iterate N times the process with different input messages.
Here take N = 256, 512, 1024, 2048 and 10000 to find the statistical behavior of D-SHA256
under minor input changes. Results in Table 3 demonstrate the algorithm’s effectiveness in
achieving confusion and diffusion, ensuring maintaining strong security properties and Table
4 offers the comparison when N=10". We use the formulas below for these statistics (18).

e B;,i=1,..,N represents the total number of bits that changed in the ith test of the
hash after modification.

e Minimal number of B; : B,,;;, = min(B;)~, (8)
e Maximal number of B; : B, = max(B)N, 9)
e Averageof B;:B = %Z?’:l B; (10)
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e Average changed probability: P = (g) X 100% (11)

e Standard deviation of B;: AB = ﬁ N .(B; — B)? (12)
. 2

e Standard deviation of P: AP = \/ﬁ N (% — P) (13)

where N is the number of times the test is done, and n is defined as the resulting hash size.

Figure 7 shows the histogram and the statistical analysis of B; for N=2048 tests.
Table 3. Confusion and diffusion analysis of D-SHA256 for different lengths.

D-SHA256
N Bmin Bmax Mean (B) P% AB Ap
256 107 151 128.20 50.01 7.97 0.0306
512 107 152 128.47 50.04 7.90 0.030
1024 101 153 128.23 50 8.01 0.03
2048 107 157 128.01 50.01 8.22 0.032
100000 100 157 128.10 50.00 7.921 0.0302

Table 4. The confusion and diffusion comparison of different hash algorithms where N=104.

Algorithm Bmin Bmax Mean (B) P% AB Ap
Ref. (9) 99 155 128.08 50.03 8.09 0.0316
Ref.(10) (Str-1) 97 159 128 5001  7.921  0.0309
Ref.(10) (Str-2) 100 161 128.1 50.04 8.016 0.03131
Ref.(10) (Str-3) 100 161 128 50.00 7.911 0.03091
Ref.(10) (Str-4) 95 153 128 50.02 8.131 0.03176
SHA3-256 (31,10) 101 153 128.1 50.02 8.01 0.0313
SHA256 (19,10) 104 154 128.00 50.00 7.940 0.0310
D-SHA256 100 157 128.10 50.00 7.921 0.0302

160 ' ‘ ‘ ' 250

200 [ =

Number of Hits
o
o

o
o

Changed bit number in D-SHA256

50

100

90

. . . \
0 500 1000 1500 2000 2500
Time N

100 110 120 130 140 150 160
Changed bit number

(@) (b)
Figure 7. Statistical analysis of D-SHA256: (a) Distribution of B; and (b) B; histogram

3.4. NIST Statistical Suite Tests

The National Institute of Standards and Technology (NIST) suite of tests are statistical tests
for verifying the randomness of binary bit sequences (27). It comprises 15 tests designed to
assess the performance of the D-SHA256 algorithm. Tables 6 and 7 show the performance of
the NIST test for several input messages of different sizes mentioned in Table 5 along with
their execution time. These tables show the success rate which must be with a P-value > 0.01
for each test. The three NIST tests were excluded: binary matrix rank, overlapping templates
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and Maurer’s universal statistical, because they require input sequences longer than 256 bits

to be accurate, while the hash output is limited to this length.
Table 5. Output hash values and execution Time for different input lengths

The running time in

N Different Message seconds
Length (M) g SHA256 D-SHA256 D
SHA256 SHA256
BA7816BF8F01CFEA4  42F45A9A77053D4ESEA
14140DESDAE2223B00 9E821BDBD7E430D2681
! abe 361A396177A9CB410F 79B38BA6160212CC7CD 0.125977 0070893
F61F20015AD 75D05B6
20FDF64DA3CD2C78E 5A13C1D2C9D52432E93
C3C033D2AC628BACF EF2FB8E86B5C1ADBBO
2 0000000 701711FA99435EE37B  22C21700D22CEEB3FB5 0.117267 0068670
EF0304800DC5 3AD5C23A
abcoooooooooo0000000 7FBBDF20A0C98C42B  5BEF030A360537D3D8F
3 ooouuuuuuuuuuuuuuuu - D20482279FF86825464  9F278A1D849CB40CFC 0232181  0.081639
UUUUUUUUUXXXXXXXXXX F3FF3D4069B1CD14C  AA2E04C9172617B7E1A
XXXXXXXXXXXX BAD6BD7B9D6 515028E0
abco0000000000000000 53BCE3B7773F4B72D7 FD6A75B10B15COFF959
4 00055555555555555585ssss  C099713B9F251F7E41  9DEC21812606622406A1 0242044 0088812
SSSSXXXXXXXXXXXXXXXX ~ B7EB7BE287787559D7 CF2C99BFCFF5AA8F960
XXXXXX EAEB72161E 20C7AD
1D9CEB838421F7DB8EAF ECA20DA52D7D89B328
. 552161F70F9B3339AD  8A39FD2978EC491E20B
> 10000 bits 999F5EF2E61951E11B6 3E3E6FA54DD10E8660F 13.67671  7.965537
976F9298B 0FAb58384
D5A0A8E4300F485BB  08B1324F93429A3CAAB
6 100000 bits A28174BCAO0B5172313 F152861EB1187DF6A8F5 352.3389 177.1998
9B5C50029880227CCB  1014CCB0ODC1549D4F61 7 2
AT76326D211F E96439
Table 6. NIST randomness test of SHA256 and D-SHA256 for message 2 / Table 5
The Message 0000000
Hash Function SHA256 D-SHA256
Statistical Tests P- Values Result P- Values Result
Frequency Monobit 0.8025 v 1.000 v
Block Freq. 0.9394 v 0.9692 v
Runs 0.0807 v 0.3815 v
L. Run of Ones 0.3091 v 0.3262 v
Binary MatrixRank -1 X -1 X
DFT Spectral 0.4220 v 0.8185 v
Non Overlapping Templates 0.0002 X 0.0537 v
Overlapping Templates NaN X NaN X
Maurer's Universal Statistical -1 X -1 X
Linear Complexity 0.4985 v 0.9218 v
Serial 0. 4989 v 0.8413 v
Appro. Entropy 1 v 1 v
Cumulative sums test 0.7458 v 0.8579 v
Rand. Excursions 0.4265 v 0.5625 v
Rand. Excursions Variant 0.3763 v 0.6510 v
Pass rate 11/15 12/15
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Table 7. Number of successful NIST tests of hash algorithms

Number of Number of
Input Message (M) in Table 5 successful NIST successful NIST
tests of SHA256  tests of D-SHA256
abc 11/15 12/15
0000000 11/15 12/15
abco0000000000000000000UUUUUUUUUUUUUUUUUUUUUUUUUXXXXXX 10/15 12/15
XXXXXXXXXKXXXXKXK
abco00000000000000000005555555SSSSSSSSSSSSSSSSSSXXXXXXXXXXX 9/15 12/15
XXXXXXXXXKX
10000 bits 12/15 12/15
100000 bits 12/15 12/15

The comparison between the D-SHA256 and SHA256 algorithms highlights improved
performance in randomness tests. As shown in Table 7, the D-SHA256 algorithm passes 12
out of 15 tests, outperforming SHA256, which achieves 11, 10, and 9 successful tests,
respectively. D-SHA256 offers distinct advantages over SHA256, including faster execution
times and improved efficiency, making it more suitable for practical applications.

4. Discussion

4.1. Collision Resistance Analysis of D-SHA256

In this study, collision resistance is evaluated using the method described in (28-30). A
random input message is selected, its hash is resulted, and it is saved in ASCII format. Then,
a single bit in the input message is randomly modified to produce a new hash value, which is
also saved in ASCII format. By comparing the ASCII characters at corresponding positions
in both hash values, the highest count of identical characters determines the collision degree.
A lower value indicates weaker collision resistance. Any single matching character is
considered a collision, and the total number of such instances is recorded. The number of hits
in the N™ test is provided in (30), where the theoretical number of expected collisions is
computed using the following formula:

s! 1\% 1\5™W
Here, the number of hits (w) when comparing two hash values refers to the number of ASCII
characters that are identical and occur at the same position in both hash values. N represents

the number of tests, 8 refers to the number of bits in an ASCIl character, and s =

(length of hash
8

contain identical characters at the same position for the D-SHA256 algorithm after running

N=2048 and N=10" tests. Moreover, Table 8 shows the number of hits comparison for hash
algorithms in 2048 and 10000 random tests. It also shows that the values of the proposed D-
SHAZ256 algorithm are closer to the theoretical values compared to the other hash functions.

) = Z% = 32. Figure 8 presents the distribution of how often hash values
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Figure 8. The distribution of the number of hits for D-SHA256 when (a) N=2048 and (b) N=10*

Table 8. The number of hits comparison of hash algorithms.

Hits numbers (w) N=2048

0 1 2 3 32
Theoretical value 1806.91 226.75 13.78 0.54 1.75 x 10774
Ref.(10) (Str-1) 1819 219 10 0 0
Ref.(10) (Str-2) 1806 222 20 0 0
Ref.(10) (Str-3) 1800 240 8 0 0
Ref.(10) (Str-4) 1799 235 14 0 0
Ref.(12) (Str-1) 1803 232 13 0 0
Ref.(12) (Str-2, r=8) 1817 215 16 0 0
Ref.(12) (Str-2, r=24) 1815 226 7 0 0
Ref.(10,19 ) (Str-3) 1824 213 11 0 0
Ref.(10,31 ) (Str-1) 1931 114 3 0 0
Ref.(10,31) (Str-2) 1929 114 5 0 0
Ref.(10,31) (Str-3) 1942 106 0 0 0
Ref.(11) 1823 215 10 0 0
Ref.(12,19) SHA256 1817 220 11 0 0
D-SHA256 1808 228 12 0 0
Hits numbers (w) N=10000
0 1 2 3 4 32
Theoretical value 8822.81 1107.18 67.30 2.64 0.075 8.64x10-74
D-SHA256 8825 1109 65 1 0 0

4.2. Running Time

The modified algorithm underwent extensive testing with messages of varying lengths,
demonstrating notable gains in efficiency and running time. Table 5 and Figure 9 offer that
D-SHA256 has a shorter execution time than SHA256. The D-SHA256. Integrate MSTM
into the modified D-SHA256 enhances performance, while reducing the number of rounds
and optimizing the compression function minimizes execution time. The average execution
time of SHA256 and D-SHA256 is 5.768 seconds and 4.4674 seconds respectively. As a
result, the D-SHA256 algorithm achieves robust security, strong randomness, and improved
efficiency.
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Figure 9. The running time of the hash algorithms D-SHA256 and SHA256

5. Conclusion

The objective of this work is how to boost the level of security of the blockchain system
based on increasing the security of hashing function. The proposed D-SHA256 algorithm
enhances the intermediate state of the compression function by using the modified skew tent
map (MSTM) for strength blockchain security. The number of rounds were reduced to 32 for
faster execution while maintaining the robust security. The proposed algorithm employs 48
hash constants and 48 words. It has strong collision resistance, and protection against
preimage attacks, satisfies the NIST randomness tests, and reduces execution time. This
approach achieves a balance between security and efficiency, providing a reliable framework
for secure hash implementation and offering a novel direction for hash algorithm
development, particularly in compression function design. Its enhanced sensitivity makes it
resilient to all known attacks.
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