; PISSN: 1609-4042, EISSN: 2521-3407
~—A IHJPAS. 2025, 38(4)

e, Ibn Al-Haitham Journal for Pure and Applied Sciences
(’ “LT ‘) Joumal homepage: jih.uobaghdad. edu.iq

Calculation of Semi-Major and Semi-Minor Radii and Deformation

Parameters for Molybdenum 8¢-139Mo Isotopes

Reem Gani Abdulrazzaq Mohammed"'® &, Sameera Ahmed Ebrahiem?® s and

Mustafa H. Shareef®sz
L2Department of Physics, College of Education for Science (Ibn-AL-Haitham), University of Baghdad,
Baghdad, Iraq
Department of Physics, Faculty of Science, Karabuk University, Karabuk, 78050, Tirkiye.
*Corresponding Author.

Received: 4 May 2025 Accepted: 24 July 2025 Published: 20 October 2025
doi.org/10.30526/38.4.4165

Abstract

This study explores the nuclear properties of even-numbered molybdenum (8¢199Mo)
isotopes in the mass range 86 to 100. It focuses on the calculations of fundamental nuclear
properties such as distortion coefficients (8, and &), electric quadrupole moments (Q,), root-
mean-square charge radii, and reduced transition probabilities B(E2)1. These calculations
were derived using a theoretical framework based on the distorted shell model and
implemented in MATLAB. The evaluation also included the identification of the two quasi-
nuclear shape axes (major and minor), from which three-dimensional representations of the
isotopic shapes were generated.The analysis revealed a gradual decrease in distortion
coefficients and transition probabilities with increasing mass number, indicating a trend
toward nuclear stability. We observed a significant decrease in distortion near the magic
number of neutrons, demonstrating the enhanced stability resulting from closed shells. The
results are in good agreement with theoretical predictions and experimental data, providing a
deeper understanding of the behavior of molybdenum isotopes and contributing to the
expansion of knowledge of nuclear shape evolution, charge distribution, and nuclear
transitions in intermediate-mass nuclei.
Keywords: Electric quadrupole moments, Possibility of electrical transition, Half-life mean-
squared, Charge distribution, Radius <r® >, Transition probability B (E2;0°*—2") 1.

1.Introduction

A nucleus always maintains its spherical shape when it contains a certain number of
nucleons, known as magic numbers (2, 8, 20, 28, 50, 82, and 126) (1,2). However, when the
total number of protons and neutrons deviates from these values, the nucleus tends to lose its
spherical symmetry and become distorted (3-5). Nuclei with magic numbers exhibit greater
stability due to their closed shell configuration®. Nuclear distortion is due to the spatial
distribution of valence nucleons within incomplete shells, meaning that this distortion most
often occurs when both the proton (Z) and neutron (N) shells are incomplete (6).
The most common type of nuclear distortion is the quadrupole distortion, where the nucleus
assumes an elongated (ellipsoidal) or flattened (compact) shape. In even-even nuclei, the first
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excited energy state is typically the 2 state, and the transition from this state to the 0" ground
state provides a profound understanding of the nucleus's structure. Electromagnetic
transitions, especially the electromagnetic quadrupole (E2) transitions, are essential tools for
exploring these properties (7). The low electromagnetic transition probability, B (E2; 0" —
2%), provides essential information about the nucleus's structure, especially for low-energy
excitations. High values of B(E2) indicate a significant tetragonal distortion in the nucleus,
reflecting collective behavior within these systems(8).

Determining the tetragonal intrinsic moment (Q,) requires an accurate measurement of the
electromagnetic quadrupole transitions between the ground state and the excited state(9).This
parameter is essential for exploring shape transitions and allows predictions of different
properties of even-even nuclei based on the extent of their distortion. Understanding nuclear
deformation is fundamental to characterizing shapes such as elongated and compact.
Ultimately, the tetrahedra self-moment is a quantitative measure of the nuclear charge
distribution and provides insights into deviations from spherical symmetry(10).

2. Materials and Methods

Nuclear deformation arises from the arrangement of valence nucleons within the unfilled
nuclear shells. Distortion occurs only when both proton P and neutron n shells are not
completely filled. One fundamental type of nuclear deformation is quadrupole distortion (11),
where the nucleus may adopt either a prolate (elongated) or oblate (flattened) shape(12) , as
illustrated in the accompanying Figure 1 (13) .

Prolate

Oblate Spherical

B2 -ve 0 e

Figure .1. A diagram with flattened, stretched shapes and spherical. Arrows on the flattened and stretched
shapes indicate symmetry (14, 15).-

Their liquid drop model of the nucleus supple and soft, thus permitting them to detect
considerable distortions in its shape from a perfect sphere®. Anywhere the number of neutron
(N) had a high frequency (6), a considerable number of nuclei were identified (N) and
protons (P) is markedly distant from the magnetic values, exhibiting a distorted charge
distribution (17).

The distortion parameter 5, is a model based on quantum mechanics(18). Considering that
these probabilities describe the interactions of nucleons with all other nucleons in all
remainder nucleons in the nucleus:

ﬁz =4r /3ZR£ [B(EZ) T ezbz/ eZbZ]l\Z (1)
Where R, =0.0144 A4 2
And B(E2) 1= 2.6E,1Z?A2\3 @)
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In this context, A denotes the mass number of a nucleus (19) , Z represents the atomic
number, and Ey signifies the gamma-ray transitions energy, measured in kiloelectronvolts
(KeV).

To calculate the deformation parameter 6, we rely on the internal electric quadrupole Q,
because it provides information on deformation and shape, measuring the distortion and
spherical symmetry of the charge distribution. The quadrilateral deformation coefficient (the
degree of variation in the spherical shape) can be calculated using the quadrilateral moments
Q0(20,21)

8§ =0.75Q,/(<1*>Z) (4)
Where Q,=[(16 7 /5) B(E2)e’b?*/e?*]" (5)
The average radius < r2 > can be calculated:

<12 >=0.63R, % (1+10/3(1 ao/Ro) 2 )/(1+(m ao/Ro) 2 ) (A<100) (6)

Whence the Ro: radial Woods-Saxon parameters are, Ro=1.07AY fm and a0=0.55(fm), with
ao from fast electron scattering information (22) .

In general, shapes of nuclei are approximately spherical when a nucleus is stable, since it
lowers the surface energy of the nucleus (23). Hence, small sections of spheres are seen
(24,25), as with the region 150<A<190

6=AR/R @)

Wheére:

AR denotes the difference between the semi-major and semi-minor axes (9,26).

While the average of the nuclear radius represents by R, due to, as assumed (27),

AR = (b - a) (8)

The subsequent equations provide the semi-axes (a) and (b)(28).

a= \/< 12 > (166 —22) (9)
b=vV5< r2 > -2a2 (10)
3. Results

This study focused on the nuclear properties of the element molybdenum (Mo), a
transition metal with atomic number 42. Known for its silver appearance and high resistance
to heat and corrosion, molybdenum is widely used in steel alloys to enhance their strength
and thermal durability. Some of its isotopes are also employed in nuclear structure studies
due to their unique properties.

The analysis covered molybdenum isotopes with mass numbers ranging from 80 to 100
Several nuclear indicators were calculated, including electric transition probabilities,
deformation parameters, and electric quadrupole moments (Q,), using gamma energy values
taken from Firestone (29).

The results indicated a gradual decrease in deformation parameter values from 0.2276 to
0.2008 as the mass number increased, with an exception at the heaviest isotope. These values
were generally consistent with theoretical calculations from the Global, as shown in Figures
2 and 3. Similarly, the electric transition probabilities, calculated using Equation 3,
decreased from 0.4144e’h? to 0.3975e’b? with increasing mass number, and were in good
agreement with experimental values (Table 1).
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Figure 2. The shows the relationship between the mass number of the element Mo and the distortion coefficient
delta.
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Figure 3. The shows the relationship between the mass number of the element Mo and the beta distortion
fatcter.

Table 1. Quadripole moment Tetrapolar electrode (Q,) in barns, gamma energy to the first level E,, low
electrostatic transition potential B(E2) 1 in e? b? units, average nuclear radius (RZ), number of neutrons (N),
mass numbers of isotopes (A) molybdenum and parameters of deformation (S, 8) for molybdenum Mo.

The Theoretical Values A present Work
B(E,)
A N E, T (e%b?) for B, for 5 b B(E,) 5
Global Best Fit Global Best Fit B Q) T (e%b?)

(29)
86 44 568 0.41 0.2276 0.1698 0.2288 2.0412 0.4144 28.06
88 46 740.53 0.31 0.1949 0.4157 0.1959 1.7740 0.3130 28.49
90 48 947.97 0.238 0.1682 0.1263 0.1693 1.5562 0.2409 28.92
92 50 1509.49 0.147 0.1303 0.0982 0.1312 1.2243 0.1491 29.35
94 52 871.096 0.251 0.1678 0.1268 0.1691 1.6001 0.2547  29.77
96 54 778.245 0.277 0.1739 0.1317 0.1751 1.6810 0.2811 30.19
98 56 734.75 0.270 0.1693 0.1331 0.1766 1.7182 0.2937 30.61
100 58 535.57 0.39 0.2008 0.1532 0.2027 1.9990 0.3975 31.02

Deformation factors based on quadrupole moments also showed a decreasing trend.
However, for the isotope with mass number 50 a magic number the deformation value was
significantly lower, indicating a high level of nuclear stability.

The electric quadrupole moments, measured in barns, ranged from a maximum value of
2.0412e%b? to a minimum of 1.5562eb?, as illustrated in Figures 4 and 5.
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Figure 4. The shows the relationship between the mass number of the element Mo and the electric quadrupole
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Figure 5. The shows the relationship between the mass number of the element Mo and the probability of the
central quadrupole transition.

Further analysis using the even-even isotopes of molybdenum involved calculating transition
probabilities and half-life values based on gamma energy and half-life data. These ranged
from (0.0354 to 2.1975*10%") seconds for mean-lives and from (28.2828 to 4.5506*10%°) for

transition probabilities, as summarized in Table 2.
Table 2. Average half-life t (s) for molybdenum (Mo) isotopes, neutron numbers N, gamma energy to the first
state, probability T of transition, and A represent mass numbers.

A N E; (Kev) E,(Kev) t%(S) T(s) (s)
42 86 44 568 568 19.6 s 28.2828 0.0354

88 46 74053 740 (8.0m) 480 692.6407 0.0014

90 48  947.97 947 (5.56 h)20.016 28.8831 0.0346

92 50 1509.49 1509 (0.35 ps)0.35*10™*2 5.0505*10™  1.9800*10"

94 52  871.096 871 (2.88 ps)2.88*10™*2 4.1558*10™  2.4062*10M

96 54 778245 778 (3.66 ps)3.66*10™" 5.2814*10™2  1.8934*10M

98 56 73475 734 (21.8 ns)21.8*10°° 3.1457*10° 3.1789*10’

%1119
100 58 53557 535 (1.00"10™Y) 4.5506*10% 2.1975*10°%

3.1536*10%

In Table 3, the semi-major and semi-minor axes (a, b) were calculated using Equations 9
and (10), while their difference was obtained from Equation 8. The root mean square charge
radius was calculated using Equation 6. These values showed a direct correlation with
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increasing mass number, and were generally close to experimental data from the source, as
depicted in Figure 6.

Table 3. Additionally, it includes the mass numbers (A), the major and minor axes (b, a), neutron counts (N),
the root mean square of the radius <r>>®? | as well as their separation (AR) for the isotopes of molybdenum,
described in two distinct ways.

A
Theoretical A present Work
Values
A N
(1‘2)2 21
2 (ro)z
fm (re) fm a(fm) b(fm) AR, AR, AR;
fm
(30)

42 86 44 L 21.4702 4.6335 24443 33494 0.8018 0.9052 1.1469
88 46 ... 21.7386 46624 250222 3.2849 0.6936 0.7827  0.9892
90 48 4.3265 22.0047 4.6909 2.5498  3.2328 0.6056 0.6830  0.8613
92 50 4.3151 22.2686 4.7189 2.6145  3.1502 0.4742 05358 0.6726
94 52 4.3529 22.5304 4.7466 25639  3.2537 0.6170 0.6898  0.8728
9% 54 4.3847 22.7901 4.7738 25611  3.2789 0.6453 0.7178  0.9105
98 56 4.4091 23.0479 4.8008 25654  3.2927 0.6567 0.7273  0.9243
100 58 4.4468 23.3038 48274 25303  3.3663 0.7608 0.8360  1.0681

|
14
= N R |
Mo86 Mo88 M90
& RS S
Mo092 Mo94 Mo96
K o e
Mo98 Mo100

Figure 6. Three-dimensional shapes of the axially symmetric tetragon, deformation of the molybdenum ,,Mo
isotope along the major (a) and minor (b) axis
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4. Discussion

This study examined the nuclear structure of even-even molybdenum isotopes with mass
numbers ranging from 86 to 100, focusing on the evaluation of parameters associated with
nuclear deformation. The results revealed consistent trends in the behavior of the nuclei, with
a gradual decrease in both the deformation parameters (B, 0) and the electric quadrupole
moment (Qo) as the mass number increased. These changes indicate an increase in nuclear
stability, particularly near magic neutron numbers such as N = 50, where deformation values
decreased significantly.
The decrease in deformation is also supported by a decrease in the electrical transition
probabilities B(E2)T, as low values of these probabilities indicate a more spherical and less
bulky nuclear shape. These results are consistent with the nuclear shell model, which predicts
greater stability and less deformation in nuclei with full shells.
In addition, semi-major and semi-minor axes calculations revealed measurable differences
between the isotopes, and the calculated root-square charge radii were in close agreement
with experimental data. This agreement enhances the effectiveness of the theoretical models
used, particularly the distorted shell model and the mathematical equations implemented
using MATLAB.
Overall, the results confirm the power of theoretical models in predicting the structural
evolution of isotopes and provide a deeper understanding of the relationship between nuclear
distortion, shape, and stability in the intermediate mass region.

5. Conclusion

Nuclear structure analyses of molybdenum isotopes in the mass range from 86 to 100 have
revealed regular trends in the fundamental nuclear parameters. Thus, the decrease in
distortion coefficients and the probability of electrical transition with increasing mass number
A indicates a systematic structural evolution among these isotopes. These results are in good
agreement with theoretical predictions and experimental data, demonstrating the reliability of
the computational methods used.
The results also highlight the particular stability of isotopes close to magic numbers, such as
mass number 50, where distortion decreases significantly. Furthermore, the correlation
between electric quadrupole moments, charge radii, and mass numbers supports our
understanding of the dynamics of nuclear shape.
Overall, this study provides a clear insight into the behavior of molybdenum isotopes and
contributes to a deeper understanding of nuclear distortion, transition probabilities, and
charge distribution. The agreement between the calculated and experimental values enhances
the credibility of the models applied in this research.
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