

Indoor Air Quality Detection inside Several Healthcare Units of Medical City in Baghdad

Ons Thamir Abbas^{1*} , Ahmed Jasim Mohammed²

^{1,2}Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq

*Corresponding Author

Received: 6/June/2025.

Accepted: 8/October/2025

Published: 20/January/2026

doi.org/10.30526/39.1.4225

© 2026 The Author(s). Published by College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad. This is an open-access article distributed under the terms of the [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

Abstract

Indoor air quality (IAQ) in healthcare facilities has become a critical area of research due to its significant influence on patient health, staff safety, and operational efficiency. This study examines the levels of various indoor air pollutants, including formaldehyde (HCHO), volatile organic compounds (VOCs), carbon dioxide (CO₂), nitrogen dioxide (NO₂), humidity, and temperature, in multiple healthcare units within the Medical City of Baghdad from September to the end of December of 2024 from different units, such as consulting units, waiting halls, corridors, and emergency rooms. Different IAQ monitoring systems that provide real-time measurements of these parameters were used in this study. The findings show that CO₂ levels tend to be elevated, with a significant difference detected in Baghdad Teaching Hospital. NO₂ concentrations were also monitored, which suggested a possible connection with specific activity within the healthcare settings. Formaldehyde and VOC levels were examined in order to understand their effects on respiratory health among patients and workers and showed that HCHO concentrations were consistently elevated in Sep.-Oct., while the Medical City Dialysis Center documented the highest VOC levels during these months. Humidity and temperature measurements were crucial in evaluating the effectiveness of ventilation systems and their impact on maintaining a healing environment. In conclusion, the Medical City Center was characterized by consistently elevated levels of temperature, formaldehyde, VOCs, and NO₂, particularly during September and October, whereas the Children's Welfare Teaching Hospital exhibited the lowest pollutant concentrations alongside higher humidity. Ghazi Al-Hariri Hospital, in contrast, maintained relatively stable air quality indicators throughout the study period. This research demonstrates the importance of a regular IAQ assessment in healthcare settings to reduce health risks resulting from poor air quality. By identifying and addressing air quality issues proactively, healthcare providers can enhance patient safety, comply with established health standards, and improve staff working conditions.

Keywords: Indoor air quality (IAQ), CO₂, NO₂, VOC, Temperature, Humidity

1. Introduction

According to the World Health Organization, air pollution is the most significant environmental health threat worldwide and poses a substantial negative impact on human health^{1,2}. Concern over indoor air quality (IAQ) has grown significantly as a result of the air pollutants' detrimental influence on human health, including elevated risks of cancer and respiratory and cardiovascular disorders³⁻⁶.

Maintaining optimal indoor air quality (IAQ) in intricate hospital environments is essential to protect patients and healthcare workers from nosocomial infections and occupational diseases⁷. IAQ is a complicated and dynamic issue that is influenced by multiple factors, including indoor

activities, outdoor air quality, indoor occupant density, the widespread use of alcohol-based cleaning products indoor intrinsic emissions, the presence of anesthetic gases, the chemicals employed in laboratory settings, and ventilation methods (e.g., equipment/furniture/coatings)⁸. The necessity of effectively regulating indoor air quality in healthcare facilities is highlighted by the existence of susceptible persons and the features of ongoing operations. Healthcare workers often complain of headaches, fatigue, dryness, and irritation of the eyes and skin, all of which have been linked to low IAQ⁹⁻¹¹. Furthermore, hospitals are open twenty-four hours a day, seven days a week, with no downtime to recuperate from emissions from operations and the resulting influence on indoor air quality^{12,13}.

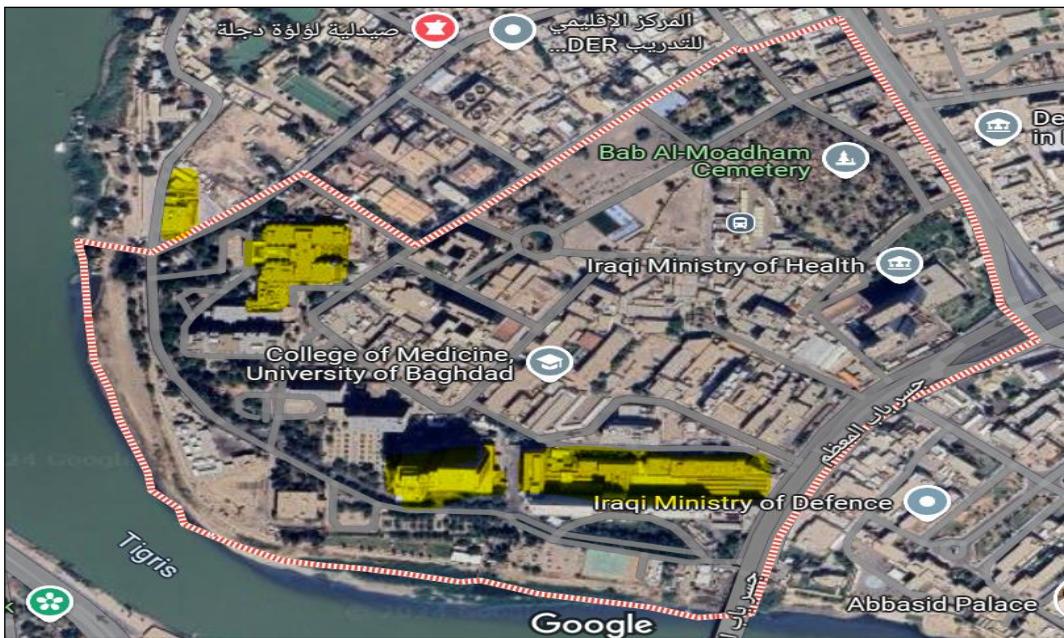
The most prominent measured pollutants impacting indoor air quality in hospitals include chemical pollutants like carbon dioxide (CO₂), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and particulate matter (PM), alongside biological contaminants like bacteria, fungi, viruses, and pollen^{14,15}.

Carbon dioxide levels serve as an indicator of ventilation adequacy, with elevated concentrations implying insufficient air exchange, which can increase the risk of airborne disease transmission¹⁶. High-resolution CO₂ monitoring in enclosed environments serves as a particular alert system to prevent airborne viral transmission by optimizing human occupancy, especially in sensitive settings such as hospitals during the SARS-CoV-2 pandemic¹⁷.

A research studied CO₂ levels in a wide range of settings in an acute care hospital to assess ventilation and has shown that CO₂ concentrations often exceed 800 parts per million (ppm) during periods of high occupancy (like small conference room (31 m³) with 8 people, office (38.5 m³) with 3 people, and bathroom in patient care area with 2 people) or when ventilation is compromised¹⁸. NO₂ exposure poses potential health problems, especially for susceptible populations such as children and individuals with respiratory conditions¹⁹. Thus, understanding the dynamics of air pollutants like NO₂ and CO₂ within hospitals is essential for establishing effective strategies to improve indoor air quality, minimize the risk of infection transmission, and enhance overall healthcare outcomes.

This study seeks to comprehensively evaluate indoor air quality in multiple healthcare facilities within Baghdad Medical City by measuring key air pollutants, including carbon dioxide, nitrogen dioxide, formaldehyde, and volatile organic compounds, as well as humidity and temperature during both summer and winter seasons.

2. Materials and Methods


2.1 Air quality measurement

Levels of air quality parameters, including nitrogen dioxide (NO₂), carbon dioxide (CO₂), Volatile organic compounds (VOCs), and formaldehyde (HCHO) were measured in this study at various locations inside three hospitals and one center (Baghdad Teaching Hospital, Children Welfare Teaching Hospital, Ghazi Al-Hariri Hospital for Surgical Specialties, and Medical City Dialysis Center). Measurements were taken from different units, such as consulting units, waiting halls, corridors, and emergency rooms. High-risk zones such as operating rooms and intensive care units were excluded due to logistical and infection control considerations requiring special protocol, from the period between September and the end of December 2024, as shown in **Figure 1**.

During the peak hours in the morning between 9-12 AM, the temperatures (°C) and percent relative humidity (%RH) were recorded simultaneously with the measurement of air pollutants using an SL-4112 (AUTO RANGE, SOUND METER + TYPE K TEMP, OPTIONAL % RH, ANEMOMETER, LIGHT). Levels of all gaseous air pollutants were measured directly by RAE Systems MultiRAE Plus PGM-50-5P multi-gas monitor detector and Extech CO250. Levels of VOCs and HCHO were assessed by an air quality monitor. At each measuring point, three replicate readings were taken for each pollutant at each site. All monitoring instruments were placed at a height between 1.0 and 1.5 meters above floor level, corresponding to the typical

human breathing zone, in accordance with international indoor air quality monitoring recommendations for healthcare environments. This ensured that it reflected actual occupant exposure.

The readings were taken from September to the end of December of 2024 using a short measurement technique (30 min/ reading). It must be mentioned that all instruments were calibrated before measurements according to standard operating procedures recommended by the manufacturers.

Figure 1. Map of the study area showing the hospitals in which indoor air pollutants were measured (yellow buildings).

2.2 Statistical analysis

The collected raw results were analyzed using the SPSS program (V.20, IBM) by using an independent T-test and One-Way ANOVA and obtaining Least Significant Difference (LSD) as appropriate. The outcomes were expressed as mean \pm S.E., and a significant difference was considered at $p \leq 0.05$.

3. Results

From the results shown in **Tables 1, 2, 3, and 4**, six variables were studied from September to the end of December of 2024 in three different hospitals and one center inside Medical City, which is located in the same area in Baghdad City. The data collected highlights the mean values of air quality parameters across these facilities. Air sample were taken from different working areas (waiting halls, lobbies, corridors, emergency rooms, and consulting units):

3.1 Temperature and Humidity

The Medical City Dialysis Center exhibited the highest mean temperature (30.5°C) in September and October, whereas the Children Welfare Teaching Hospital recorded the lowest temperatures during the study period (Sep.-Oct.: 26.88°C ; Nov.-Dec.: 26.25°C) and the highest humidity in Sep.-Oct. (44.38%). The lowest humidity value was recorded during Nov.-Dec. at the Medical City Dialysis Center (27.0%). These findings highlight substantial inter-hospital variability in environmental conditions, with both temperature and humidity suggesting seasonal variations.

3.2 HCHO and VOC

Formaldehyde (HCHO) and volatile organic compound (VOC) levels were measured across four hospitals in Medical City in Baghdad during the four months. Notably, HCHO concentrations

were consistently elevated in Sep.-Oct. compared to Nov.-Dec., with the most pronounced seasonal decline at the Medical City Dialysis Center (from 159 ± 41 to $139 \pm 14 \mu\text{g}/\text{m}^3$), whilst the lowest was recorded at the Children Welfare Teaching Hospital in Nov.-Dec. ($98.25 \pm 5.53 \mu\text{g}/\text{m}^3$). Regarding VOCs, the Medical City Dialysis Center documented the highest Sep.-Oct. value ($0.124 \pm 0.007 \text{ ppm}$), whereas the lowest detectable VOC concentration was found at the Children Welfare Teaching Hospital during Nov.-Dec. ($0.001 \pm 0.001 \text{ ppm}$); at Ghazi AL-Hariri Hospital for Surgical Specialties, both HCHO and VOC levels remained relatively stable throughout the four months, with only slight declines observed in Nov.-Dec.

3.3 NO_2 and CO_2

Nitrogen dioxide (NO_2) is a strongly reactive gas that is emitted into the atmosphere mainly through the oxidation of nitric oxide (NO). During this study, the peak Sep.-Oct. NO_2 levels were observed at the Medical City Dialysis Center, with a concentration of $1.9 \pm 0.3 \text{ ppm}$, whereas the lowest Sep.-Oct. concentration was noted at the Children Welfare Teaching Hospital at $1.275 \pm 0.048 \text{ ppm}$. Baghdad Teaching Hospital recorded the lowest level at $1.021 \pm 0.066 \text{ ppm}$ during Nov.-Dec. The Ghazi Al-Hariri Hospital reported intermediate values in both periods, with Sep.-Oct. levels at $1.45 \pm 0.078 \text{ ppm}$ and $1.275 \pm 0.111 \text{ ppm}$ in Nov.-Dec. These results highlight that the Dialysis Center consistently recorded the highest NO_2 concentration across the four months, whereas the Baghdad Teaching Hospital had the lowest levels in Nov.-Dec., and the Children Welfare Teaching Hospital had the lowest in Sep.-Oct.

For CO_2 concentrations, Baghdad Teaching Hospital exhibited the highest Sep.-Oct. concentration at $1304.5 \pm 63.82 \text{ ppm}$, significantly greater than its Nov.-Dec. value of $1008.75 \pm 17.99 \text{ ppm}$. In contrast, the Medical City Dialysis Center documented the lowest Sep.-Oct. CO_2 concentration at $836 \pm 415 \text{ ppm}$ and Nov.-Dec. level of $789 \pm 207 \text{ ppm}$.

Table 1. Mean of air pollutants inside Baghdad Teaching hospital during the study period

Parameter	Study period	Mean \pm S.E.	P value	WHO levels ^{22, 29, 32}
Temperature ($^{\circ}\text{C}$)	Sep.-Oct.	29.5 ± 2.598	0.8 NS	20-24
	Nov.-Dec.	29 ± 1.080		
Humidity (%)	Sep.-Oct.	$36.1751.658$	0.27 NS	30-60
	Nov.-Dec.	32.75 ± 2.323		
HCHO ($\mu\text{g}/\text{m}^3$)	Sep.-Oct.	125 ± 28.662	0.6 NS	100
	Nov.-Dec.	110.5 ± 19.985		
VOC (ppm)	Sep.-Oct.	0.029 ± 0.024	0.86 NS	Below 0.1222
	Nov.-Dec.	0.037 ± 0.035		
NO_2 (ppm)	Sep.-Oct.	1.378 ± 0.141	0.06 NS	0.1(short term exposure 1hr)
	Nov.-Dec.	1.021 ± 0.066		
CO_2 (ppm)	Sep.-Oct.	1304.5 ± 63.819	0.015*	Less than 1000ppm
	Nov.-Dec.	1008.75 ± 17.992		

* significant differences, NS= Non-significant

Table 2. Mean of air pollutant inside Medical city dialysis center during the study period.

Parameter	Study period	Mean \pm S.E.	P value	WHO levels ^{22, 29, 32}
Temperature ($^{\circ}\text{C}$)	Sep.-Oct.	30.5 ± 5.5	0.76 NS	20-24
	Nov.-Dec.	28.5 ± 1.5		
Humidity (%)	Sep.-Oct.	29.6 ± 0.026	0.048*	30-60
	Nov.-Dec.	27 ± 2		
HCHO ($\mu\text{g}/\text{m}^3$)	Sep.-Oct.	159 ± 41	0.7 NS	100
	Nov.-Dec.	139 ± 14		
VOC (ppm)	Sep.-Oct.	0.124 ± 0.007	0.1 NS	Below 0.1222
	Nov.-Dec.	0.064 ± 0.014		
NO_2 (ppm)	Sep.-Oct.	1.9 ± 0.3	0.2 NS	0.1(short term exposure 1hr)
	Nov.-Dec.	1.15 ± 0.15		
CO_2 (ppm)	Sep.-Oct.	836 ± 415	0.9 NS	Less than 1000ppm
	Nov.-Dec.	789 ± 207		

* significant differences, NS= Non-significant

Table 3. Mean of air pollutants inside Children Welfare Teaching Hospital during the study period

Parameter	Study period	Mean±S.E.	P value	WHO levels ^{22, 29, 32}
Temperature (°C)	Sep.-Oct	26.875±0.718	0.6 NS	20-24
	Nov.-Dec.	26.25±0.946		
Humidity (%)	Sep.-Oct	44.375±5.09	0.2 NS	30-60
	Nov.-Dec.	36±3.028		
HCHO (µg/m ³)	Sep.-Oct	114.75±20.508	0.47 NS	100
	Nov.-Dec.	98.25±5.528		
VOC (ppm)	Sep.-Oct	0±0	0.36 NS	Below 0.1222
	Nov.-Dec.	0.001±0.001		
NO ₂ (ppm)	Sep.-Oct	1.275±0.048	0.14 NS	0.1(short term exposure 1hr)
	Nov.-Dec.	1.125±0.075		
CO ₂ (ppm)	Sep.-Oct	1030±155	0.4 NS	Less than 1000ppm
	Nov.-Dec.	889±67		

* significant differences, NS= Non-significant

Table 4. Mean of air pollutants inside Ghazi Al-Hariri Hospital for surgical specialties during the study period

Parameter	Study period	Mean±S.E.	P value	WHO levels ^{22, 29, 32}
Temperature (°C)	Sep.-Oct	26.5±0.65	0.8 NS	20-24
	Nov.-Dec.	26.25±0.95		
Humidity (%)	Sep.-Oct	36.125±2.164	0.19 NS	30-60
	Nov.-Dec.	32±1.73		
HCHO (µg/m ³)	Sep.-Oct	120.5±15.88	0.47 NS	100
	Nov.-Dec.	105.25±11.99		
VOC (ppm)	Sep.-Oct	0.027±0.015	0.9 NS	Below 0.1222
	Nov.-Dec.	0.024±0.016		
NO ₂ (ppm)	Sep.-Oct	1.45±0.087	0.26 NS	0.1(short term exposure 1hr)
	Nov.-Dec.	1.275±0.111		
CO ₂ (ppm)	Sep.-Oct	1142.5±77.89	0.06 NS	Less than 1000ppm
	Nov.-Dec.	871±88.35		

* significant differences, NS= Non-significant

4. Discussion

Indoor air quality (IAQ) is a complicated and dynamic problem in hospitals and is predominantly influenced by various factors: outdoor air quality, the widespread use of alcohol-based cleaning products and disinfectants, ventilation practice, the presence of anesthetic gases, and the chemicals employed in laboratory settings ^{8, 20}.

It was previously stated that all sites are located within the same geographic area (Medical city); therefore the observed variations in temperature cannot be attributed to seasonal differences but rather to poor performance and malfunctioning of the central cooling units. Furthermore, Baghdad Teaching Hospital was established in 1970, Ghazi Al-Hariri Hospital in 1987, and Child Welfare Hospital in 1984. As for the Dialysis Center, it was opened at the end of 2022. Among these, the center is the smallest and the closest to the street. It is noteworthy that all these hospitals were crowded, with Baghdad and Children Welfare hospitals being the most crowded and frequented because they are teaching hospitals, whereas Gazi Al-Hariri Hospital experienced lower, yet still considerable, levels of crowding. The area in general is characterized by heavy vehicular traffic. All these factors influence the concentration and quality of indoor air within these hospitals.

The results of this research show high temperatures with minimal variation in the hospitals during the study period compared to the levels suggested by WHO inside healthcare settings (20-24 °C) to ensure optimal comfort and health outcomes. For summer, recommended hospital temperatures can extend up to 27 °C in some areas (such as emergency rooms and certain inpatient/outpatient areas). Previous researchers indicated that seasonal fluctuations in temperature and humidity can influence patient outcomes, especially for respiratory and cardiovascular diseases ^{21, 22}.

The HCHO and VOC values are higher in Sep.-Oct. than in Nov.-Dec., which is likely due to increased temperatures enhancing the off-gassing of formaldehyde and VOCs from building materials, furnishings, and cleaning agents and poor ventilation²³. Previous investigations based on the chemical characterization of hospitals' indoor air have highlighted that the use of disinfectants and sterilizers is associated with the emission of aldehydes (glutaraldehyde, formaldehyde) and alcohols (ethanol, isopropanol), the latter representing the main components of alcohol-based hand-rubbing solutions^{24, 25}.

Formaldehyde concentrations in indoor air, such as in hospitals, generally vary but are often found below occupational safety limits. For example, average indoor levels in some monitored environments are around 10 to 50 ppb (0.01 to 0.05 ppm), with occasional peaks depending on the presence of emission sources²⁶. Prolonged exposure to formaldehyde above 0.1 mg/m³ is frequently used as a benchmark for indoor air quality, which can cause sensory irritation in the nose, eyes, and throat and may exacerbate respiratory conditions²⁷.

According to the WHO, the recommended indoor air quality limit for formaldehyde to protect patients and all building occupants is 0.1 mg/m³ (approximately 0.08 ppm) as a 30- minute average, while the Occupational Safety and Health Administration (OSHA) sets a permissible exposure limit (PEL) of 0.75 ppm as an 8-hour time-weighted average for workplace air, including healthcare facilities²⁸. The TVOC levels are within or near the acceptable range; cumulative and chronic exposure, especially in sensitive environments such as hospitals, should be minimized^{29, 30}.

The present study aligns with the findings of two investigations^{31,32}, which confirm that indoor HCHO levels in hospitals often exceed WHO guidelines, particularly in poorly ventilated or high-activity areas. It was found that HCHO levels in neonatal incubators varied seasonally but often approached or exceeded international recommendations. Nevertheless, this finding was inconsistent with the latter finding of an inverse correlation between temperature and HCHO/VOC levels, with higher concentrations in Nov.-Dec., possibly due to reduced ventilation, whereas the current investigation found elevated levels of HCHO in summer, which may reflect elevated off-gassing from building materials or variations in ventilation practices.

CO₂ serves as a key indicator of ventilation adequacy and occupancy levels. The heightened summer CO₂ levels at Baghdad Teaching Hospital may indicate an increase in patient or visitor numbers, reduced ventilation rates, or both. A study revealed that significant correlations were observed between CO₂ and NO₂ concentrations, with exposure levels differing between susceptible and general populations due to indoor environmental factors (temperature, relative humidity, seasons, and facility type)¹⁹, leading to disproportionate health impacts on children compared to adults³³.

Indoor CO₂ values above 1000 ppm reflect inadequate ventilation, which can lower occupants' productivity and performance. Consequently, organizations like the CDC and the French Public Health Council acknowledge indoor CO₂ levels as an indicator of ventilation quality, especially relevant during the COVID-19 pandemic³⁴.

Comparing the NO₂ levels with other investigations conducted in Baghdad, similar trends and concentration ranges have been reported. For example, a study monitored indoor air quality in Baghdad hospitals and observed that NO₂ levels tend to decrease during the cold season, yet remain higher in hospitals situated in areas with high traffic, dense urban development, or widespread use of onsite electricity generators, which explains the increased NO₂ levels noted in this research³¹. Moreover, the NO₂ concentrations measured in this study are substantially higher than the WHO-recommended limits of 0.01 ppm, indicating a serious concern for indoor air quality^{8, 35}.

5. Conclusion

The study evaluates the air quality within three hospitals and one center located in Medical City, Baghdad. The Medical City Dialysis Center consistently recorded elevated levels of

temperature, formaldehyde, VOCs, and NO₂, especially during Sept.-Oct. The Children Welfare Teaching Hospital, on the other hand, exhibited the lowest pollutant values and higher humidity. Throughout the year, Ghazi Al-Hariri Hospital had relatively consistent air pollutant levels. This highlights the importance of air quality control and ventilation enhancement to protect the patients and healthcare workers.

Acknowledgment

The authors thank the staff at the Medical City in Baghdad for their cooperation and help in the air measurement process.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Funding

This research was not funded by any grant.

Ethical Clearance

Approval has been obtained from the hospitals of the Medical City in Baghdad to measure the pollutant parameters from within the hospital environment (code: 22970- 4/7/2024)

References

1. World Health Organization. Ten Threats to Global Health in 2019. <https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019>.
2. Mahmood M, Kamal KY, Hussein SS. Monitoring indoor air quality using low-cost IoT. J Techniques. 2025;7(2):21-8. www.doi.org/DOI-10.51173/jt.v7i2.1987.
3. Peixoto MS, de Oliveira Galvão MF, de Medeiros SRB. Cell death pathways of particulate matter toxicity. Chemosphere. 2017; 188: 32–48. www.doi.org/DOI-10.1016/j.chemosphere.2017.08.076.
4. Al-Taai SHH, al-Dulaimi WAM. Air Pollution: A Study of Its Concept, Causes, Sources and Effects. Asian J Water Environ Pollut. 2022;19(1):17-22. www.doi.org/DOI-10.3233/AJW220003.
5. Bari Fezea MA, Gathwan MA. Assessment of indoor air quality for closed cafés in Baghdad City, Iraq. Caspian J Environ Sci. 2023; 21(5): 1279-1287. www.doi.org/DOI-10.22124/cjes.2023.7430.
6. Bari Fezea MA, Gathwan MA. Effect of PM2.5 and PM10 on the Hematopoietic System of Cafés Workers in Baghdad. Ibn AL-Haitham J Pure Appl Sci. 2024; 37(3):88–97. www.doi.org/DOI-10.30526/37.3.3316.
7. Ibrahim F, Samsudin EZ, Ishak AR, Sathasivam J. Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: a mini-review. Front Public Health. 2022; 10:1067764. www.doi.org/DOI-10.3389/fpubh.2022.1067764.
8. Fonseca A, Abreu I, Guerreiro MJ, Barros N. Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research. Sustainability. 2022;14(2):967. www.doi.org/DOI-10.3390/su14020967.
9. Arikán İ, Tekin ÖF, Erbas O. Relationship between sick building syndrome and indoor air quality among hospital staff. Med Lav. 2018; 109:435-43. www.doi.org/DOI-10.23749/mdl.v110i6.7628.
10. Jafakesh S, Mirhadian L, Roshan ZA, Hosseini MJG. Sick building syndrome in nurses of intensive care units and its associated factors. J Holist Nurs Midwifery. 2019; 29:23–30. www.doi.org/DOI-10.32598/JHNM.29.3.
11. Lasomsri P, Yanbuaban P, Kerdpoca O, Ouypornkochagorn T. A development of low-cost devices for monitoring indoor air quality in a large-scale hospital. In: Proceedings of the 15th International Conference Electrical Engineering Computer Telecommunications Information Technology (ECTICON); 2018; 18-21. Chiang Rai, Thailand. p. 282-5. www.doi.org/DOI-10.1109/ECTICON.2018.8619934.
12. Rautiainen P, Hyttinen M, Ruokolainen J, Saarinen P, Timonen J, Pasanen P. Indoor air-related symptoms and volatile organic compounds in materials and air in the hospital environment. Int J Environ Health Res. 2019; 29:479. www.doi.org/DOI-10.1080/09603123.2018.1550194.

13. Rollins SM, Su FC, Liang X, Humann MJ, Stefaniak AB, LeBouf RF, Stanton ML, Virji MA, Henneberger PK. Workplace indoor environmental quality and asthma-related outcomes in healthcare workers. *Am J Ind Med.* 2020;63(5):417-428. www.doi.org/DOI-10.1002/ajim.23101.
14. Baudet A, Baurès E, Blanchard O, Le Cann P, Gangneux JP, Florentin A. Indoor carbon dioxide, fine particulate matter and total volatile organic compounds in private healthcare and elderly care facilities. *Toxics.* 2022;10(3):136. www.doi.org/DOI-10.3390/toxics10030136.
15. Othman MH, Azeez NM, Al-Gizzi IA. Investigation of air quality in medical centers in different places in Basra Province, South of Iraq. *Int J Sci Manag Stud.* 2022;5(14):225-30.
16. Laurent MR, Frans J. Monitors to improve indoor air carbon dioxide concentrations in the hospital: a randomized crossover trial. *Sci Total Environ.* 2022;806(Pt 3):151349. www.doi.org/DOI-10.1016/j.scitotenv.2021.151349.
17. Barbieri P, Zupin L, Lisen S, Torboli V, Semeraro S, Cozzutto S, Palmisani J, Di Gilio A, de Gennaro G, Fontana F, Omiciuolo C, Pallavicini A, Ruscio M, Crovella S. Molecular detection of SARS-CoV-2 from indoor air samples in environmental monitoring needs adequate temporal coverage and infectivity assessment. *Environ Res.* 2021;111200. www.doi.org/DOI-10.1016/j.envres.2021.111200.
18. Ha W, Zabarsky TF, Eckstein EC, Alhmidi H, Jencson AL, Cadnum JL, Donskey CJ. Use of carbon dioxide measurements to assess ventilation in an acute care hospital. *Am J Infect Control.* 2022 Feb;50(2):229-232. www.doi.org/DOI-10.1016/j.ajic.2021.11.017.
19. Hwang SH, Park WM. Indoor air concentrations of carbon dioxide (CO₂), nitrogen dioxide (NO₂), and ozone (O₃) in multiple healthcare facilities. *Environ Geochem Health.* 2020;42(5):1487-1496. www.doi.org/DOI-10.1007/s10653-019-00441-0.
20. Gola M, Settimo G, Capolongo S. Indoor Air Quality in Inpatient Environments: A Systematic Review on Factors that Influence Chemical Pollution in Inpatient Wards. *J Healthc Eng.* 2019;8358306. www.doi.org/DOI-10.1155/2019/8358306.
21. Mekhuri S, Quach S, Barakat C, Sun W, Nonoyama ML. A cross-sectional survey on the effects of ambient temperature and humidity on health outcomes in individuals with chronic respiratory disease. *Can J Respir Ther.* 2023;59:256-69. www.doi.org/DOI-10.29390/001c.90653.
22. Limaylla DC, Silva MO, Fortaleza CMCB. Temperature, humidity, and climate control in hospital units: A clue for understanding the seasonality of healthcare-associated pathogens. *Infect Control Hosp Epidemiol.* 2019;40(7):829-830. www.doi.org/DOI-10.1017/ice.2019.97.
23. Warburton T, Hamilton JF, Carslaw N, McEachan RRC, Yang TC, Hopkins JR, Andrews SJ, and Lewis AC. Human exposure to hospital indoor air pollutants during healthcare. *Environ Sci Process Impacts.* 2025, www.doi.org/DOI-10.1039/D4EM00756E.
24. Baurès E, Blanchard O, Mercier F, Surget E, le Cann P, Rivier A, Gangneux J-P, Florentin A. Indoor air quality in two French hospitals: measurement of chemical and microbiological contaminants. *Sci Total Environ.* 2018; 642: 168–179, www.doi.org/DOI-10.1016/j.scitotenv.2018.06.047.
25. Bessonneau V, Mosqueron L, Berrubé A, Mukensturm G, Buffet-Bataillon S, Gangneux JP, Thomas O. VOC contamination in hospital, from stationary sampling of a large panel of compounds, in view of healthcare workers and patients exposure assessment. *PLoS One.* 2013 Feb;8(2):e55535. www.doi.org/DOI-10.1371/journal.pone.0055535.
26. Golden R. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards. *Crit Rev Toxicol.* 2011;41(8):672-721. www.doi.org/DOI-10.3109/10408444.2011.573467.
27. Nielsen GD, Larsen ST, Wolkoff P. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. *Arch Toxicol.* 2017;91(1):35-61. www.doi.org/DOI-10.1007/s00204-016-1733-8.
28. Dugheri S, Massi D, Mucci N, Berti N, Cappelli G, Arcangeli G. Formalin safety in anatomic pathology workflow and integrated air monitoring systems for the formaldehyde occupational exposure assessment. *Int J Occup Med Environ Health.* 2021;34(3):319–338. www.doi.org/DOI-10.13075/ijomeh.1896.01649.
29. Riveron TP, Wilde MJ, Ibrahim W, Carr L, Monks P, Greening N, Gaillard E, Brightling C, Siddiqui S, Hansell A, Cordell R. Characterisation of volatile organic compounds in hospital indoor air and exposure health risk determination. *Build Environ.* 2023; 242:110513. www.doi.org/DOI-10.1016/j.buildenv.2023.110513.

30. World Health Organization. Formaldehyde. In: WHO guidelines for indoor air quality: selected pollutants. Copenhagen: WHO Regional Office for Europe; 2010. p. 103-56. ISBN: 9789289002134.

31. Haleem AM, Al-Obaidy AHMJ, Haleem SM. Air quality assessment of some selected hospitals within Baghdad city. Eng Technol J. 2019;37(1):59-63. www.doi.org/DOI-10.30684/etj.37.1C.9.

32. AlObaidi HJ, Al Easawi NARF. Assessment of ambient air quality in neonatal incubators at selected sites of Baghdad hospitals. Iraqi J Sci. 2023;64(8):3848-58. www.doi.org/DOI-10.24996/ijss.2023.64.8.1.

33. Dawood AT. Study of air quality in the vicinity of a hospital waste incinerator in Baghdad: a case study in Alkarkh maternity hospital. OAR. 2023;4(2):7-14. www.doi.org/DOI-10.52403/oar.20230202.02.

34. Fromme H, Debiak M, Sagunski H, Röhl C, Kraft M, Kolossa-Gehring M. The German approach to regulate indoor air contaminants. Int J Hyg Environ Health. 2019; 222:347–354. www.doi.org/DOI-10.1016/j.ijheh.2018.12.012.

35. Mohammed ZB, Kamal AAK, Resheq AS, Alabdraba WMS. Assessment of air pollution over Baghdad City using fixed annual stations and GIS techniques. J Southwest Jiaotong Univ. 2019;54(6):33. www.doi.org/DOI-10.35741/issn.0258-2724.54.6.33.