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Abstract  

The Internet of Medical Things (IoMT) has enhanced healthcare, but it 

is also vulnerable to cyber-attack. Reliable Intrusion Detection Systems 

(IDSs) are essential for data integrity and patient safety. The goal of this 

study is to design and evaluate deep learning IDSs in the form of DNNs 

and a hybrid GRU-DNN model for IoMT networks using the 

CICIoMT2024 dataset. 

The design of a standalone DNN model and a hybrid Gated Recurrent 

Unit–DNN (GRU-DNN) was also applied and compared. Both were 

trained and tested with various classes involving 2, 6, and 19 from the 

CICIoMT2024 datasets. The GRU-DNN model, in 19-class classification 

performance, achieved satisfactory results of accuracy, precision, and 

recall as 98.4%, 98.6%,98.4% and 98.2% respectively, for F1-score. The 

DNN model achieved 93.1 % accuracy for the same task. The model 

outperformed other models, such as LSTM and previous DNN models. 

The proposed hybrid GRU-DNN model exhibits promising results in 

being applicable to identifying intrusions in IoMT systems and seems to 

hold great promise for improving the security of real clinical networks. 

Keywords: Internet of Medical Things (IoMT), Deep Neural Network 

(DNN), Gated Recurrent Unit (GRU), Deep Learning (DL), Intrusion 

Detection System (IDS). 

  

1. Introduction  

The Internet of Medical Things (IoMT) is a new application scenario that extends the Internet 

of Things (IoT), in which IoMT devices are deployed to provide medical services. The 

increasing number of connected medical devices on the Internet has significantly broadened the 

concept of digital healthcare services. This ubiquity has brought about significant security issues 

and vulnerabilities
1-3

. 

IoMT has revolutionized medical care, making monitoring, remote diagnosis, and personalized 

treatment via connected medical devices all a reality. However, the fast penetration of IoMT 

devices has brought about serious cyberspace concerns because such things are highly diverse in 

type and have scarce resources, yet are particularly critical given that medical data is involved. 

Attacks on IoMT systems, including Distributed Denial of Service (DDoS) attacks, spoofing, and 

protocol-specific attacks, will result in safety issues and data integrity. Even when securely 

transported over networks, data is permanently at risk of unauthorized intrusion and misuse. 

Conventional IDS is frequently ill-suited for IoMT, such as due to resource limitations, low 

latency requirements, and device diversity. These constraints substantially hamper their ability to 

properly detect and address advanced threats, underscoring the necessity for more evolved 

security solutions
4-6

. 
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In the IoMT field, deep learning techniques are becoming popular for improving IDS’s 

performance due to their capability of capturing complex temporal dynamics and non-linearity in 

high-dimensional network traffic data. 

Small generic architectures such as Deep Neural Networks (DNNs) and Gated Recurrent Units 

(GRUs) have been shown to learn complex patterns and relationships in network traffic, as 

indicated by 
7
. 

It was proposed the CICIoMT2024 dataset for a Machine Learning (ML) and DNN study
4
. Their 

approach succeeded in taking accurate binary classification with gene markers of 99.6% 

accuracy, as shown in their experimental results. The model exhibited a mediocre accuracy of 

73.4% in the 6-class classification. But it performed relatively worse in a 19-class classification 

task with an accuracy of 72.9%. 

It was presented the L2D2 model, which is based on an LSTM structure and is particularly 

tailored for the detection of attacks involving multiple classes in IoMT
8
. The model performed 

well in terms of classification on the CICIoMT2024 dataset, with 100% accuracy for binary, 

98% for 6-class, and 95% for converted to the other 19-classes. 

Most existing IDS studies focused on binary classification and did not address the complexity of 

multi-class detection in IoMT environments. 

Therefore, this study aims to develop a deep learning-based multi-class intrusion detection 

system for IoMT using the CICIoMT2024 dataset. 

This research aims to contribute to the creation of safe, sustainable, and intelligent healthcare 

infrastructures that are compatible with the growing popularity of digital health and patient 

safety. 

The remainder of this paper is structured as follows: Section 2 describes the Materials and 

Methods; Section 3 presents the Results and Discussion; and Section 4 concludes the paper. 

 

2. Materials and Methods  

The Materials and Methods include a detailed description of the CICIoMT2024 dataset, the 

applied data preprocessing steps, and the deep learning models used for intrusion detection. 

2.1 CICIoMT2024 Dataset 

The Canadian Institute for Cyber Security created the CICIoMT2024 dataset as a comprehensive 

means of testing the safety of medical technology associated with the Internet of Medical Things 

(IoMT). It contains traffic from 40 IoMT devices: 25 real and 15 simulated, under attack of 

eighteen types of cyber threats against three protocols: Wi-Fi, MQTT, Bluetooth
4
. 

The CICIoMT2024 dataset has 45 features, covering various aspects of network traffic. This is to 

monitor unusual and malicious behavior, as explained by.
9
. 

Although the CICIoMT2024 dataset is an extensive benchmark for testing IDSs in IoMT, it does 

have some limitations that could affect the model’s performance. For example, some classes are 

relatively under-represented in the distribution of attack types. This may cause learning bias and 

result in poor detection performance of those attacks. In addition, some of the dataset is the 

traffic created by virtual devices, which may not accurately represent the actual situation. These 

constraints need to be considered when designing and testing detection models. 

2.2 Data Preprocessing 

In order to form the data for training and achieve good performances in terms of accuracy, but 

also efficiency, before feeding it into our model, several preprocessing steps are required. The 

preprocessing enhances the data quality of the models as described by 
10

. 

Preprocessing manipulations are Data Cleaning, Reshaping, Feature Selection, and Data 

Transformation (Encoding Categorical variables (Label encoding, One-hot encoding), Feature 

Scaling (Standardization), and Shuffling). 
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2.2.1 Data Cleaning 

Date cleaning is the process of identifying, fixing, or removing errors and inconsistencies, 

missing data values, and duplicate records from a dataset in order to correct or improve its 

quality for analysis or modeling. It assures the correctness of the data before being used 
11,12

. 

No missing values were found, and some duplicates were found. The training file has 5119 

duplicate values, and the test file has 2065 removed duplicate values. This prevented overfitting 

by splitting off the repeated patterns, which had the potential to bias or overfit our model. 

2.2.2 Reshaping 

The conversion of feature vectors into a three-dimensional (3D) format (samples, time steps, 

features) is considered a pre-processor-specific step, so it is crucial to ensure the compatibility of 

its output with sequential neural structures like LSTM and GRU. This type of structural 

adjustment is necessary for the data pipeline to convert the input format to the expected size of 

the recurrent model 
13-15

. The input data is converted into a 3D format (samples, time steps, 

features) that meets the demands of the GRU model, being a type of RNN, as explained by.
29

. 

In contrast, DNN, also known as feedforward or fully connected networks, expect input data in a 

two-dimensional (2D) format (samples, features), as noted by
30

. 

2.2.3 Feature Selection 

It refers to the process of selecting features that are important or necessary for the model's 

functioning and reducing overfitting. The standard deviation of all numerical features is 

determined to assess their variability and importance to the model. Features with a low standard 

deviation near zero are considered to have little to no differentiating information and can 

potentially introduce noise to the learning process. This step reduced the dimensionality of the 

space while ensuring that the input space was composed of only attributes that had a significant 

effect, increasing the effectiveness and generalization capacity of the model, as noted by
16

. 

2.2.4 Encoding and Scaling 

It refers to converting categorical labels into numerical values. This step is essential for allowing 

deep learning models to utilize the class label to train effectively. Data transformation consists of 

encoding categorical variables that contain (Label encoding, One-hot encoding), and Feature 

Scaling (Standardization). 

 Label encoding 
The classes are converted into integers that represent machine-readable numerical values

17,18
.   

 One-hot encoding  

Encoded labels are transformed into binary vectors, enabling the model to perform multi-class 

classification through SoftMax activation in the output layer
19,20

. Labels are successfully 

assigned to 2, 6, and 19 classes. It was observed that their distribution was uniform. All 

categorical labels were converted to one-hot encoding. 

 Feature Scaling (Standardization  (  

To ensure that the numerical inputs are of the same scale, Z-score normalization is employed 

using the StandardScaler. This change altered each attribute to possess a mean of 0 and a 

standard deviation of 1. Standardization was crucial to prevent attributes with larger variations 

from disproportionately affecting the learning process and to increase the rate of convergence 

during model training. This preprocessing procedure had a positive effect on the overall 

stability and performance of the deep learning model 21,22
. 

2.2.4 Data Shuffling 

It is the process of randomly reordering the samples in a dataset. It is not a transformation of 

feature values, but rather a reorganization of sample order to prevent the model from learning 

spurious patterns based on the input sequence. This is especially important for neural networks 
23-25

. 
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2.3 The Deep Learning Models 

After collecting the data in the pre-processing stage, it went through multiple processing stages, 

including the selection of essential features, and then the number of features was reduced to 44. 

The information is now prepared to be evaluated for the classification stage. In this phase, 

several scenarios will be employed for different DL algorithms, including: The hybrid model of 

GRU-DNN and DNN was performed in three different types of classification (2-class, 6-class, 

and 19-class) as experiments to maximize the accuracy and efficiency.  

2.3.1 The DNN Model 

The Deep Neural Network (DNN) is a robust design that has multiple layers of hidden 

information that facilitate the acquisition of complex features. In the context of the IoMT, which 

has a data communication that is typically high-dimensional, diverse, and vulnerable to various 

types of cyberattacks, DNNs have a beneficial effect on intrusion detection. Through their 

complex, hierarchical design, DNNs can learn intricate, complex patterns in the behavior of 

networks. This distinction is necessary to differentiate between legitimate and criminal traffic 
26,27

. 

The DNN architecture consists of two fully connected layers, both of which are extensive, 

followed by an output layer with the same number of units as the number of classes related to it 

(i.e., num_classes). 

The first and the second dense layers consist of 64 and 32 units respectively, that is activated by 

ReLU function. This function is widely used due to its non-linearity and power in deep learning 

tasks. We apply dropout regularization after each dense layer with a dropout rate of 0.3, i.e., 

removing 30% of the neurons randomly during training in order to prevent overfitting. SoftMax 

activation function used at the output layer for multi-class classification. This function outputs a 

distribution of the likelihood over target classes. 

The Adam optimizer is chosen since it can enable faster computation time and the adaptive 

learning rate feature, as reported by
28

. 

The initial value of the learning rate was set at 0.0001 to make our training process's results 

stable. The loss function being applied is Categorical Cross-Entropy, common in problems with 

multiple classes. 

The model was trained for 50 epochs with a batch size of 64. Early stopping with a patience of 5 

epochs was applied to avoid overfitting; it stopped training when no decrease in validation loss 

was achieved for five consecutive epochs. 

We chose this setting according to the empirical guideline so that a trade-off can be reached 

among model complexity, generalization ability, and computational efficiency. 

2.3.2 The Proposed Hybrid Model (GRU-DNN) 

There is a previously proposed design, the Grated Recurrent Unit–Deep Neural Network Hybrid 

Model (GRU-DNN), which is intended to meet the dynamic and real-time demands of 

cybersecurity in the IoMT. This architecture is an amalgamation of GRUs, capturing the strength 

in temporal processing and DNN to leverage the power of deep learning. It allows us to model 

complex environments and highly automated traffic flows. 

The collaboration not only contributes to the generalization and expansibility of medical 

networks, but also achieves a remarkable effect in a medical network that contains various data 

structures and massive data. 

The model workflow is schematically outlined in the following: 

Load the training and testing files from the dataset. The dataset was split into an 80% set for 

training and a 20% test set according to the given structure. Make sure the data are shuffled to 

have some randomness and no bias. Remove irrelevant and redundant features, e.g., 'Drate'. Drop 

the missing and duplicate values. Map the original attack labels to one of three class categories in 

classification: The binary, indicating Benign vs. Attack; The six-class, which represents (DDoS, 

DoS, etc., and MQTT types respectively...), and Full 19-class classification. Preprocess your 
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data: Encode the labels using LabelEncoder. Convert to_categorical one-hot with Keras. 

Normalize features using StandardScaler. Reshape input for GRU: (samples, 1, features). 

The hybrid GRU-DNN model is structured in a sequential fashion. The GRU layer firstly 

captures the temporal features in the input sequences. Normalization and regularization of these 

features are done using Batch Normalization and Dropout. These are then input into a stack of 

fully connected layers to generate high-level features. The last output layer uses SoftMax to 

calculate the attack class. This architecture is also drawing on the complementary abilities of 

RNN and deep feedforward learning. The architecture of the Layers used in the hybrid model is 

depicted in Figure 1. 

The workflow of the proposed method is depicted in Figure 2, which shows four main 

components of the process: dataset, data preprocessing step, the model used, and evaluation. 

 
Figure 1. Structure of the layers in the hybrid 

model (GRU-DNN) 

 
      Figure 2. Diagram of the proposed hybrid model 

(GRU-DNN) 
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Compile the model: Loss: categorical_crossentropy. Optimizer: Adam, learning rate = 0.0001. 

20% of the training set was additionally used to serve as a validation set in order to control the 

model’s generalized with early stopping. Early Stopping with patience=5. Train for at most 50 

epochs. Use batch size = 64. did not use cross-validation to save time on training and 

computation. 

Test the model to find accuracy, precision, recall, and F1-score. Generate a classification report. 

Plot the confusion matrix and training history (accuracy/loss) plot. 

The parameters and training configurations for the hybrid and independent models are 

summarized in Table 1. 
Table 1. Parameters and training setup used in the hybrid and standalone models 

Parameters Optimizer 
Learning 

Rate 
Loss Function Epochs Batch Size 

Early Stopping 

Patience 

value Adam 0.0001 
Categorical Cross-

entropy 
50 50 5 

 

3.  Results and Discussion   

     The findings reveal the effect of data preprocessing, deep learning model performances, and 

the adopted evaluation metric. A comparison with the related work on the CICIoMT2024 dataset 

is presented to demonstrate the potency of the proposed method. 

3.1 Deep Learning Model’s Results 

To evaluate the performance of the framework for different classification scenarios (binary, 

multi-class, and Complex Multi-Class) based on selected model parameters, a deep learning-

based classification technique was used in this research. 

The CICIoMT2024 dataset is capable of handling different levels of attack classification. The 

choice of 2, 6, and 19-class settings is beneficiary from the hierarchical nature of attack 

categorization in the CICIoMT2024 dataset that reflects security risk in real-world IoMT 

deployments. 

For the classification levels, accuracy and loss were monitored across epochs as well as the 

confusion matrix. The results are all the metrics, including accuracy, precision, recall, and F1-

score. 

3.1.1 DNN Model Results 

 Binary classification (2-class) 

The performance of the DNN model in binary classification involves two classes: Attack and 

Benign in the IoMT environment.  

Figure 3 below depicts the training and validation performance of the DNN model in the 2-class 

classification task. The left plot of the graph shows the evolution of accuracy, while the right plot 

exhibits the corresponding loss graphs. 

 
Figure 3. Accuracy and Loss over epochs for the DNN Model in 2-class 
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The confusion matrix in Figure 4 illustrates the binary classification results. Diagonal values 

(1,571,981 and 34,151) represent correctly classified samples, while off-diagonal values indicate 

misclassifications. 

 
Figure 4. Confusion Matrix for the DNN Model in 2-class 

 

To evaluate the performance of the DNN model and the proposed hybrid model (GRU-DNN) in 

all classes, we used standard classification metrics, including: 

 Accuracy 

Accuracy measures the proportion of correctly classified instances among all instances. 

    Accuracy 
     

           
                                                                                                             

 TP (True Positives): Correctly predicted positive classes. 

 TN (True Negatives): Correctly predicted negative classes. 

 FP (False Positives): Incorrectly predicted as positive. 

 FN (False Negatives): Incorrectly predicted as negative. 

 Precision 

Precision measures how many of the predicted positive classes were actually correct. 

      Precision 
  

     
                                                                                                                    (2)  

 Recall (Sensitivity) 

Recall measures how many of the actual positive instances were correctly predicted. 

     Recall 
  

     
                                                                                                                         (3) 

 F1-Score 

Harmonic mean of Precision and Recall, balancing both metrics. 

F1-Score   
        

        
                                                                                                                (4) 

 Precision (Pre). 

 Recall (Rec). 

These metrics allow for a comprehensive assessment of the model’s ability to classify both 

normal and attack classes correctly. 

Table 2 below shows the final results, confirming the strong performance. 
Table 2. Final results for the DNN Model in 2-class 

Accuracy Precision Recall F1-Score  

99.6% 99.6% 99.6% 99.6% 
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 Multi-Classification (6-Class) 

It deals with the 6-class task of classifying things considered benign and those that are attacks. 

These attacks are divided into five main classes: DDoS, DoS, MQTT, RECON, and 

SPOOFING.  

Figure 5 consists of two plots displaying the training and validation performance of a deep 

learning model. The left plot demonstrates a consistent increase in both the training and 

validation accuracy over the epochs. The right plot shows a consistent decrease in both training 

and validation loss.  

 
Figure 5. Accuracy and Loss over epochs for the DNN Model in 6-class 

 

The confusion matrix in Figure 6 for the 6-class classification shows strong performance, with 

high values along the diagonal indicating correct predictions. Misclassifications are relatively 

low, suggesting the model effectively distinguishes between most attack types and benign traffic. 

 
Figure 6. Confusion Matrix for the DNN Model in 6-class 

 

The results in Table 3 exhibit the impressive performance of the DNN model in the 6-class 

categorization task.  
Table 3. Final results for the DNN Model in 6-class 

Accuracy Precision  Recall F1-Score 

98.9% 99.1% 98.9% ..99% 
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 Complex multi-classification (19-Class) 

The model is capable of distinguishing between different classes of attack traffic, which 

includes 18 types of attacks and normal behavior. 

The training and validation performance of the model for 35 epochs is illustrated in Figure 7. On 

the left: the accuracy curve is monotonically increasing, while the validation model overtakes the 

training model after 15 epochs. The maximum achieved points for the accuracy were 93%. 

This indicates a significant capacity for generalization. On the right, the loss curve exhibits a 

consistent decrease, with the validation loss being lower than the training loss, which is 

approximately 0.15.  

 
Figure 7. Accuracy and Loss over epochs for the DNN Model in 19-class 

 

The confusion matrix in Figure 8 demonstrates how well the model can differentiate between 

different types of attack traffic and benign. The Diagonal values represent instances that are 

correctly classified for each class, whereas the Off-diagonal values represent instances that are 

misclassified. 

 
Figure 8. Confusion Matrix for the DNN Model in 19-class 
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The final results in Table 4 show the overall activity of the DNN model in the 19-class 

categorization task.  
Table 4. Final results for the DNN Model in 19-class 

Accuracy Precision  Recall F1-Score 

93 19 % 92.4% ..91% 90.8% 

 

3.1.2 The Proposed Hybrid Model (GRU-DNN) Result  
 

 Binary classification (2-class) 

The hybrid GRU-DNN model is employed in the binary classification task (Attack or 

Benign).  

Figure 9 shows the training and validation performance of the hybrid GRU-DNN model for the 

binary classification task (Attack and Benign). The graph on the left shows a consistent 

incremental increase in both training and validation accuracy over 16 epochs, with both graphs 

converging around 99.6%. This indicates a highly accurate process that is not overfit. The graph 

on the right illustrates the loss of training and validation over the same epochs.  

 
 Figure 9. Accuracy and Loss over epochs for the Hybrid Model (GRU-DNN) in 2-class 

 

The confusion matrix in Figure 01 for the hybrid GRU-DNN model in the binary classification 

task (Attack vs. Benign) demonstrates high accuracy. The model accurately classified 1,572,343 

attacks and only 33,652 benign samples with a tiny number of misclassifications. These values 

demonstrate the high sensitivity and specificity of the model, proving that it can successfully 

detect cyber-attacks without many false positives and negatives. 

 
 Figure 10. Confusion Matrix for the Hybrid Model (GRU-DNN) in 2-class 
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Table 5 summarizes the overall metrics: Accuracy, Precision, Recall, and F1-Score, which are 

all at 99.6%. These high scores are indicative of the effectiveness, sensitivity, and precision of 

the model, which makes it very reliable with respect to the detection of intrusions in IoMT 

networks. 
Table 5. Final results for the Hybrid Model (GRU-DNN) in 2-class 

Accuracy Precision  Recall F1-Score 

99.6% 99.6% 99.6% 99.6% 

 

 Multi-Classification (6-class) 

The hybrid GRU-DNN model is used for 6-class classification. These are referred to as 

benign and attacks. Those attacks currently fall under five major categories: DDoS, DoS, 

MQTT, RECON, and SPOOFING. 

The training and validation performance of the proposed hybrid GRU–DNN model for the 6-

class intrusion detection problem is depicted in Figure 11 across 40 epochs. The left figure 

shows validation and training accuracy, while the right figure shows the loss curves. 

 
Figure 00. Accuracy and Loss over epochs for the Hybrid Model (GRU-DNN) in 6-class 

 

The confusion matrix of the test results on 6-class for GRU-DNN model is shown in Figure 12, 

where the major classes DDoS, DoS, MQTT, and Benign are highly accurate. Small 

misclassifications were detected, especially in RECON and SPOOFING, which can be attributed 

to class imbalance and feature commonality. 

 
Figure 02. Confusion Matrix for the Hybrid Model (GRU-DNN) in 6-class 
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Table 6 shows that the GRU-DNN model performs well in detecting different types of attacks in 

the IoMT networks. 
Table 6. Final results for the Hybrid Model (GRU-DNN) in 6-class 

Accuracy Precision  Recall F1-Score 

99.5% 99.6% 99.5% 99.5% 

 

 Complex multi-classification (19-class) 

The proposed hybrid deep learning model using both Gated Recurrent Units (GRU) and Deep 

Neural Networks (DNN) is adopted on a 19-class classification task using the CICIoMT2024 

dataset. 

The performance of the model on identifying Benign traffic is impressive, where 33,932 samples 

have been identified. The model clearly has a good identifying capability against different 

MQTTDDoS attacks, such as MQTTDDoSConnectFlood and MQTTDDoSPublishFlood. In 

addition, despite the same temporal trend as well as the identical payload, both attacks tend to be 

more misclassified than in the GRU-DNN model. It shows that the model can learn temporal 

patterns. 

Classes such as TCPIPDDoSICMP, TCPIPDDoSSYN, TCPIPDDoSTCP and TCPIPDDoSUDP 

also achieved a very high precision and recall. 

For example, the model accurately predicted 349,286 samples of TCPIPDDoSICMP. This 

suggests that the hybrid model has the capacity to deal with packet-based features and 

differentiate subtle differences in the way TCP is being attacked. 

Some difficulty is apparent in classes with lower representation, such as ReconPortScan and 

ReconOSScan, which have a higher rate of misclassification. This may be caused by an 

imbalanced class or by shared spaces for overlapping recognition attacks. 
Figure 03 shows the training and validation performance of the hybrid GRU-DNN model across 

50 epochs; the performance is evaluated on a 19-class classification task. 

The graph on the left shows the increase in accuracy, followed by a flat line. The validation 

accuracy is 98.4%, while the training accuracy is 94%, indicating that the model has acquired the 

task without excessive training. 

The graph on the right, i.e., the loss function, supplements this observation. Both the training and 

validation costs decrease significantly over time, which is particularly true for the early epochs. 

The validation loss is minimal and consistent at around zero, which indicates that the model is 

effective at generalizing to unobserved data.  

These curves in total prove the robustness and effectiveness of the GRU-DNN mixed model on 

multi-class types for intrusion detection under an IoMT environment. 

 
Figure 03. Accuracy and Loss over epochs for the Hybrid Model (GRU-DNN) in 19-class 
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Strong classification results are evident from the confusion matrix, Figure 14, for the GRU-DNN 

hybrid model on the 19-class. The effectiveness of this model is emphasized by correctly 

identifying Benign traffic and being able to differentiate with same malicious type fully due to 

temporal behaviour patterns. It also shows high precision and recall on the TCPIPDDoS attacks, 

which indicates that it can detect classes such as ReconPortScan, ReconOSScan, and present 

gross misclassification rates because of class bias or feature overlap. Conclusively, the results 

reflect the model’s robustness and its appropriateness for intelligent intrusion detection in IoMT 

environments. 

 
Figure 14. Confusion Matrix for the Hybrid Model (GRU-DNN) in 19-class 

 

The 19-class classification task final metrics of the hybrid GRU-DNN model are listed in Table 

7. These results demonstrate that the model can discriminate between legitimate and malicious 

traffic with a high recall rate or precision. The reported metrics, consistent across the subsets, are 

a testament to the applicability of the model in detecting intrusions in the IoMT environment. 
Table 7. Final results for the Hybrid Model (GRU-DNN) in 19-class 

Accuracy Precision  Recall F1-Score 

98.4% 98.6% 98.4% 98.2% 

 

..2 Comparison with Related Work 

Table 8 demonstrates the proposed GRU-DNN hybrid model with other models that were 

reported earlier using the CICIoMT2024 dataset. The comparison is performed on different 

classification duties, i.e., 2-class, 6-class, and 19-class, to prove the range of model consistency 

and its superiority in precision, recall, accuracy, and F1-score. Hyperparameters as well as 

training conditions were consistent over all of our models to make a fair comparison. 

The proposed GRU-DNN hybrid model demonstrates outstanding performance, surpassing other 

models across all scenarios. 
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Table 8. Comparison with Related Work on the CICIoMT2024 dataset 

Model No. of class Accuracy Precision Recall F1-Score 

The DNN model 

2 99.6% 99.6% 99.6% 99.6% 

6 98.9% 99.1% 98.9% ..99% 

19 93 19 % 92.4% ..91% 90.8% 

The proposed Hybrid Model (GRU-DNN) 

2 99.6% 99.6% 99.6% 99.6% 

6 99.5% 99.6% 99.5% 99.5% 

19 98.4% 98.6% 98.4% 98.2% 

DNN
4
 

2 99.6% 95.6% 94.8% 95.2% 

6 73.4% 72.5% 69.3% 66.5% 

19 72.9% 64.9% 55.3% 52.2% 

 

LSTM
8
 

2 100% 100% 100% 100% 

6 98.0% 98.0% 98.0% 98.0% 

19 95.0% 96.0% 95.0% 95.0% 

  

4. Conclusion 

In this study, we developed a hybrid GRU-DNN-based IDS for multiclass intrusion detection 

in IoMT settings using the CICIoMT2024 dataset. The proposed approach presented a clear gain 

over baseline methods, in particular when dealing with difficult classification tasks. The design 

of the model demonstrates how deep learning’s hybrids can aid medical networks in 

accommodating their evolving security requirements while remaining accurate. The GRU-DNN 

technique is also promising for securing compliant IoMT systems. The main novelty of our study 

is that we are the first one to employ a GRU-DNN ensemble model on the CICIoMT2024 dataset 

for multi-class classification (2, 6, and 19 classes), and comparisons are only made to two 

existing works (DNN it was using by
4
 and 

8
 with LSTM) that used the same class configurations. 

Despite the good performance, there are some limitations in the proposed GRU-DNN model, 

especially its time-consuming training process for being complicated. 

Possible future works could include further generalizing the model to new threats, considering 

the computational burden for real-time practical applications, and incorporating it into a real-

world healthcare domain. 

In summary, the GRU-DNN-based IDSs show a potential for secure and robust deployment in 

regulated healthcare environments, providing an effective method for safeguarding sensitive 

medical infrastructures. 
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