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Abstract    

It is known that algorithms are of great importance in various fields of 

mathematics, as they are used in finding fixed points, zeroes of metric 

projection points, Non-Smooth, Differential Equations, Optimization 

theory, and Variational Inequality problem. Accordingly, many 

researchers have focused on investigating and enhancing algorithms in 

order to utilize their potential amidst the rapid technological developments 

occurring in our modern world. To ensure success, effectiveness, speed, 

and superiority of iterative methods over other approximate methods 

depend on two important factors: The first is the number of iterations, and 

the second is time.  In this paper, we introduce a new iterative method that 

has been generalized to a number of algorithms, which is considered a 

generalization of Ishikawa's iteration algorithm. We use a family of hybrid 

multivalued mappings, nonexpansive single-valued mappings, 

and       - weak contraction mapping where φ is a comparison function 

in Hilbert space. The concept of       -weak contraction mapping is a 

generalization of the concept      -weak contraction mapping, and we 

obtain several convergence theorems under suitable conditions.                                                                                                                             

Keywords: Hybrid multivalued mapping,       -weak contraction, 

condition  Ă  and projection operator  

  

1. Introduction 

Let Ĕ be a nonempty closed and convex subset of real Hilbert space Ȟ with norm       and   

inner product 〈   〉. Let ℬ𝒞  Ĕ  denote the family of all nonempty closed bounded subset of Ĕ, 

while Ǩ Ĕ  denote the family of all nonempty compact subset of  Ĕ . An element ᵱ  Ĕ  is called 

fixed point (    of mapping Ť  Ĕ  Ĕ if ᵱ  ᵱŤ  in multivalued mapping Ԏ  Ĕ  ℬ𝒞  Ĕ  , ᵱ 

is a      if ᵱ  ᵱԎ .   A point ᵱ is called a common fixed point of  Ť and Ԏ if ᵱ  Ť ᵱ  ᵱԎ    and 

denoted by   𝒞      Many authors have studied extensively the    theorems and the existence 

of    of nonexpansive mappings (N-mappings), and they presented many concepts and 

theorems 
1- 4

, and other studies have examined the convergence of different iterative methods, as 

noted in 
5-12

, also they studies  the equivalence of Some Iterations
13

, and introduced generalization of 

the Mann's algorithm
14

.                                                                                                                                           

Defined a class of nonlinear mapping, which is called hybrid as follows:                 

  նԎ  ᵶԎ       ն  ᵶ    〈ն  նԎ  ᵶ  ᵶԎ 〉        ն ᵶ  Ĕ  

 that a mapping Ť  Ĕ  Ȟ is hybrid if:                                                                                             

    նԎ  ᵶԎ       ն  ᵶ      ն  ᵶԎ       նԎ  ᵶ           ն ᵶ  Ĕ 
15

 

 Stated and introduced  a new  concept  of  mapping  Ԏ  Ĕ  ℬ𝒞  Ĕ    in   Hilbert   space   by 

Hausdorff metric such that  Ԏ  is called hybrid if satisfies the following condition:                                                                                                                                    

   նԎ  ᵶԎ      ն  ᵶ      ն ᵶԎ      ᵶ նԎ      ն ᵶ  Ĕ,  
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and if   Ԏ  nonempty, then Ԏ is a quasi-nonexpansive
16

.  The  approximating    of      -

weak  contractions        -W- contr)  it  was  of   attract  to some  researchers
17

 and  many 

scholars  and researchers have made  generalizations in different directions of contractive 

mappings;see
 18-20    

         
 The modification of Ishikawa's algorithm for two hybrid multivalued mapping in Ȟ: 

{
 
 

 
  ն

 
 Ĕ                                         

ᵶ
 

   ն 
       Ԏ

 
ն

                            

ն
   

   ն 
       Ԏ

 
ᵶ
 
              

  

and proved the sequence  ն
 
  weak converges (W- converges) to a 𝒞   of  {Ԏ

 
 Ԏ

 
}  see

21
         

 The hybrid algorithm was studied through
22

. After that, the focus was on convergence of the 

modified Picard-s hybrid iterative scheme, a Picard-S hybrid algorithm and introduced another 

hybrid scheme see
23-26

. 

In this work, we construct a new iterative scheme, that modifies the above iterative algorithm by 

using two hybrid multivalued mappings, two N-mappings and two       -weak contraction 

       -W- contr) mappings in real Hilbert space.   

 

2. Preliminaries: 

We recall the following: 

2.1. Definition: A mapping  Ԏ  Ĕ  ℬ𝒞  Ĕ   is said to be a hybrid multivalued mapping (HM-

mapping) if satisfies the following condition: 

   նԎ  ᵶԎ      ն  ᵶ      ն ᵶԎ      ᵶ նԎ          ն ᵶ  Ĕ  

and if   Ԏ   , then Ԏ is a quasi-nonexpansive
16

. 

2.2. Definition: Let  Ĕ    be a metric space and  Ԏ Ĕ  Ĕ  any operator. Then,  Ԏ  is called 

     -weak contraction if there exists a some      and a 𝒞    such that: 

 ( նԎ  ᵶԎ )     (ն ᵶ)      ᵶ նԎ      ն ᵶ  Ĕ 
17

 

2.3. Definition: Let Ԏ Ĕ  Ĕ self-mapping then  Ԏ  is called N- mapping if:  

  նԎ  ᵶԎ      ն  ᵶ    for all ն ᵶ  Ĕ 
27

. 

2.4.
 
Definition: A map         is called a comparison function (𝒞 ) if it satisfies: 

(i)                  for all          

(ii) the sequence         
  converges to zero,      such that    is a stand for the     iterate 

of   see
28 . 

2.5. Definition: Let   Ĕ     be a metric space and  Ԏ Ĕ  Ĕ any operator. Then, Ԏ  is called  

      -weak contraction if there exists any a 𝒞    such that: 

 ( նԎ  ᵶԎ )     (ն ᵶ)           ᵶ նԎ     ᵶ ᵶԎ        ն ᵶ  Ĕ 

And if        ᵶ նԎ     ᵶ ᵶԎ      ᵶ նԎ   then     

if        ᵶ նԎ     ᵶ ᵶԎ      ᵶ ᵶԎ   then       

2.6. Remark: Clearly, the       -weak contraction to be      -weak contraction if: 

       ᵶ նԎ     ᵶ ᵶԎ      ᵶ նԎ    

2.7.
 
Definition: A mapping Ԏ Ĕ  𝒞ℬ Ĕ  is said to satisfy Condition  Ă  if:              

   ն  ᵱ    (ն ᵱԎ )        ն  Ȟ ᵱ   (Ԏ) see
29

 

2.8. Lemma: Let Ԏ  Ĕ  Ǩ Ĕ  be an HM-mapping and  ն
 
  be a sequence in Ĕ such that 

ն
 

   and         ն
 

 ᵶ
 
     for some ᵶ

 
 Ԏն

 
. Then   Ԏ  

16
 

2.9. Lemma: Let  Ԏ  Ĕ  Ǩ Ĕ  be an HM-mapping such that   Ԏ  is nonempty  then    Ԏ  is 

closed
16

. 
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2.10. Lemma: Let  Ԏ  Ĕ  Ǩ Ĕ  be an HM-mapping such that   Ԏ  is nonempty. If Ԏ satisfies 

Condition  Ă   then   Ԏ  is convex
16

. 

2.11. Lemma: For all ն       ᵶ  in  Ȟ and         the following is hold: 

      ն  ᵶ      ն      ᵶ     〈ն ᵶ〉       

        ն       ᵶ       ն           ᵶ            ն  ᵶ     

      If  ն
 
  is a sequence in Ȟ such that ն

 
 ն   then   

           ն
 

 ᵶ                 ն
 

 ն      ն  ᵶ    . 
30

 

2.12. Lemma: Let  Ĕ  Ȟ  Ĕ be the metric projection from Ȟ onto Ĕ then: 

  ᵶ   Ĕ ն  
    ն   Ĕ ն  

   |ն  ᵶ|        ն  Ȟ and ᵶ  Ĕ 31
 

2.13. Lemma : Let  Ĕ  be   a nonempty   closed   and   convex   subset   of    Ȟ, then   the   set  

Ǩ   š  Ĕ    ᵶ  š      ն  š     〈ǎ š〉  ř   is  closed  and convex  for  each  ն ᵶ  Ȟ and 

ř    see
32

 

2.14. Lemma: Let Ԏ Ȟ  Ȟ an N-mapping, then    Ԏ  is either empty or closed and convex
33

. 
Also from fact

 34
, if an N-mapping  Ԏ Ȟ  Ȟ  has at least one    ,   Ԏ  Ȟ is closed and is 

closed and convex and expressed as:                                                                                         

  Ԏ  ⋂ ᵶ  Ȟ  〈ն  նԎ   ᵶ〉     ն      նԎ      

ն Ȟ

 

 
3. Results and Discussion  

Studied Approximating    of      -weak contractions it has attracted the interest of some 

researchers
18

 , while introduced
24

 the modification for two hybrid multivalued mapping in  Ȟ . 

Also
11 

Common  fixed  points  for  hybrid  pair  of    generalized  non-expensive   mappings   by     a 

three-step   iterative  scheme . In the other hand
34

 studied Strong convergence   theorems   for  

nonexpansive    mappings . In this study, a convergence theorems-W to 𝒞   by multivalued maps 

are proved by using new algorithms . 

3.1. Lemma: LetԎ Ȟ  Ȟ be       -W-contr- mapping where φ is a 𝒞 then   Ԏ  is 

nonempty.  

Proof: To prove that   Ԏ    let ն
 

 Ȟ , a sequence  ն
 
    
  defined by ն

   
 Ԏն

 
. Since Ԏ 

is a       -W- contr, there exists a 𝒞    and some L ≥ 0 where                                                   

        ᵶ նԎ     ᵶ ᵶԎ      ᵶ նԎ    and        where  

        ᵶ նԎ     ᵶ ᵶԎ      ᵶ ᵶԎ   such that:                                                                                  

  նԎ  ᵶԎ       ն ᵶ            ᵶ նԎ     ᵶ ᵶԎ   ,    ն ᵶ  Ȟ                                      (1)  

 Take ն   ն
   

     ն
 
 in (1). We obtain  

  ն
 
 ն

   
    (ն

   
 ն

 
)                                                                                           (2) 

But    is not decreasing and from Equation 2, we obtain, 

  ն
 
 ն

   
      ն

 
 ն

 
                  

implies that   ն
 
    
   is a Cauchy sequence and by completely of Ȟ, we have ն

 
 ᵱ, we shall 

prove that  ᵱ   (Ԏ). Indeed 

 (ᵱ  ᵱԎ )    (ᵱ ն
   

)    (ն
   

 ᵱԎ )  

                     ն
   

 ᵱ      Ԏն
 
 ᵱԎ        

By Equation 1, we obtain  

   Ԏն
 
 ᵱԎ       ն

 
 ᵱ            ᵱ Ԏն

 
    ᵱ ᵱԎ         
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 Therefore, 

 (ᵱ ᵱԎ )   (ն
   

 ᵱ)      ն
 
 ᵱ          (ն

   
 ᵱ)    ᵱ ᵱԎ                                           (3)  

 Case 1:     ,  (ն
   

 ᵱ)   (ᵱ ᵱԎ )-   (ն
   

 ᵱ)          

  (ᵱ ᵱԎ )        (ն
   

 ᵱ)     (ն
 
 ᵱ)                                                                              (4)  

Now suppose that     in (4), we obtain 

 (ᵱ ᵱԎ )    .Therefore  ᵱ   (Ԏ) 

Case 2:     ,  (ն
   

 ᵱ)   (ᵱ ᵱԎ )-   (ᵱ ᵱԎ )         

       ᵱ ᵱԎ     ն
   

 ᵱ      ն
 
 ᵱ                                                                                  (5)  

As      in Equation 5, we obtain  (ᵱ ᵱԎ )   . Therefore,  ᵱ   (Ԏ) 

3.2.Theorem: Let Ԏ
 
 Ԏ

 
 Ĕ  Ǩ Ĕ  be HM-mapping  ᵮ

 
 ᵮ

 
 Ȟ  Ȟ  are an N-mapping, 

     Ǥ
 
 Ǥ

 
 Ȟ  Ȟ  are        -W- contr    mapping   where  φ  is  a 𝒞   define   by φ(ӽ)  

ӽδ        such that  Γ   ⋂   Ԏ
 

 
   

     ⋂   ᵮ
 

 
   

     ⋂   Ǥ
 

 
   

     . Let  ն
 
  be a 

generated by:                                                                                                                       

{
 
 

 
 ն

 
 Ĕ                                                                   

 ᵶ
 

 ᵵ
 
 ᵬ

 
Ǥ

 
ն

 
    ᵬ

 
 Ԏ

 
ն

 
     ᵵ

 
 ᵮ

 
ն

        

ն
   

 ᵭ
 
*ɉ

 
ᵮ
 
ն

 
 (  ɉ

 
)Ǥ

 
ն

 
+  (  ᵭ

 
)Ԏ

 
ᵶ
 

                                                              (6)  

For all     where {ᵵ
 
} {ᵬ

 
} {ᵭ

 
} and {ɉ

 
}       . Assume that: 

(i)  ∑    
   Ǥ

 
ն

 
 ն

 
      ∑    

   Ǥ
 
ն

 
 ն

 
         

(ii)       ᵵ
 

         ᵭ
 

    

If Ԏ
 
 and Ԏ

 
 satisfy Condition (Ă)  then ,ն

 
- converges-W to 𝒞   of Ԏ

 
 and Ԏ

 
.                      

Proof: Let ᵱ  Γ   we have                                                                                         

  ն
   

 ᵱ      ᵭ
 
*ɉ

 
ᵮ
 
ն

 
 (  ɉ

 
)Ǥ

 
ն

 
+  (  ᵭ

 
)ř

 
 ᵱ     

                          ᵭ
 
  ɉ

 
ᵮ
 
ն

 
 (  ɉ

 
)Ǥ

 
ն

 
 ᵱ    (  ᵭ

 
)  ř

 
 ᵱ                                    (7) 

                       ᵭ
 
 ɉ

 
  ᵮ

 
ն

 
 ᵱ    (  ɉ

 
)  Ǥ

 
ն

 
 ᵱ    (  ᵭ

 
)  ř

 
 ᵱ                                        

 ᵭ
 
 ɉ

 
  ᵮ

 
ն

 
 ᵮ

 
ᵱ    (  ɉ

 
)  Ǥ

 
ն

 
 Ǥ

 
ᵱ     (  ᵭ

 
)  ř

 
 Ԏ

 
ᵱ    

 ᵭ
 
 ɉ

 
  ն

 
 ᵱ    (  ɉ

 
)    ն

 
 ᵱ             ն

 
 Ǥ

 
ᵱ      ᵱ  Ǥ

 
ᵱ       

     (  ᵭ
 
)  Ԏ

 
ᵶ
 
 Ԏ

 
ᵱ    

 ᵭ
 
 ɉ

 
  ն

 
 ᵱ    (  ɉ

 
)   ն

 
 ᵱ     (  ᵭ

 
)  ᵶ

 
 ᵱ     

 ᵭ
 
  ն

 
 ᵱ    (  ᵭ

 
)  ᵶ

 
 ᵱ     

 And                                                                                                                                          

  ᵶ
 

 ᵱ      ᵵ
 
 ᵬ

 
Ǥ

 
ն

 
    ᵬ

 
 š

 
     ᵵ

 
 ᵮ

 
ն

 
 ᵱ     

 ᵵ
 
  ᵬ

 
Ǥ

 
ն

 
 (  ᵬ

 
)š

 
 ᵱ    (  ᵵ

 
)  ᵮ

 
ն

 
 ᵱ                            

     ᵵ
 
(  ᵵ

 
)  ᵬ

 
Ǥ

 
ն

 
 (  ᵬ

 
)š

 
 ᵮ

 
ն

 
      

 ᵵ
 
 ᵬ

 
  Ǥ

 
ն

 
 Ǥ

 
ᵱ    (  ᵬ

 
)  š

 
 ᵱ     (  ᵵ

 
)  ᵮ

 
ն

 
 ᵮ

 
ᵱ     

     ᵵ
 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն

 
                                                                          (8) 

 ᵵ
 
 ᵬ

 
(   ն

 
 ᵱ             ն

 
 Ǥ

 
ᵱ      ᵱ  Ǥ

 
ᵱ    )     ᵬ

 
   š

 
 Ԏ

 
ᵱ      

     (  ᵵ
 
)  ն

 
 ᵱ    ᵵ

 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն
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 ᵵ
 
 ᵬ

 
(   ն

 
 ᵱ       ᵱ  Ǥ

 
ᵱ   )     ᵬ

 
   Ԏ

 
ն

 
 Ԏ

 
ᵱ      

     (  ᵵ
 
)  ն

 
 ᵱ    ᵵ

 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն

 
      

   ն
 
 ᵱ    ᵵ

 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն

 
       

From Equations 7 and 8, we obtain   

  ն
   

 ᵱ    ᵭ
 
  ն

 
 ᵱ       ᵭ

 
   ն

 
 ᵱ                                                                    (9)  

                                  ᵭ
 
 ᵵ

 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն

 
       

                            ն
 

 ᵱ       ᵭ
 
 ᵵ

 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն

 
                   

We have,    ն
   

 ᵱ      ն
 

 ᵱ                                            

Then, ,ն
 
- is bounded and decreasing, also {ᵶ

 
}. Therefore,         ն

 
 ᵱ   exists, thus there 

exists  š
  

   of {š
 
} such that š

  
     

To prove   is 𝒞   of  Ԏ
 
 and Ԏ

 
, by Lemma 1.10(ii), we get 

  ն
   

 ᵱ      ᵭ
 
*ɉ

 
ᵮ
 
ն

 
 (  ɉ

 
)Ǥ

 
ն

 
+  (  ᵭ

 
)ř

 
 ᵱ     

 ᵭ
 
   ɉ

 
ᵮ
 
ն

 
 (  ɉ

 
)Ǥ

 
ն

 
 ᵱ    (  ᵭ

 
)  ř

 
 ᵱ      

    ᵭ
 
(  ᵭ

 
)   ɉ

 
ᵮ
 
ն

 
 (  ɉ

 
)Ǥ

 
ն

 
 ř

 
                                             

  

 ᵭ
 
  ɉ

 
  ᵮ

 
ն

 
 ᵱ    (  ɉ

 
)  Ǥ

 
ն

 
 ᵱ     (  ᵭ

 
)  ř

 
 Ԏ

 
ᵱ     

    ᵭ
 
(  ᵭ

 
)  ɉ

 
   ᵮ

 
ն

 
 Ǥ

 
ն

 
      Ǥ

 
ն

 
 ř

 
       

 ᵭ
 
  ɉ

 
  ᵮ

 
ն

 
 ᵮ

 
ᵱ    (  ɉ

 
)  Ǥ

 
ն

 
 Ǥ

 
ᵱ     (  ᵭ

 
)  Ԏ

 
ᵶ
 
 Ԏ

 
ᵱ     

    ᵭ
 
(  ᵭ

 
)  ɉ

 
   ᵮ

 
ն

 
 Ǥ

 
ն

 
      Ǥ

 
ն

 
 ř

 
                                                                 (10)  

 ᵭ
 
  ն

 
 ᵱ    (  ᵭ

 
)  ᵶ

 
 ᵱ    ᵭ

 
(  ᵭ

 
)  ɉ

 
   ᵮ

 
ն

 
 Ǥ

 
ն

 
      Ǥ

 
ն

 
 ř

 
       

From Equations 8 and 10 we obtain  

   ն
   

 ᵱ       ն
 

 ᵱ    (  ᵭ
 
)ᵵ

 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն

 
       

                                 ᵭ
 
(  ᵭ

 
)  ɉ

 
   ᵮ

 
ն

 
 Ǥ

 
ն

 
      Ǥ

 
ն

 
 ř

 
       

Hence,  

(  ᵭ
 
)ᵵ

 
(  ᵵ

 
) ᵬ

 
  Ǥ

 
ն

 
 š

 
      š

 
 ᵮ

 
ն

 
      

 ᵭ
 
(  ᵭ

 
)  ɉ

 
   ᵮ

 
ն

 
 Ǥ

 
ն

 
      Ǥ

 
ն

 
 ř

 
       ն

 
 ᵱ      ն

   
 ᵱ     

Therefore,           Ǥ
 
ն

 
 š

 
           š

 
 ᵮ

 
ն

 
          

             ᵮ
 
ն

 
 Ǥ

 
ն

 
            Ǥ

 
ն

 
 ř

 
                                                         (11)  

Therefore,   ն
 

 š
 
     ն

 
 Ǥ

 
ն

 
     Ǥ

 
ն

 
 š

 
   . Then   ն

 
 š

 
      

Also,    ᵶ
 
 ն

 
     ᵵ

 
 ᵬ

 
Ǥ

 
ն

 
    ᵬ

 
 š

 
     ᵵ

 
 ᵮ

 
ն

 
 ն

 
    

 ᵵ
 
 ᵬ

 
  Ǥ

 
ն

 
 ն

 
      ᵬ

 
   š

 
 ն

 
    (  ᵵ

 
)   ᵮ

 
ն

 
 š

 
     š

 
 ն

 
     

Then   ᵶ
 

 ն
 
     

Also, 

  ᵶ
 

 ř
 
     ᵶ

 
 ն

 
     ն

 
 Ǥ

 
ն

 
     Ǥ

 
ն

 
 ř

 
      

Then   ᵶ
 

 ř
 
     

Now, because  the  sequence  ն
 
  is a bounded, there exists subsequence  ն

  
  of  ն

 
  such  that 

ն
  

     for   some     Ĕ , by  Lemma 1.7, we  have    Ԏ
 
  . But     ն

 
 š

 
     then 

  ն
  

 š
  

     (i.e š
  

  )  hence    Ԏ
 
ն

 
. Again, by Lemma 1.7, we can show that 
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  Ԏ
 
  but   ᵶ

 
 ն

 
     then   ᵶ

  
 ն

  
     (i.e ᵶ

  
  ) hence   Ԏ

 
ᵶ
 
. 

Therefore         Ԏ
 
    Ԏ

 
  

 

4. Converges Strongly to Common Fixed Point 

4.1.Theorem: Let Ԏ
 
 Ԏ

 
 Ĕ  Ǩ(Ĕ) be an HM-mapping, ᵮ

 
 ᵮ

 
 Ȟ  Ȟ are a N-mapping, 

and    Ǥ
 
 Ǥ

 
 Ȟ  Ȟ are       -W- contr mapping where φ is a 𝒞  defined by  φ(ӽ)  ӽδ    

      such that Γ   ⋂   Ԏ
 

 
   

     ⋂   ᵮ
 

 
   

     ⋂   Ǥ
 

 
   

     .  Let  ն
 
  be generated 

by: 

{
 
 
 

 
 
 ն

 
 Ĕ  Ĕ

 
 Ĕ                                                             

ᵶ
 

 ᵵ
 
 ᵬ

 
Ǥ

 
ն

 
    ᵬ

 
 Ԏ

 
ն

 
     ᵵ

 
 ᵮ

 
ն

 

 ƴ
 

 ᵭ
 
*ɉ

 
ᵮ
 
ն

 
 (  ɉ

 
)Ǥ

 
ն

 
+  (  ᵭ

 
)Ԏ

 
ᵶ
 

Ĕ
   

  ᵶ  Ĕ
 
   ƴ

 
 ᵶ     ն

 
 ᵶ                   

ն
   

  Ĕ   
ն

 
                                                

                                                                (12)  

For  all       where  {ᵵ
 
}   {ᵬ

 
}   {ᵭ

 
} and  {ɉ

 
}       . Assume that 

(i)  ∑    
   Ǥ

 
ն

 
 ն

 
      ∑    

   Ǥ
 
ն

 
 ն

 
       

(ii)       ᵵ
 

         ᵭ
 

   

If Ԏ
 
 and Ԏ

 
 satisfy Condition (Ă)  then  

 Ĕ
 
 is an nonempty closed convex  

    Ĕ
 
 for each    . 

 The sequence converges-S to 𝒞    of  Ԏ
 
 and Ԏ

 
   

        ||ն
 

 š
 
||         ||ᵶ

 
 ř

 
||     

      ն 
 

Proof: Following the same proof method above, we get what is required 

4.2. Theorem: Let Ԏ
 
 Ԏ

 
 Ĕ  Ǩ Ĕ  be an HM-mapping and  ᵮ

 
 ᵮ

 
 Ȟ  Ȟ  are an N-

mapping, Ǥ
 
 Ǥ

 
 Ȟ  Ȟ are      -W- contr mapping where φ is a 𝒞  defined by φ(ӽ)  

ӽδ         such that Γ   ⋂   Ԏ
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 For all     where  {ᵵ
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 satisfy Condition  Ă  then  
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 Ĕ
 
and Ň

 
 are nonempty closed and convex 

    Ĕ
 

 Ň
 
 for each      

 The sequence converges-S to 𝒞   of  Ԏ
 
 and Ԏ

 
   

       ||ն
 

 š
 
||          ||ᵶ

 
 ř

 
||     

      ն 
 

Proof: Following the same proof method above, we get what is required 

 

5. Conclusion  

In this  study, we  introduced  the  concept  of        -weak  contraction  mapping  which is a 

generalization  of  the  concept      -weak contraction mapping.  New iterative techniques in Ȟ  

are introduced, convergence-S and convergence-W theorems to 𝒞   via HM mapping, 

nonexpansive single-valued mappings, and       -weak contr mappings are proved. 
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