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Abstract

IDAL distribution is based on expanding the exponential Weibull
distribution by adding a IDAL distribution is based on expanding the
exponential Weibull distribution by adding a third parameter, which is a
shape parameter, to the exponential-Weibull distribution. This
modification was done in order to create models that are more flexible
and realistic. The IDAL distribution is characterized by three
parameters, which are the scale parameter and two shape parameters.
Estimating the reliability for a Noval distribution. The unknown
parameters of its distribution have been estimated which have the first
of these methods is the Maximum Likelihood Estimate (MLE) method,
followed by the Maximum Entropy Estimation (MEE) method. A
comparison of the outcomes and results of the applied methods has been
carried out through data analysis and computer simulation between the
estimating methods based on the applicable indicator mean square error
(MSE) to investigate which way is the most effective. Additionally, the
data that were observed have been displayed through the use of the
MATLAB software package.
Keywords: [IDAL Distribution, Estimation methods, Maximum

Likelihood, Maximum Entropy.

1. Introduction

Recently, the scientific and mathematical efforts of developing a new probability distribution
have been carried out to take benefit of these distributions in several mathematical applications
and different life fields. A new family of probability distributions has been introduced in several
kinds of literature by adding a new parameter to the basic and original distribution*™. Certain
methodologies for constructing new distributions apply classical lifetime distributions, such as
exponential, Rayleigh, and Weibull, by incorporating additional parameters to enhance the
flexibility of the proposed distribution® ® Several researchers have expanded the extent of the
Weibull distribution and introduced a mixture of distributions in a newer area of study that has
gained significant traction in statistical research articles, particularly in reliability analysis
applications”™. The distribution elucidates the methodology for combining Weibull distributions
using a mixing Weibull distribution and adding two parameters that denote the proportions of the
amalgamation of the two components of Weibull distributions that have been introduced in**°.
A novel distribution has been proposed by constructing a log-logistic distribution utilizing the
Weibull distribution as a technique for producing composite distributions*’. The updated model
used the ratio of two separate random variables as a novel lifespan mode that was presented in*®
.The mixture of Weibull distributions is a newer area of study that has gained significant traction
in statistical research articles, particularly in reliability analysis applications. This research
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elucidates the methodology for combining Weibull distributions using a mixing parameter and
the process of adding two Weibull distributions. which denotes the proportions of the
amalgamation of the two components of Weibull distributions®?. The combination of
distribution functions is regarded as a method for producing new distributions. They
investigated the derivation of a new distribution by constructing a log-logistic distribution from a
Weibull distribution®’,

In this article a new lifetime distribution called the IDAL distribution with three parameters has
been proposed to provide comparisons of performance. The estimation of the reliability function
for a new distribution has been carried out through data analysis and computer simulation
between two estimation methods, the maximum likelihood estimation method (MLE) and the
maximum entropy estimation (MEE) method, according to the applied indicator. and obtain the
best using mean squares error (MSE) and determine the best method.

2. Materials and Methods

In this section, present the principal functions of IDAL distribution after we have constructed
our new distribution by adding the shape parameter to the exponential Weibull distribution
named IDAL distribution and studied all its properties in the preview research. Therefore, we
will discuss the main function and summary of the properties of the new distribution as follows:
2.1. The probability density function (p.d.f.) of IDAL distribution

__1 —(Bx$+x%)
f(x,a,ﬁ,&)z(— + —Xa )e (@)
2.2. The cumulative dlstrlbutlon function (C.D.F.) of the IDAL Distribution
<Bx%+x%)
F(x,a,A,B)=1—¢e" (2)
2.3. The reliability function of the IDAL Distribution
_(Bx%+x%)
Rx;a,,B)=1—-F(x;a,Ap) =e , x>0 3)

2.4. The hazard rate function for IDAL distribution
B .11 2 —%—1

h(xa A, B) = L9 i q,B, 1) = £ T8 T (@)

SGradp) 1— e(BxH+xa)

2.5. Properties for IDAL Distribution

In this section, we present the mathematical properties of IDAL Distribution through Table 1.
Table 1. Mathematical properties of new IDAL Distribution (by researcher)

Term Definition = Formal

Moment origin E(x") Yo, C2F [ﬁ ("“’:H) +T (’”“r + 1)]

Mean E (x) Z;O . (- B)” /3 (n+a+1) n I"(M+ 1)] _% (n+;¢+1)
| i G (4525 (B2 1)

Variance Var(x) [Z?f’ i - B)n [ﬁ (,HZH) o (M_a N 1>]

:‘\Sr?g:i%nr: generating 1.0 yo_ oy 1;_7]1 - ﬁ)m [5 (na+;n+1) n F(na;—m_}_ 1)]

Median F(x) t=(-BF \/(B"Z +4In2))/2

Quantile Function F~(u) Bxd + x% —In(1-u)=0

Coefficient of s mio A () o (nﬂfu)]g

Skewness 5. 0-(5)71&; (n+21a+1)+r(n+2;ta+l)]7
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2.6. Estimation Methods for IDAL Distribution

In this section, some estimation methods for IDAL distribution such as the Maximum Likelihood
Estimation (MLE) and Maximum Entropy Estimation (MEE) methods, will be used. These
methods are employed to predict the best performance for the available system as follows.

2.6.1. Maximum Likelihood Estimation Method (MLE)

The maximum likelihood method has a lot of important properties in comparison with other
methods, so statisticians almost prefer this method in many statistical applications®* 2.

Let (Xq,X5,....... ,Xpn); be random variable samples for sizes n. From Equation 1 the probability
density function for IDAL distribution will be

12

A (o i 2

f4,B,a) = (ﬁx%_1+lxﬁ_1)e <Bx +x >
a p

12
1 A —| Bxa+xa
Lf (A B a) = I11= (gxa_l +§x5—1)e ( e ) (5)

The natural log- likelihood function is:
1 2 1 2
i 032, 0) = i (7" + ) =3 (B4 ) ©

Taking the derivative for the obtained Ln function with respect to parameters (o), (B) and (A),
respectively, and equate to zero, then

1 1 2 A
B 1, L -1 A =-1 ¢ =1
dlnL n 22X T —oaXi@ T Inx—oxi@ TInxi——mx@ Tlnx n 1 1 1
—aa :Zi=1 —a 3 T 1_1 1—1 & +Zi=1 ;(Bxia+7\xia) (7)
?<Bxi(l +)in05 )
=—1 1
olnL _ on P n 2
ap — =1 B 1, 2 i—l T 4ij=1 xl' (8)
Exia +Exla
1
_\n xz”! n % 9
i=1 1, A\ &=t X ©)
(Bxia +Ax;a )
dlnlL lx-é T+ Zx Inx 1 A
nL _ on prad 2Xi i n Z1 .
ar i=1 (B i, 1, i=1 5 Xi% In xi (10)
=Xi® “+—Xx )
a a
JlnL 0%InL  94%InL 0%InL
Qg1 y, [ da [ da? dadBf 0adl
A A dlnL 9%InL 9%InL 0%InlL
B = -1 Where ] =
Ck+1 B[=J B J |90 “opz  opoxl
Aks1 Ak olnL lazlnL a21InL azlnLJ
7 drda 9ABB  0AZ
1 1, 1\2
. ) )
0“InL n _on (11)
(gxf‘ +5x __1> (ﬁx{z +_xla_1>
1 1+A4 2
) 2By @ Py @ Pnx)2-ti@ 2
0“InL _ on “3961 nxi+-zx; nx; ain n 1 E_ll ) 1
91z~ 4~i=1 1 2 2 T 4dij=1 ;xi (nxi) ( )
a 'l a
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il _ < [p 51 B 26 51 B a2 A
= di=1 |z % tx Inx+—x Inx +—x (Inx;) +xt+
A A 1 A 1 A
222 51 A 2 B a1 B ol _ B g1 A a !
X Inx; + X (Inx;)* + e In x; —LX T lnxi—;xl. —
22 o1
;x{" lnxi>l
1 1 .\?2 1 1
ot ax ) 3 22 BxTInxg + AxS Inx; |+
/ ﬁxi X i=1 ;3 ﬁxi nXx; X nx;
1 A
1 —B - 2 /12 -1 2
;(ﬁxlf‘(lnxi) - =X (Inx;) (13)
n
0%InL Z -1 §_1+—1 %—11 B §_1+/1 1\ 114
= — X! —x% Inx; || =x — X — =X
0pda ¢ - az i a3’ WAL a’l a’l
=
1 1 A A 1 A 2
—-B E_l B E_l A E_l )'2 E—l B E—l A E—l
(;xi — 3% lnxi—;xi - 3% Inx; |/ X X —
1 =
n _ a
i=1 ;xl’ In (14)
2InL _ «n xéln 92InL (15)
ap da =1 27 L™ dadp
ﬂ 1 1
PinL _ o Z%° (a—z+a—31nxi):az InL (16)
010B B, Ag\® 0Boa
(—x“ +=x )
a 'l a 'l
1+ 1+1 22 1+1
92 InL_wn L2 e MB a2 2 _ A a2 B a2
aaaa_ziﬂ [_7’% lnxi—?xi (Inx;) - =X lnxi+;xi Inx; +
141 1 2 \2 A
BA —5 2 2 | pr 1 5 A __9%InL
Exi (lnxi) /,Bxl +/1Xi “ui=1 ;Xi lnxi 1+le’lxi = Paon (17)

3. The Maximum Entropy Estimation Method (MEE)

The Maximum Entropy Estimation Method (MEE) is a statistical inference tool that addresses
statistical entropy in relation to uncertainty, particularly when there is a defect associated with
the probability density function. To determine the probability density function that maximizes
entropy information while adhering to the specified information constraints, we can employ the
method of Lagrange multipliers for calculation. Ultimately, we derive the probability density
function that satisfies the established constraints?®*“®. The maximum entropy estimation method
consists of four steps to estimate the three parameters of the IDAL distribution. We start with the

probability density function for distribution, which is Equation 1.
1 2

s aigy {pehed)
f(x; @, B, 1) =(§xa 1+§xa 1)e ( e

§=—["Inf(x). f(x)dx (18)
0
1 A
1 2 - a+xa
Inf(x) =1n [ (ng—l + %xz—l) e <ﬁx +x >] (19)
By substitution Equation 18
o 'B 1_1 A i—l 1 i
§=—], [ln (;xa +>xa )— (ﬁxa + xa)] f(x)dx (20)
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E (gi(x)=]; gi(x)f (x)dx = Ci=12.n
[ fGdx = 1

-1, A 2y _ B 11 a2,
sz (ln Xa +—Xa )f(x)dx—E[ln(;xa +-xa )]
(( B 1, 2 Ay 12
f(lnaxa +axa )f(x)dxz E(,Bxa+xa> =(C3

0

J," f(x)dx = 1 = C1, Where Ci=;i=1,2,3 (21)
Step: Structure of the LaGrange multipliers based on Equation 18

f(x) = exp(—Ap — Z?:l Algl(x) )and i

F(x) = exp (—/10 - {Ailn( 1,2 x“l) 2, (ﬁxi + x‘)}) 22)
Where 4,,4; and 1, are LaGrange multipliers subsiding Equation 21 in Equation 22 the
following are obtained:

Jy fOdx = [ exp (—/10 — {Ailn (—gxa +2 ~xa 1) Ay (ﬁxa + xa)}) dx =1
Such that

0 1 A 1 4
J, exp(=2o). exp [—/11 In (gxa Ty %xa 1) + A, (ﬁxa + xa)] dx =1

12
)12<Bxa+x0£>

fy —
0 1

- )dez e?o (23)
B =1 A 1

xa +x§

Recall that

1 2 AL M 1 A\ 1 AT
i) =3 o () ()
a a L, \a a
j=0
N D+ )
= (E + —) (x)#1
a a
By substituting this formula in Equation 23, we have
1 A
1 f x (J(lal))_i_(h(i—a)) _ e/12<,8x5+x5
" N

eamé:z Lpxe| | (B

>dx = et then

7! r!
=0 =0
,
:B+;;ij) f (x) + 17 D*’@. e’lzx% dx = eto (24)
Let az:xE — e =tz
goo(BZ)r f0°° Z% (;,1(1;/1).,./11(2_“). oz %Z%_ldz (25)

(%)
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ay®, Ba)" 4 ja-D+A A-@)+a L

Pienknh N o Z 1 . e-(-lzZ) dZ — e—/1 (26)
2B 0
(%)

The border integral is a negative gamma distribution, then we must multiply and divide by i_:z we

r+j(1-)+1(A-a)+a

have a = n s B=+(=1)
o (B e jaA-H_ 11Q1-a) «a
=0 1! @ P R N M = eto
Nt 1t r, ja-=2), )ll(A ), a
EH G AR

r ](1 ), AMA-a)

B2 (w)“.% WG 27

a r](l BRZCE D2~ €’
(=22)27 2 ‘A

Equation 27 expresses the Zero™ Lagrange 1, multiplier as a function of Lagrange multiplier
Aand A,.

Step 3: Derivation of the entropy function of the distribution. Substituting Equation 27 into
Equation 21

1 A
r 1(1 A, Al(a @), «a —/12</3x5+x5>
l), e

B+4 G
A" o . (28)

o eBz u(r+i(1—z)+;11(a—a)+a)(ixa 1+Ax% 1)
By taking the normal logarithms, then we get

j(1— - In(-23)
In f(x)=In A+A4In (%)+(T+J(1 A)+jl(,1 a)+a) 5

. _ _ 1
(r+](1 D+, (4 a)+a) —1 ln( + x 1)

f(x)=

1

A
+ -1, (ﬁx3+x3> —Inx— A, —Inpu

i
Hence, from the definition of entropy, Equatlon 13

In f(x)=In [( Ll ‘1) - (ﬁxi + xﬁ)]

In(-2,) 1 A
s=Ini+2,In(22) + (”’(1 Al "‘)*“) A, (,Bxa + xa) —Ina—fA, —

— A
ln# (r+](1 )L)+j1()l a)+a) _ Alln< + A x__l) (29)
Step 4: Derivation of the relation between the Lagrange multipliers and constraints

Leta = r+j(1_/1)+jl('1_a)+a,a = /:1 + ﬁ -1+ - a—ll +

da L1 1 1 2

a4 A Y

We know that %: Y(a)

22 o (LD — (22 y(a), Sinces=In u(x) = ()

The Equation 29 contains five parameters: o, B, A, and A _1. To optimize Equation 29, we must
establish the following partial derivative accordingly:

i Tlil A E (a—xa Inx + a—xalnx) + p + — Y(a) — LE
) lnx (,B =z +Ax5_1>
- + A (30)
« ﬁx5_1+lx5_1
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Q_ _l_/’l_l r+j+ali+a ln_x > _i (r+j(1—/1)+11(l—a)+a)
B = D) — AE ( x) 2 Inp ’ +

x%_1+1x%_1lnx i+, a+
= —r—j+lia+a
ME | T - (31)

Bxa t4+Axat

s . xé_l
35 = e M (5) + A+ A <B—A> ”

_rH0-D+h@-d) +a

- /1
D 20 1% Since Zinu(t) = p(®) where (=L s the digamma, it s followed:
611 - u(b)
aal ) P(b)

1-D+1;(A-a) -1 :
(T+j +A4 c{+6{).)L (ﬁxa+xa)+ﬁ (33)

r+j(1-A)+2A4 (l—a)+a) 1

A
a—hzﬁ—E(ﬁxa+xa)—( j = (34)
The values of parameters are a, 8,4 > 0, 1, < 0,00 < A; < co. By the definition of expectation
of random variable
(y) = Za”yyp(Y y). Assume that p(Y=y) =1, then the Equations become as follows:

E(m) 1 t"
B 1_1 A 1_1 B l—1 A i—1
E ln(—xa + = xa )= Loln [=x*  +=xf
a a a a
1 = 1
)=,

i=1

1_1 E—l
E 1 - p) = ?:1 1 - 1 (35)
(ﬁxa_1+lxa_1> Bx5_1+/1x5_1
pl
A +jt+a+al 1 po
[ =2 ==+ T R (=) — 4 (—x) (36)

Then the Equation becomes as follows:

1

E(t%)z r1 1:'1

1 A 1_1 1_1
E <1n (Exi_l + ixE_l) =)t In (Ex.“ +2xa ))
a a a L a U

x%_l _\n xia_1
E\ 77| = &=t —1, 13
Bxa “+Axa Bx{ +Axf
1
as = @
B fB) = Tt My KA Ayt AT @)
ﬁx.a_1+)uca_1
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y!
f(l) = Z—j:%_L+r+1+a+alll ( Az) /12 l L (mexla> + 7"+](2-1 1)(11/)( )+

B+2 A2
x.%_1+ix.%_1 Inx
A n i a’i
lai=1 =1, I
,Bx;fr +Axfr
_ r+j(1—)l)+11(l—a)+a) dc _ -r—j+ha-a
= ( - ) Where Y T R—
__hlﬂ()_ili;uiﬂlp()
oA )
8s Ay (M l n %—11 el
o @ (7 + I) n(=4;) + A, Xisy | Bxf Inx; +Ax7  Inx;
1 2 2 2
1 A4 (ﬁxia_1+§xia_1 In xi+§xia_1+1xia_1>
+-+ ( )lp(a) + A [)’x ln x; +Ax¥  Inx; v (38)
Bxf‘ +/1xf‘

In order to determine the estimate of the three parameters, the aforementioned Equations form a
system of nonlinear Equations that can be solved using the Newton-Raphson technique. This
method relies on the Jacobean matrix, which can be expressed as follows:

1 A
of(a) _ -2 -2 prt -1 B 3 22 __1 1
o = —21+/12 [ ;(ﬁxi Inx; + Ax; lnxi> - <§xi In x; t2 Z X );

———MZ

A A
af (a) 1-1 1 e 71 A1—-1
];; = ( 1)l (=23) + 4, ;(Axi (Inx)*+x* In xi> + ( ;2 ) Y(a)
. L \
@ _ Z” 1 3 A Znxix @ (-4
i Ay . ;(xi In xl-) - ;1 . (39)

1, A
(,Bxf‘ +/1xf‘ )

AN/ A
[ x® a
UB _ N1y ;3 g (xl )(x ) (40)
p  (Bray | Le=t (/3 1, §_1>2
X xi
1 A A
£ (B) i (xia_1+§xia_1 In xl-)(xl.a_l)
_ _tM n
oA _(ﬁ+/1)2+112i=1 ( 1, A\ (41)
BxF  +Ax{ )
1 A 1
af(B) _ A* = A x%_1 Inx; y) (ﬁxl’a_lln xi+AzxiE_1lnxi>xiE
T = i X Inxg = FRL, S = G2 )

=1 1 A 2 Lii=1
——1 Z-1 a £ A
(ﬁx? +2xf ) <ﬁxg 2 )
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A4\ A, A
OF D) N x; Xt oo Inx;

=+, 3 - - (42)

=—1 Z1

(ﬁxi“ +Axf )

g~ ez 1

2
D) (L) In(—4y) - 25 By (o — & (I x)?) 222 (0
2 A 2 i_ _52 i 1. 2,y
(a—zx Inxg+—gxf Inoxg+—zxft (1nxl~)2><ﬁxl.“ +Ax;! ) B 14
+21 Xie1 2 _<§xl€x Inx; =

= 1 A
=1 Z1
(Bxlf" +Ax )
a2 2 21 2 24
2 X X; +2 —x Inx;

n A
6f(l)_i A1 _—2(r+j+a+all) _ _ (Inx;)? -
a1 _,12+([;+,1)2 23 In(=42) =4, E < a? xi)

i=1

A
Z 2 2=-2 2 2
2(r+j—-1+11) 2 x¥Inx;2=1Inx; x, @ (1+=
+ —1 l/)(C) M —2% --1 ?=1 1l - ( Aa) > (43)
Bx{  +Ax{ ) <ﬁxl&_ +Ax51nxl>

4. Results and Discussion

The simulation procedure results for the estimators of the reliability model of the new IDAL
distribution have good results, but for the studied methods, we made different sample sizes
(n=30, 50, 100) to represent small, moderate, and large sample sizes. several values of parameter
a=0.25,0.75, A = 0.1, 0.2, and B = 1; five values of lifetime t = (0.1, 0.2, 0.3, 0.4, 0.5). The
simulation program was written by using the MATLAB program and built on 1000 replications
depending on mean square error (MSE) to the comparison indicators for the reliability function
between the two studied methods of estimation 2%,
The simulation process and the outcome results of simulation will be listed as shown in Tables
2-5 and Figures 1 and 2.
Note that, from the previous Tables 4 and 5 the best estimation method for estimated of

parameter («) was (MLE) according to (mse).
Table 2. Shown estimators and mean square estimators for reliability with (a = 0.25)&p=1

B A n t R R, MSEg, R, MSEg, Best
1 0.1 30 0.1 0.671523 0.707702 5.07E-04 0.662579 2.14E-04 2
1 0.1 30 0.2 0.590429 0.620328 8.50E-04 0.583337 3.57E-04 2
1 0.1 30 0.3 0.534779 0.558797 1.07E-03 0.529514 4.47E-04 2
1 0.1 30 0.4 0.487364 0.506087 1.21E-03 0.483966 5.01E-04 2
1 0.1 30 0.5 0.440274 0.454195 1.28E-03 0.438727 5.30E-04 2
1 0.1 50 0.1 0.671523 0.693764 1.56E-03 0.700354 1.01E-03 2
1 0.1 50 0.2 0.590429 0.608765 1.75E-03 0.614282 1.34E-03 2
1 0.1 50 0.3 0.534779 0.549725 1.87E-03 0.554257 1.55E-03 2
1 0.1 50 0.4 0.487364 0.49948 1.95E-03 0.503183 1.67E-03 2
1 0.1 50 0.5 0.440274 0.449949 1.99E-03 0.452957 1.74E-03 2
1 0.1 100 0.1 0.671523 0.692377 2.33E-03 0.691879 2.09E-03 2
1 0.1 100 0.2 0.590429 0.607566 2.56E-03 0.607098 2.32E-03 2
1 0.1 100 0.3 0.534779 0.54863 2.71E-03 0.548085 2.47E-03 2
1 0.1 100 0.4 0.487364 0.498408 2.81E-03 0.497654 2.56E-03 2
1 0.1 100 0.5 0.440274 0.44889 2.87E-03 0.447822 2.62E-03 2
1 0.2 30 0.1 0.853347 0.859805 2.90E-03 0.85594 2.69E-03 2
1 0.2 30 0.2 0.757641 0.764652 2.93E-03 0.76044 2.78E-03 2
1 2

02 30 0.3  0.677207 0.683654 2.95E-03 0.679767 2.85E-03

305



IHJPAS. 2026, 39(1): 297-310

B 2 n t R R, MSEg, R, MSEg, Best
1 02 30 0.4  0.602872 0.608265 2.97E-03 0.605002 2.91E-03 2
1 02 30 0.5 0.528956 0.533073 2.98E-03 0.530574 2.94E-03 2
1 02 50 0.1 0.853347 0.86212 3.05E-03 0.855623 2.97E-03 2
1 02 50 0.2 0.757641 0.767239 3.12E-03 0.760123 3.01E-03 2
1 02 50 0.3 0.677207 0.686172 3.19E-03 0.679549 3.05E-03 2
1 02 50 0.4 0.602872 0.610607 3.23E-03 0.604947 3.07E-03 2
1 02 50 0.5 0.528956 0.535192 3.27E-03 0.530711 3.09E-03 2
1 02 100 0.1 0.853347 0.855594 3.30E-03 0.865007 3.15E-03 2
1 02 100 0.2 0.757641 0.760089 0.003342 0.770426 3.22E-03 2
1 02 100 0.3 0.677207 0.679513 3.38E-03 0.689121 3.29E-03 2
1 02 100 0.4 0.602872 0.604906 3.40E-03 0.613074 3.33E-03 2
1 02 100 0.5 0.528956 0.530659 3.42E-03 0.537064 3.36E-03 2

Table 3. Shown estimators and mean square estimators for reliability with (« = 0.25)&p=2

y! n t R R, MSEg, R, MSEg, Best
01 30 0.1  0.671456 0.684414 3.77E-03 0.668896 3.52E-03
01 30 0.2  0.589485 0.599938 4.00E-03 0.587224 3.63E-03
01 30 0.3  0.530465 0.538453 4.15E-03 0.528134 3.70E-03
01 30 0.4  0.475045 0.480592 4.24E-03 0.472282 3.74E-03
01 30 0.5  0.413599 0.416798 4.30E-03 0.410248 3.77E-03
01 50 0.1  0.671456 0.681646 4.40E-03 0.655272 4.29E-03
01 50 0.2  0.589485 0.597519 4.47E-03 0.57636 4.65E-03
01 50 0.3  0.530465 0.536114 4.51E-03 0.519759 4.89E-03
01 50 0.4  0.475045 0.478068 4.53E-03 0.466234 5.05E-03
01 50 0.5  0.413599 0.413996 4.55E-03 0.406377 5.15E-03
0.1 100 0.1  0.671456 0.673477 4.66E-03 0.685366 5.60E-03
0.1 100 0.2  0.589485 0.590965 4.74E-03 0.600985 5.91E-03
0.1 100 0.3  0.530465 0.531193 4.80E-03 0.540047 6.10E-03
0.1 100 0.4  0.475045 0.474812 4.84E-03 0.483193 6.21E-03
0.1 100 0.5  0.413599 0.412361 0.004863 0.420575 6.28E-03
02 30 0.1  0.853261 0.855243 4.91E-03 0.865059 6.32E-03
02 30 0.2  0.75643 0.758567 4.98E-03 0.76936 6.38E-03
02 30 0.3  0.671744 0.673693 5.03E-03 0.683747 6.42E-03
02 30 0.4  0.587635 0.589237 5.06E-03 0.597792 0.006455
02 30 0.5  0.496909 0.498087 5.09E-03 0.504766 6.47E-03
02 50 0.1  0.853261 0.856688 5.12E-03 0.863736 6.52E-03
02 50 0.2  0.75643 0.760098 5.16E-03 0.767907 6.57E-03
02 50 0.3  0.671744 0.675 5.19E-03 0.682437 6.62E-03
02 50 0.4  0.587635 0.590156 5.21E-03 0.596756 6.65E-03
02 50 0.5  0.496909 0.498562 5.22E-03 0.504062 6.67E-03
0.2 100 0.1  0.853261 0.854339 5.26E-03 0.859977 6.75E-03
0.2 100 0.2  0.75643 0.757595 5.29E-03 0.763728 6.85E-03
0.2 100 0.3  0.671744 0.672822 5.33E-03 0.678459 6.93E-03
0.2 100 0.4  0.587635 0.588547 5.35E-03 0.593242 6.99E-03
0.2 100 0.5  0.496909 0.497613 5.36E-03 0.50116 7.03E-03 1

Note that, from the previous table, the best estimation method for the estimated parameter (a) was (MEE) when
B=1& (MLHE) and when =2, according to (mse).
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Table 4. Shown estimators and mean square estimators for reliability with (a = 0.75)&p=1

n
30
30
30
30
30
50
50
50
50
50
100
100
100
100
100
30
30
30
30
30
50
50
50
50
50
100
100
100
100
100

t

0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5
0.1
0.2
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0.4
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0.4
0.5

Figure 1. Best MSE for (Reliability) with (@ = 0.25)

R

0.457464
0.396995
0.349056
0.307365
0.270205
0.457464
0.396995
0.349056
0.307365
0.270205
0.457464
0.396995
0.349056
0.307365
0.270205
0.555667
0.463939
0.396052
0.340296
0.292852
0.555667
0.463939
0.396052
0.340296
0.292852
0.555667
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0.340296
0.292852

R,
0.461324
0.399702
0.351012
0.308753
0.27114
0.462837
0.400277
0.351183
0.308811
0.271257
0.462391
0.400404
0.351546
0.309215
0.271584
0.559341
0.466523
0.397893
0.341599
0.293755
0.560915
0.46757
0.398592
0.342056
0.294043
0.560414
0.467357
0.398546
0.342104
0.294138
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Table 5. Shown estimators and mean square estimators for reliability with (¢ = 0.75)&p=2

A n t R R, MSEg, R, MSEyg, Best
0.1 30 0.1 0.436715 0.440091 5.89E-03 0.441332 7.63E-03
0.1 30 0.2 0.353175 0.35583 5.92E-03 0.356805 7.66E-03
0.1 30 0.3 0.285546 0.28757 5.93E-03 0.288456 7.67E-03
0.1 30 0.4 0.228907 0.230345 5.93E-03 0.2312 7.68E-03
0.1 30 0.5 0.181696 0.182619 5.94E-03 0.183452 7.68E-03
0.1 50 0.1 0.436715 0.43656 5.99E-03 0.4355 7.74E-03

0.1 50 0.2 0.353175 0.352894 6.01E-03 0.352217 7.76E-03
0.1 50 0.3 0.285546 0.285216 6.02E-03 0.284732 7.77E-03
0.1 50 0.4 0.228907 0.228576 6.02E-03 0.228199 7.78E-03
0.1 50 0.5 0.181696 0.181392 6.03E-03 0.181079 7.78E-03
0.1 100 0.1 0.436715 0.447839 6.09E-03 0.452059 7.84E-03
0.1 100 0.2 0.353175 0.360598 0.006111 0.363905 7.87E-03
0.1 100 0.3 0.285546 0.290686 6.12E-03 0.293277 7.88E-03
0.1 100 0.4 0.228907 0.232467 6.13E-03 0.234431 7.89E-03
0.1 100 0.5 0.181696 0.184127 6.13E-03 0.185546 7.89E-03
0.2 30 0.1 0.530465 0.535752 6.16E-03 0.538951 7.92E-03
0.2 30 0.2 0.41273 0.416264 6.18E-03 0.418382 7.93E-03
0.2 30 0.3 0.323991 0.32635 6.18E-03 0.327749 7.93E-03
0.2 30 0.4 0.253431 0.254976 6.19E-03 0.255885 7.94E-03
0.2 30 0.5 0.196924 0.197904 6.19E-03 0.198477 7.94E-03

0.2 50 0.1 0.530465 0.538768 6.22E-03 0.53681 7.97E-03
0.2 50 0.2 0.41273 0.418205 6.23E-03 0.416946 7.98E-03
0.2 50 0.3  0.323991 0.327587 6.24E-03 0.32679 7.99E-03

0.2 50 0.4 0.253431 0.255744 6.24E-03 0.255256 7.99E-03
0.2 50 0.5 0.196924 0.198359 6.24E-03 0.198078 7.99E-03
0.2 100 0.1 0.530465 0.537264 6.26E-03 0.534774 8.03E-03
0.2 100 0.2 0.41273 0.417186 6.27E-03 0.415525 8.04E-03
0.2 100 0.3 0.323991 0.326917 6.27E-03 0.325807 8.05E-03
0.2 100 0.4 0.253431 0.255327 6.27E-03 0.254593 8.05E-03
0.2 100 0.5 0.196924 0.198124 6.27E-03 0.197649 8.05E-03
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Figure 2. Best MSE for Reliability with (& = 0.75)

5. Conclusion

In Tables 2-5, when we compared reliability estimation between the two studied methods of
estimation, the first one was the Maximum Likelihood Estimation (MLE) and the second method
was the Maximum Entropy Estimation (MEE) for a novel distribution. Simulation study work
was used to generate different sizes of samples. It is clear that the Maximum Likelihood
Estimation (MLE) is the best in performance when 0=0.25 & =2, and the Maximum Entropy
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Estimation Method (MEE) when 0=0.75 in all cases of the B, and this result is true for all values
of parameters and sample sizes used in the study.
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