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Abstract

It is known that algorithms are of great importance in various fields of
mathematics, as they are used in finding fixed points, zeroes of metric
projection points, Non-Smooth, Differential Equations, Optimization
theory, and Variational Inequality problem. Accordingly, many
researchers have focused on investigating and enhancing algorithms in
order to utilize their potential amidst the rapid technological developments
occurring in our modern world. To ensure success, effectiveness, speed,
and superiority of iterative methods over other approximate methods
depend on two important factors: The first is the number of iterations, and
the second is time. In this paper, we introduce a new iterative method that
has been generalized to a number of algorithms, which is considered a
generalization of Ishikawa's iteration algorithm. We use a family of hybrid
multivalued  mappings, nonexpansive  single-valued  mappings,
and (o, L)*- weak contraction mapping where ¢ is a comparison function
in Hilbert space. The concept of (¢, L)"-weak contraction mapping is a

generalization of the concept (¢, L)-weak contraction mapping, and we
obtain several convergence theorems under suitable conditions.
Keywords: Hybrid multivalued mapping, (@, L)*-weak contraction,
condition (A) and projection operator
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1. Introduction

Let E be a nonempty closed and convex subset of real Hilbert space H with norm ||.|| and
inner product {.,.). Let CB(E) denote the family of all nonempty closed bounded subset of E,
while K(E) denote the family of all nonempty compact subset of E . An element p € E, is called
fixed point (FP) of mapping T : E — E if p = pT, in multivalued mapping G : E — CB(E) , p
isa FP ifp € Tp.. A pointp is called a common fixed point of Tand Gifp=Tp € Tp and
denoted by (CF®P). Many authors have studied extensively the FP theorems and the existence
of FP of nonexpansive mappings (N-mappings), and they presented many concepts and
theorems ¥ #, and other studies have examined the convergence of different iterative methods, as
noted in >*?, also they studies the equivalence of Some Iterations™®, and introduced generalization of
the Mann's algorithm™*.
Defined a class of nonlinear mapping, which is called hybrid as follows:
[Tt —Tz[|? < ||lu—2||> +(u—T,z—Tz), Viuz€E
that a mapping T : E — H is hybrid if:
3|| G — Tz||? < ||u—2||% + ||u— Tz||> + ||Gu—z2||?), VizeE™®
Stated and introduced a new concept of mapping T:E — CGB(E) in Hilbert space by
Hausdorff metric such that (G) is called hybrid if satisfies the following condition:
3H(Tl, T2)? < ||u—2||? + d(1, T=)? + d(z, TW)?, Vi, z € E,
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and if F(T) nonempty, then T is a quasi-nonexpansive’®. The approximating FPof (¢, L)-
weak contractions ((¢,L)-W- contr) it was of attract to some researchers’’ and many
scholars and researchers have made generalizations in different directions of contractive
mappings;see 52

The modification of Ishikawa's algorithm for two hybrid multivalued mapping in H:
(

| 4, € E chosen arbitrarily
4 S cnhn +(1-— cn)"l}l'un
W= A+ (1 - ATz,

and proved the sequence {‘un} weak converges (W- converges) to a CFP of {1}1, TJZ}, see?!

The hybrid algorithm was studied through?. After that, the focus was on convergence of the
modified Picard-s hybrid iterative scheme, a Picard-S hybrid algorithm and introduced another
hybrid scheme see®*°

In this work, we construct a new iterative scheme, that modifies the above iterative algorithm by
using two hybrid multivalued mappings, two N-mappings and two (¢, L)*-weak contraction
((@, L)*-W- contr) mappings in real Hilbert space.

2. Preliminaries:
We recall the following:

2.1. Definition: A mapping T : E — CB(E) is said to be a hybrid multivalued mapping (HM-
mapping) if satisfies the following condition:

3H(Tl, T2)? < ||u—2||? + d(, T2)? + d(z, Tw)?, Vi,z€ E
and if F(T) # @, then T is a quasi-nonexpansive™®.

2.2. Definition: Let (E,d) be a metric space and T:E — E any operator. Then, T is called
(¢, L)-weak contraction if there exists a some L = 0 and a CF ¢ such that:

d(Tl, T2) < @d(u,2) + Ld(z Tu) ViLbze EY

2.3. Definition: Let T: E — E self-mapping then T is called N- mapping if:

|5 — Tz|| < ||u—z2|| foralli,ze EZ.

2.4. Definition: A map ¢: R — R™ is called a comparison function (CF) if it satisfies:

()ry <r, = or; < or, forallr,r, € R*

(i) the sequence {¢@™r}%, converges to zero, Vr € R*such that ¢ is a stand for the n* iterate
of ¢ see®® .

2.5. Definition: Let (E,d) be a metric space and T:E — E any operator. Then, T is called
(o, L)*-weak contraction if there exists any a CF ¢ such that:

d(’l}h, TIZ) <o d(h, Z) + L min{d(z Tu),d(z Tz)} Vi, zE€ E

And if min{d(z, Tb), d(z, T2)} = d(z, Bu) then L = 0

if min{d(z Tu),d(z Tz)} =d(z Tz)then0 <L <1

2.6. Remark: Clearly, the (¢, L)*-weak contraction to be (¢, L)-weak contraction if:

min{d(z Tu),d(z Tz)} = d(z Gu)

2.7. Definition: A mapping T: E — CB(E) is said to satisfy Condition (A) if:

llu—p|| =d(, Tp) VueH, p€eF(T)see”

2.8. Lemma: Let G:E — K(E) be an HM-mapping and {u_} be a sequence in E such that
b= uandlimy e ||[u_—#|| = 0 forsome z, € Gu_. Thenu € Tu *°

2.9. Lemma: Let T: E — K(E) be an HM-mapping such that F(T) is nonempty, then F(T) is
closed™.
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2.10. Lemma: Let T: E — K(E) be an HM-mapping such that F(T) is nonempty. If T satisfies
Condition (A), then F () is convex™.

2.11. Lemma: Forall  and z in Hand o € [0,1] the following is hold:

@ [lu—=l1* = [|ul]* + |l2l|* — 2(u,2)

(iD]lat— (1 —)z||* = af[u]|* + (1 — D)]]2]]* — (1l — D)||u—2]|?

(iii) If {u_} is a sequence in H such thatti_ — 1, then

limp e sUp || —#||* = limy_ sup(||_ — ][ + || — 2[[?). *

2.12. Lemma: Let Pz: H — E be the metric projection from H onto E then:

llz— Py ]|+ ||u—Pzu||?<||u—2||>, vieHandze E*

2.13. Lemma : Let E be anonempty closed and convex subset of H,then the set
K={eE:||z—3||><|lu—3||>+ (48 +1} is closed and convex for each 1,z € Hand
f € R see®

2.14. Lemma: Let T: H — H an N-mapping, then F () is either empty or closed and convex®,
Also from fact®, if an N-mapping T:H — H has at least one FP, F(T) c His closed and is
closed and convex and expressed as:

F(B) = [ | € i 0 = Ba, ) < [[ul]? = 5017

uel

3. Results and Discussion

Studied Approximating FP of (¢, L)-weak contractions it has attracted the interest of some
researchers'® | while introduced® the modification for two hybrid multivalued mapping in H .
Also™ Common  fixed points for hybrid pair of generalized non-expensive mappings by a
three-step  iterative scheme . In the other hand®* studied Strong convergence theorems  for
nonexpansive mappings . In this study, a convergence theorems-W to CFP by multivalued maps
are proved by using new algorithms .
3.1. Lemma: LetG:H — H be (¢,L)*-W-contr- mapping where ¢is a CFthen F(T) is
nonempty.
Proof: To prove that F(G) # @,lett € H , a sequence {t_}nso definedbyt = =Gl .Since T
is a (o L)*-W- contr, there exists a CF ¢ and some L > 0 where
min{ d(z, Gu),d(z, Tz)} = d(z Gu),and 0 < L < 1 where

min{ d(z, Gu), d(z, Tz)} = d(z, Tz) such that:

d(Bl, Bz) < @ d(1t, 2) + L min{ d(z, T),d(z Tz)}, v,z € H (1)
Takeu:=u__, y:=1_in(1). We obtain
d(u,u_ )< qd (‘un_l,un) Vn=1,2,.. )

But « is not decreasing and from Equation 2, we obtain,
d(u b ) <@ d(,u )
implies that {hn};‘;;o is a Cauchy sequence and by completely of H, we have u_ —p, we shall
prove that p € F(T). Indeed
d(p,Tp) < d(pu,, )+ d(u,,, Tp)
= d(u_,,p) + d(Tu_, Tp)
By Equation 1, we obtain
d(Gu_, Tp) < ¢ d(u ,p) + L min{ d(p, Gu_),d(p, Tp)}
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Therefore,

d(p, Tp) <d (hn+1,p) +¢@d(u_,p) + L min{d (‘Lln+1,p) ,d(p, Tp)} (3)
Case 1: min{d(t_,_,p),d(p,Tp)} =d(u , .p) wehave

d(p, Tp) < (1 +1)d (1, ,p) +¢d(u,p) (4)

Now suppose that n — oo in (4), we obtain
d(p, Tp) = 0 .Therefore p € F(T)

Case 2: min { d (hn+1,p) ,d(p, ij)} = d(p, Tp), we have
(1-L)d(p, Tp) < d(, ,,p) +@d(u,p) ()
As n - oo in Equation 5, we obtain d(p, Tp) = 0. Therefore, p € F(T)
3.2.Theorem: LetT,,T,:E — K(E) be HM-mapping £,£, : H— H are an N-mapping,
and G,,G, : H— H are (¢,L)"-W-contr mapping where ¢ is aCF define by ¢(x) =
8%,0 <8 < 1 such that I':= (N, F(T)) N (NE, FE) N (NE, F(G)) # 9. Let {u ) be a
generated by:
fhl € E chosen arbitrary.
J z € {n[’bnGlhn +(1- bn)Trlhn] +(1- tn)flhn (6)
'Ulm € d, [i, 50, +(1-j,)G,u |+ (1-d )T,z
Foralln > 1 where {¢t_},{b_},{¢ }and {; } c (0,1]. Assume that:
() XntollGu =t || <oo, XitollGu —1 || <o
(i) limp o t <1, lim,_, ¢ <1
If T, and T, satisfy Condition (A), then {‘un} converges-W to CFP of T, and G,
Proof: Letp € ', we have
I, = plI? =114, [i 60, + (1 =j,)G,0, | + (1 -4 )i, —pll?
< d |60+ (1-3j,)G,u_—pl|l* + (1 —da ), —pll® (7
<d, G150 —pll®> + (1 =3)IIG, b —pll* + (1 —d )IIF, —pll®

= dn[jnllfzhn - £2p||2 + (1 _jn)”Gzhn - G2p||2] + (1 - ‘itn)d(fn'rl}zp)2
< d, [, llu —pll* + (1 =3,)(@llt,_—pl|*> + Lmin{||[u_— G,pl|> |lp — G,pl|*})

+(1— @ )H(T,z_, T,p)*
< d, Gllu, —pll* + (1 —3,)8llu_—pl?]+ (1 —a,)llz, —pll®
=d,|lu_—pll*+ (1—d )z, —pll?
And
|1z, —plI?> = [l,,[6,G,u_+ (A —b)5 T+ (1 —¢)fu —p|l?
=4 [b,G, b+ (1=, )5 —pl|l*+(1—% )£ —pl|l>

—t (1 - )|Ib,G,u_+(1-1b )5 —£u |
<4, [b,11G,u_—G,p|> + (1 =b )18, —plI’]+ (1 —¢)IIf,u_—£p||?

—t,(1 = £,)[b,[1G, 1, — &, 1> + 115, — £, [17] ®
<+,[b, (¢llu, —pl? + Lmin{|[a_ — G,pl[% |lp — G,plI}) + (1 —b)d(,, T,p)?]

(1 =)Mo, —plI? —,(1 = )b, [IG 1 — 8,117 + (8, — £ [1?]
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<+,[b, (811t = plI? +Lllp — G,pl1?) + (1 — b, )H(T, 1, T,p)?]
+(1 =), = plI? =4, (1 =, )b, 11G b =8, [1* + 118, — £, 117]
= |lu —pllI> —%,(1 = )b, G, u_—5 |1*+ ][5, — £u_||]
From Equations 7 and 8, we obtain
o, —pl> <d |l —pl*+ (@ —d)|u_—p| 9)
—(1=d ), (1—¢ )b, 1IGu_—5 [1*+ 15, — £ ]
= |lu —pll* = (1 —d ) (1—¢ )b, G —5 |*+]5, —£u ||°]
We have, || —pl[? <|lu_—p||?
Then, {hn} is bounded and decreasing, also {z, }. Therefore, lim,_, ||u_— p|| exists, thus there
exists {3, } of {8 }suchthats, —u
To prove u is CFP of T, and T, by Lemma 1.10(ii), we get
e, = pII? = 114, [i,6u, + (1 -3,)G,u |+ (1 —a)k, —plI?
= d,lliy60, + (1 =4,)G, b, —pl? + (1= d )IIF, —pll?

—4, (1= )5 R, + (1-5,)G,u, — £ 117
< d, (3,160 —pll* + (1 =3 )IIG,u_—pll*]+ (1 - &, )d({,, T,p)?

—d,(1-a )il £ —G,u | +]|G,u_—F||]
< d, (3,160 —£p||* + (1 —jn)||G2hn — G,pl|*] + (1 — & )H(T,z_, T,p)*

—a,(1-a )i, 5b —G,u |[*+]IG,u_—F |I] (10)
=d |lo_—pll?+(1—a)llz, —plI> —d,(1 - )il £u -G, |2+ |G,b_—F, 7]
From Equations 8 and 10 we obtain
N, —pll? <o —pl2 = (1—d ), (1 =4 )b, 1G, b =5 |12+ 15, — £1_|I2]

—4,(1 = )l 50, = G,U, II? + 11G, T, —F,11°]

Hence,
(1= d, )6, (1 =)o, 1G, 1, = 8,11 + 115, — £, 11°]
+d (1—a ), 6b = G,u |12 +]1Gu —F 121 < |[u_—pl? |t —plI?
Therefore, limg_,c ||G1‘un =8 |l =limp_ |8, — f1hn||

= limpe [1£,0 = G, || =limy_q [|G,i_—F || =0 (11)
Therefore, [|u —3 || <|lu_—G b |[+[|Gu_—35 . Then |l -8 |[-0
Also, ||z, —t || = |t [b,G,u_+ (1 —-b)§ ]+ (1 —¢)fu —u ||
<4, [b,11Gt =t |1+ (1 =b I8, =t 111+ (1= )0, =811+ 115, =, 1]
Then ||z, — u||[-0
Also,
Iz, — 11 < 1z, — |l + 116 — G, || +]IG,b_—,||
Then ||z —f || -0
Now, because the sequence {u_} is a bounded, there exists subsequence {hnk} of {_} such that

‘unk —u for some u€E,by Lemmal.7, we have u€ T,u . But ||11n —3_|| - 0 then

|l

nyk

— §nk|| -0 (ie énk —u) hence ue T’lhn' Again, by Lemma 1.7, we can show that
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u€eT,u but ||z, —u |[[>0 then [z, —1u ||[-0 (ie z —u) hence u€T,z.
n Ny ng Ny 27n
Therefore, u € F(T,) N F(T,)

4. Converges Strongly to Common Fixed Point
4.1.Theorem: Let T, T,:E — K(E) be an HM-mapping, £,,£, : H — H are a N-mapping,
and G,,G,:H — H are (¢, L)"-W- contr mapping where ¢ is a CF defined by ¢(x) = 8x,0 <
§ <1 suchthatT = (N, F(T)) N (NL, FE)) N (N, F(G)) # @. Let {u _} be generated
by:
(u €, B =E
z €4 [0,Gu +(1—b),u]+(1—¢)Eu
Ly, ed [igu, +(1-5,)G,u |+ (1-d,)T,z, (12)
E o ={&€eE |y, -2l <|lu -z}
\ hn+1 = PEn+1h0 , Vn = 1
For all n>1 where {¢ } ,{b_} ,{d }and {j } c (0,1]. Assume that
() XnsollGu, —t || <oo, XiLell G, —1 || <o
(i) limy_, 0 t < 1,lim, dn <1
If T, and T, satisfy Condition (A), then
o En is an nonempty closed convex.
e TCE_ foreachn>1.
e The sequence converges-S to CFP of T, and T,

=0

= limy_ e ||2¢n - fnl

o limy o ||11n -5
o U= Prho

Proof: Following the same proof method above, we get what is required

4.2. Theorem: Let T, T,:E — K(E) be an HM-mapping and £,£, : H— H are an N-
mapping, G,,G,:H — H are ¢,L)"-W- contr mapping where ¢ is a CF defined by ¢(x) =
8%,0<8<1 such thatT :== (N, F(T)) N (N, FE)) N (N, F(G)) # B. Let {u } be
generated by:
(u, € E chosen arbitrarily

7, €4 [6,G,lL +(1—b)B,0 ]+ (1—#)Eu

¥, €4, 5,50, +(1-j,)G,b |+ (1-d )T,z
E,={eE|ly, -2 <|lu_—=l}

N, =(z€E:(u, —u,u —2) >0}
Khn+1 = PEnﬂNnh0 , Vn = 1

Foralln > 1where {¢ } ,{b_} .{d¢ }and {; }  (0,1]. Assume that
() ZntollGu, = || <oo, Xiloll G —T || <o
(i) limp ot < 1,limp 4 <1

If G, and G, satisfy Condition (A) then

(13)
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o Enand Nn are nonempty closed and convex
e TCE NN _foreachn> 1.
e The sequence converges-S to CFP of G, and G,

=0

o lim, ., “'un —5|| = limy, [z, — 1,
o u= PI-'u0
Proof: Following the same proof method above, we get what is required

5. Conclusion
In this study, we introduced the concept of (¢, L)*-weak contraction mapping which is a

generalization of the concept (¢, L)-weak contraction mapping. New iterative techniques in H
are introduced, convergence-S and convergence-W theorems to CFP via HM mapping,
nonexpansive single-valued mappings, and (¢, L)*-weak contr mappings are proved.
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