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Abstract 

This study explores the nuclear properties of even-numbered molybdenum (     
      ) 

isotopes in the mass range 86 to 100. It focuses on the calculations of fundamental nuclear 

properties such as distortion coefficients (   and  ), electric quadrupole moments (Q₀), root-

mean-square charge radii, and reduced transition probabilities B(E2)↑. These calculations 

were derived using a theoretical framework based on the distorted shell model and 

implemented in MATLAB. The evaluation also included the identification of the two quasi-

nuclear shape axes (major and minor), from which three-dimensional representations of the 

isotopic shapes were generated.The analysis revealed a gradual decrease in distortion 

coefficients and transition probabilities with increasing mass number, indicating a trend 

toward nuclear stability. We observed a significant decrease in distortion near the magic 

number of neutrons, demonstrating the enhanced stability resulting from closed shells. The 

results are in good agreement with theoretical predictions and experimental data, providing a 

deeper understanding of the behavior of molybdenum isotopes and contributing to the 

expansion of knowledge of nuclear shape evolution, charge distribution, and nuclear 

transitions in intermediate-mass nuclei. 

Keywords: Electric quadrupole moments, Possibility of electrical transition, Half-life mean-

squared, Charge distribution, Radius ˂r
2
 ˃, Transition probability B (E2;0

+
→2

+
) ↑. 

 

1.Introduction 

A nucleus always maintains its spherical shape when it contains a certain number of 

nucleons, known as magic numbers (2, 8, 20, 28, 50, 82, and 126) (1,2). However, when the 

total number of protons and neutrons deviates from these values, the nucleus tends to lose its 

spherical symmetry and become distorted (3-5). Nuclei with magic numbers exhibit greater 

stability due to their closed shell configuration
5
. Nuclear distortion is due to the spatial 

distribution of valence nucleons within incomplete shells, meaning that this distortion most 

often occurs when both the proton (Z) and neutron (N) shells are incomplete (6). 

The most common type of nuclear distortion is the quadrupole distortion, where the nucleus 

assumes an elongated (ellipsoidal) or flattened (compact) shape. In even-even nuclei, the first 
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excited energy state is typically the 2
+
 state, and the transition from this state to the 0

+
 ground 

state provides a profound understanding of the nucleus's structure. Electromagnetic 

transitions, especially the electromagnetic quadrupole (E2) transitions, are essential tools for 

exploring these properties (7). The low electromagnetic transition probability, B (E2; 0
+
 → 

2
+
), provides essential information about the nucleus's structure, especially for low-energy 

excitations. High values of B(E2) indicate a significant tetragonal distortion in the nucleus, 

reflecting collective behavior within these systems(8). 

Determining the tetragonal intrinsic moment (Qo) requires an accurate measurement of the 

electromagnetic quadrupole transitions between the ground state and the excited state(9).This 

parameter is essential for exploring shape transitions and allows predictions of different 

properties of even-even nuclei based on the extent of their distortion. Understanding nuclear 

deformation is fundamental to characterizing shapes such as elongated and compact. 

Ultimately, the tetrahedra self-moment is a quantitative measure of the nuclear charge 

distribution and provides insights into deviations from spherical symmetry(10). 

 

2. Materials and Methods  

Nuclear deformation arises from the arrangement of valence nucleons within the unfilled 

nuclear shells. Distortion occurs only when both proton P and neutron n shells are not 

completely filled. One fundamental type of nuclear deformation is quadrupole distortion (11), 

where the nucleus may adopt either a prolate (elongated) or oblate (flattened) shape(12)
 
, as 

illustrated in the accompanying Figure 1 (13)
 
 . 

 
Figure .1. A diagram with flattened, stretched shapes and spherical. Arrows on the flattened and stretched 

shapes indicate symmetry (14, 15). 
.
 

 

Their liquid drop model of the nucleus supple and soft, thus permitting them to detect 

considerable distortions in its shape from a perfect sphere
16

. Anywhere the number of neutron 

(N) had a high frequency (6), a considerable number of nuclei were identified (N) and 

protons (P) is markedly distant from the magnetic values, exhibiting a distorted charge 

distribution (17). 

The distortion parameter    is a model based on quantum mechanics(18). Considering that 

these probabilities describe the interactions of nucleons with all other nucleons in all 

remainder nucleons in the nucleus: 

           
                                                                                                    (1) 

Where       = 0.0144 𝐴 
1/3

                                                                                                       (2) 

 And             
    𝐴                                                                                                (3) 
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 In this context, A denotes the mass number of a nucleus (19)
 
, Z represents the atomic 

number, and  𝛾 signifies the gamma-ray transitions energy, measured in kiloelectronvolts 

(KeV). 

To calculate the deformation parameter δ, we rely on the internal electric quadrupole Qo 

because it provides information on deformation and shape, measuring the distortion and 

spherical symmetry of the charge distribution. The quadrilateral deformation coefficient (the 

degree of variation in the spherical shape) can be calculated using the quadrilateral moments 

Qo
 
(20,21) 

                                                                                                                         (4) 

Where      = [(16   /5 )  ( 2)  
2  

2
 /  

2
 ] 

½
                                                                           (5) 

The average radius <  2 > can be calculated: 

<  2
 >=0.63Ro 

2
 (1+10/3( ao/Ro) 

2
 )/(1+( ao/Ro) 

2
 ) (À≤100)                                               (6) 

Whence the Ro: radial Woods-Saxon parameters are, Ro=1.07A
1/3 

fm and ao=0.55(fm), with 

ao from fast electron scattering information (22) . 

In general, shapes of nuclei are approximately spherical when a nucleus is stable, since it 

lowers the surface energy of the nucleus (23). Hence, small sections of spheres are seen 

(24,25), as with the region 150<A<190 

𝜹 = ∆𝑹 /𝑹                                                                                                                                (7)   

Whêre:  

ΔR denotes the difference between the semi-major and semi-minor axes (9,26).  

While the average of the nuclear radius represents by R, due to, as assumed (27), 

∆𝑹 = (𝒃 − 𝒂)                                                                                                                           (8)   

The subsequent equations provide the semi-axes (a) and (b)(28). 

  √             
  

   
                                                                                                        (9) 

       √                                                                                                                       (10) 

 

3.  Results  

This study focused on the nuclear properties of the element molybdenum (Mo), a 

transition metal with atomic number 42. Known for its silver appearance and high resistance 

to heat and corrosion, molybdenum is widely used in steel alloys to enhance their strength 

and thermal durability. Some of its isotopes are also employed in nuclear structure studies 

due to their unique properties. 

The analysis covered molybdenum isotopes with mass numbers ranging from 80 to 100 

Several nuclear indicators were calculated, including electric transition probabilities, 

deformation parameters, and electric quadrupole moments (Qo), using gamma energy values 

taken from Firestone (29). 

The results indicated a gradual decrease in deformation parameter values from 0.2276 to 

0.2008 as the mass number increased, with an exception at the heaviest isotope. These values 

were generally consistent with theoretical calculations from the Global, as shown in Figures 

2 and 3. Similarly, the electric transition probabilities, calculated using Equation 3, 

decreased from 0.4144e
2
b

2
 to 0.3975e

2
b

2
 with increasing mass number, and were in good 

agreement with experimental values (Table 1). 
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Figure 2. The shows the relationship between the mass number of the element Mo and the distortion coefficient 

delta. 

 

 
Figure 3. The shows the relationship between the mass number of the element Mo and the beta distortion 

fatcter. 

 

Table 1. Quadripole moment Tetrapolar electrode (Qₒ) in barns, gamma energy to the first level   , low 

electrostatic transition potential B(E2) ↑ in e
2
 b

2
 units, average nuclear radius (  

 ), number of neutrons (N), 

mass numbers of isotopes (A) molybdenum and parameters of deformation (  , δ) for molybdenum Mo. 

A N    

The Theoretical Values A present Work 

     

    𝒃       

                

(29) 

       

                
𝜹        𝒃  

      

    𝒃   
𝑹 

  

86 44 568 0.41 0.2276 0.1698 0.2288 2.0412 0.4144 28.06 

88 46 740.53 0.31 0.1949 0.4157 0.1959 1.7740 0.3130 28.49 

90 48 947.97 0.238 0.1682 0.1263 0.1693 1.5562 0.2409 28.92 

92 50 1509.49 0.147 0.1303 0.0982 0.1312 1.2243 0.1491 29.35 

94 52 871.096 0.251 0.1678 0.1268 0.1691 1.6001 0.2547 29.77 

96 54 778.245 0.277 0.1739 0.1317 0.1751 1.6810 0.2811 30.19 

98 56 734.75 0.270 0.1693 0.1331 0.1766 1.7182 0.2937 30.61 

100 58 535.57 0.39 0.2008 0.1532 0.2027 1.9990 0.3975 31.02 

 

Deformation factors based on quadrupole moments also showed a decreasing trend. 

However, for the isotope with mass number 50 a magic number the deformation value was 

significantly lower, indicating a high level of nuclear stability. 

The electric quadrupole moments, measured in barns, ranged from a maximum value of 

2.0412e
2
b

2
 to a minimum of 1.5562e

2
b

2
, as illustrated in Figures 4 and 5. 
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Figure 4. The shows the relationship between the mass number of the element Mo and the electric quadrupole 

moment. 

 
Figure 5. The shows the relationship between the mass number of the element Mo and the probability of the 

central quadrupole transition. 

 

Further analysis using the even-even isotopes of molybdenum involved calculating transition 

probabilities and half-life values based on gamma energy and half-life data. These ranged 

from (0.0354 to 2.1975*10
-27

) seconds for mean-lives and from (28.2828 to 4.5506*10
26

) for 

transition probabilities, as summarized in Table 2. 

Table 2. Average half-life t (s) for molybdenum (Mo) isotopes, neutron numbers N, gamma energy to the first 

state, probability T of transition, and A represent mass numbers. 

 
A N                    

 
    T(s)      

42 86 44 568 568 19.6 s 28.2828 0.0354 

88 46 740.53 740 (8.0m) 480 692.6407 0.0014 

90 48 947.97 947 (5.56 h)20.016 28.8831 0.0346 

92 50 1509.49 1509 (0.35 ps)0.35*10
-12

 5.0505*10
-13

 1.9800*10
12

 

94 52 871.096 871 (2.88 ps)2.88*10
-12

 4.1558*10
-12

 2.4062*10
11

 

96 54 778.245 778 (3.66 ps)3.66*10
-12

 5.2814*10
-12

 1.8934*10
11

 

98 56 734.75 734 (21.8 ns)21.8*10
-9

 3.1457*10
-8

 3.1789*10
7
 

100 58 535.57 535 
(1.00*10

19 
y) 

3.1536*10
26

 
4.5506*10

26
 2.1975*10

-27
 

 

In Table 3, the semi-major and semi-minor axes (a, b) were calculated using Equations 9 

and (10), while their difference was obtained from Equation 8. The root mean square charge 

radius was calculated using Equation 6. These values showed a direct correlation with 
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increasing mass number, and were generally close to experimental data from the source, as 

depicted in Figure 6. 

Table 3. Additionally, it includes the mass numbers (A), the major and minor axes (b, a), neutron counts (N), 

the root mean square of the radius <r
2
>

(1/2) 
, as well as their separation ( R) for the isotopes of molybdenum, 

described in two distinct ways. 

42 

A N 

A 

Theoretical 

Values 

A present Work 

〈  〉
 
  

fm 

(30) 

〈  〉     〈  〉
 
  

fm 
𝒂      b (fm)   𝑹    𝑹    𝑹  

86 44 …….. 21.4702 4.6335 2.4443 3.3494 0.8018 0.9052 1.1469 

88 46 ……. 21.7386 4.6624 2.50222 3.2849 0.6936 0.7827 0.9892 

90 48 4.3265 22.0047 4.6909 2.5498 3.2328 0.6056 0.6830 0.8613 

92 50 4.3151 22.2686 4.7189 2.6145 3.1502 0.4742 0.5358 0.6726 

94 52 4.3529 22.5304 4.7466 2.5639 3.2537 0.6170 0.6898 0.8728 

96 54 4.3847 22.7901 4.7738 2.5611 3.2789 0.6453 0.7178 0.9105 

98 56 4.4091 23.0479 4.8008 2.5654 3.2927 0.6567 0.7273 0.9243 

100 58 4.4468 23.3038 4.8274 2.5303 3.3663 0.7608 0.8360 1.0681 

 

  
                           Mo86                                         Mo88                                                   M90 

   
                         Mo92                                             Mo94                                                 Mo96 

 
                           Mo98                                         Mo100 

Figure 6. Three-dimensional shapes of the axially symmetric tetragon, deformation of the molybdenum 42Mo 

isotope along the major (a) and minor (b) axis 
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4.  Discussion  

This study examined the nuclear structure of even-even molybdenum isotopes with mass 

numbers ranging from 86 to 100, focusing on the evaluation of parameters associated with 

nuclear deformation. The results revealed consistent trends in the behavior of the nuclei, with 

a gradual decrease in both the deformation parameters (β₂, δ) and the electric quadrupole 

moment (Q₀) as the mass number increased. These changes indicate an increase in nuclear 

stability, particularly near magic neutron numbers such as N = 50, where deformation values 

decreased significantly. 

The decrease in deformation is also supported by a decrease in the electrical transition 

probabilities B(E2) , as low values of these probabilities indicate a more spherical and less 

bulky nuclear shape. These results are consistent with the nuclear shell model, which predicts 

greater stability and less deformation in nuclei with full shells. 

In addition, semi-major and semi-minor axes calculations revealed measurable differences 

between the isotopes, and the calculated root-square charge radii were in close agreement 

with experimental data. This agreement enhances the effectiveness of the theoretical models 

used, particularly the distorted shell model and the mathematical equations implemented 

using MATLAB. 

Overall, the results confirm the power of theoretical models in predicting the structural 

evolution of isotopes and provide a deeper understanding of the relationship between nuclear 

distortion, shape, and stability in the intermediate mass region. 

 

5. Conclusion  

Nuclear structure analyses of molybdenum isotopes in the mass range from 86 to 100 have 

revealed regular trends in the fundamental nuclear parameters. Thus, the decrease in 

distortion coefficients and the probability of electrical transition with increasing mass number 

A indicates a systematic structural evolution among these isotopes. These results are in good 

agreement with theoretical predictions and experimental data, demonstrating the reliability of 

the computational methods used. 

The results also highlight the particular stability of isotopes close to magic numbers, such as 

mass number 50, where distortion decreases significantly. Furthermore, the correlation 

between electric quadrupole moments, charge radii, and mass numbers supports our 

understanding of the dynamics of nuclear shape. 

Overall, this study provides a clear insight into the behavior of molybdenum isotopes and 

contributes to a deeper understanding of nuclear distortion, transition probabilities, and 

charge distribution. The agreement between the calculated and experimental values enhances 

the credibility of the models applied in this research. 
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