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Abstract

This paper is devoted to the analysis of nonlinear singular boundary value problems for
ordinary differential equations with a singularity of the different kind. We propose semi -
analytic technique using two point osculatory interpolation to construct polynomial solution,
and discussion behavior of the solution in the neighborhood of the singular points and its
numerical approximation. Two examples are presented to demonstrate the applicability and
efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of
the singularity point which appears to perform satisfactorily for singular problems.

Kay ward : Singular boundary value problems, ODE, BVP.
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1. Introduction

In the study of nonlinear phenomena in physics, engineering and other sciences, many
mathematical models lead to singular two-point boundary value problems (SBVP) associated
with nonlinear second order ordinary differential equations (ODE).
In mathematics, a singularity is in general a point at which a given mathematical object is not
defined, or a point of an exceptional set where it fails to be well-behaved in some particular
way, such as many problems in varied fields as thermodynamics, electrostatics, physics, and
statistics give rise to ordinary differential equations of the form :

y'=fix,y,y) , a<x<b 1)
On some interval of the real line with some boundary conditions(BC).
A two-point BVP associated to the second order differential equation (1) is singular if

one of the following situations occurs:
a and/or b are infinite; f is unbounded at some X [0,1] or f is unbounded at some particular
value of y ory’ [1] .

There are two types of a point xo € [0,1]: Ordinary Point and Singular Point. Also, there
are two types of Singular Point : Regular and Irregular Points, A function y(x) is analytic at X
if it has a power series expansion at X, that converges to y(x) on an open interval containing
Xo. A point Xg is an ordinary point of the ODE (2), if the functions P(x) and Q(x) are analytic
at Xo. Otherwise Xq is a singular point of the ODE, i.e.

y" +P(X)y +Q(x)y =0 (2
P(X) = Po+ P1(X-Xg) + Pa(X-X0)*+........ = ZP‘ (X=X,)' (3
QM) = Qo+ QuxxXg) + QoK)+ oo = P Q%) (@)

On the other hand, if P(x) or Q(x) are not analytic at Xo then X is said to be a singular

2]

There are four kinds of singularities :

The first kind is the singularity at one of the ends of the interval [0,1] ;

The second kind is the singularity at both ends of the interval [0,1]

The third kind is the case of a singularity in the interior of the interval,

The forth and final kind is simply treating the case of a regular differential equation
on an infinite interval.
In this paper, we focus on the first kind.

2. Solution of Second Order Nonlinear SBVP
In this section , we suggest semi analytic technique to solve second order nonlinear
SBVP as following, we consider the SBVP :
X"y +f(x,y,y)=0 , (5a)
gi(y(0), y(1), y(0), y(1))=0, i=1,2, meN , (5b)
where f, g1, g2 are in general nonlinear functions of their arguments .
The simple idea behind the use of two-point polynomials is to replace y(x) in problem
(5), or an alternative formulation of it, by a P2,+1 which enables any unknown boundary
values or derivatives of y(x) to be computed .
Therefore, the first step is to construct the P,,+1 and to do so, we need the Taylor
coefficients of y (x) atx =0 :
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y=a,+a,x+ > ax : (6)
i=2 )
where y(0)= ao, y'(0)= a, y"(0) / 2! =ay,..., y(0) /il = & , =3, 4,...
then insert the series forms (6) into (5a) and equate coefficients of powers of x to obtain a; .
Also we need Taylor coefficient of y(x) about x = 1:

o0

y=by+b,(x-1)+ z b, (x-1)’ , (7)

i=2

where y(1) = by y'(1) =b1, y"(1) /2! =by, ..., yV(@) /il =b;,i=34,...

then insert the series form (7) into (5a) and equate coefficients of powers of (x-1) to obtain by,
then derive equation (5a) with respect to x and iterate the above process to obtain az and bz ,
now iterate the above process many times to obtain as, b4, then as, bs and so on, that is, we can
get a; and b; for all i > 2( the resulting equations can be solved using MATLAB to obtain a;
and b; for all i>2 ), the notation implies that the coefficients depend only on the indicated
unknowns ao, a1, bo, b1, we get two of these four unknown by the boundary condition. Now,
we can construct a P2n.+1(X) from these coefficients ( as and b;i$ ) by the following :

Pai= D {a1QI00+ (1)'bi Q1) } , ®)

where  (x1/j)(1-x)"* Zf [:”j X =Q, (/]!

s=0
it can be seen that (8) have only two unknowns from ay, b, a; and b; to find this, we integrate
equation (5a) on [0, x] to obtain :
X"y ~mx™y() + mm-1) [ X"y(x) dx +[ Oy, y)dx=0 (%)
0 0
and again integrate equation (9a) on [0, x] to obtain:

X"y(X) —2mi x™y(x) dx +m(m-1)f (l-x)xm'zy(x)dx+i (1-x)f(x,y,y) = 0, (9b)
Putting X = 1Oin (9) then gives : 0 0
by—mbo+ m(m-1) [ x™?y(x) dx + [ f(x,y,y) dx=0 , (10a)

and
1

1 1
bo—zmj X™Ly(x)dx +m(m-1)j (1-X)X™2 y(x) dx + j (1-X)f(x, y, y)dx =0, (10b)

0 0 0

Use Pan+1 as a replacement of y(x) in ( 10 ) and substitute the boundary conditions (5b)
in (10) then, we have only two unknown coefficients by, by and two equations (10) so, we can
find by, by for any n by solving this system of algebraic equations using MATLAB, so insert
b and by into (8), thus (8) represents the solution of (5).

Extensive computations have shown that this generally provides a more accurate
polynomial representation for a given n .
3. Examples

In this section, we introduce two examples of second order SBVP, non homogenous,
nonlinear ordinary differential equations with two point BC to assess the performance of the
proposed method.
Example 1 : Emden's equation

Emden's equation arises in modeling a spherical body of gas. The PDE of the model is

reduced by symmetry to the ODE :
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.}-'”+ g}.1+}.5 - D
X

X € [0, 1] , the coefficient 2/x is singular at x = 0, but symmetry implies the BC: y'(0) = 0.
With this boundary condition, the term (2/x)y'(0) is well-defined as x approaches 0. For the

boundary condition, y(1) = ﬁ this nonlinear SBVP has the analytical solution :
2

92,12
- (1+5)
We solve this problem by using semi-analytic technique by the following; from equation

(8), we have:
Pg = —-0.0005654571561x° +0.001454732112x%+0.00321137204x’ —0.01349180792 x° +
0.0004165633765x° + 0.04166666759x" — 0.1666666687x> + 1.000000002
Now, increase n, to get higher accuracy ,let n =5, 6,respectively ,i.e.,
P11 = 0.000030043522x"'+0.0002663457696x™° —0.00234783883x°+0.00531993067 x° —
0.0008040441181x'-0.01143903456x°+0.04166666759x"-0.1666666687x°+1.000000002
P13 = 0.00002406664878 x'° — 0.0002794397776 x™ + 0.001201282562 x'' -
0.00224058548x™° +0.0007139586051x° + 0.003149932497x® + 0.00003026184015x" -
0.01157407444x° + 0.04166666759x" — 0.1666666687x + 1.000000002
The standard bvp4c syntax was implemented in [3] to solve the current problem, the

example evaluates the analytical solution at 100 equally-spaced points and plots it along with
the numerical solution computed using bvp4c and the results given in Table 1 with the results
of suggested method for n = 4, 5, 6, i.e., Ps, P7, Pg and the results of [3] . Also Table 2 gives
the accuracy of suggested method and result of [3]. Figures 1, 2, 3, illustrate Emden problem,
and suggested method for n = 4, 6 respectively .

It can be seen from Table2 that the maximum error of method in [3] is 0.0000018522, while
the maximum error of suggested method is 2.763537509942182¢ %%
Example 2

Consider the following nonlinear SBVP :

3 54y _v_bh_
v+ (Leny = ber, 0<x<12XEXE —X=b=4)
X 4+ X
with BC : y'(0) =0 , y'(1) = -1. The exact solution for this problem is:
y=-In(x* +4)

This problem is an application of oxygen diffusion , we solve this problem by suggested
method and we take b=1, by applying equation (8) we have (forn=7):

P15= - 0.1142318896 x™ + 0.7852891723 x™ - 2.23317271 x** + 3.413936838 x™* -
3.087794733x!1+1.697854523x*°-0.4991720457x°+ 0.06414729306x? - 0.25x° -1.386294361.

For more details ,table(3) gives the results for different nodes in the domain, for n = 7
and figures (4) illustrate suggested method for n = 7.

Abukhaled et al in [4] applying L Hopital s rule to overcome the singularity at x = 0 and
then the modified spline approach is used and got maximum error 7.79¢™ and resolution this
problem using finite difference method then gives maximum error 1.46e®, from Table 3 we
have maximum error 9.399395723974635e " Therefore, the proposed method provides
superiority results.

4. Behavior of the solution in the neighborhood of the singularity x= 0
Our main concern in this section will be to study the behavior of the solution in the
neighborhood of singular point .
Consider the following SIVP :
V'X)+(N-1)/x)yx)=1fy) ,N>1, 0<x<1, (11)
y(0) =yo , limyor X y'(x) =0 S €3
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where f(y) is continuous function .
As the same manner in [5], let us look for a solution of this problem in the form :
y(X) = yo — C x“(1 + 0(1)) . (13)
y(x) == Ckx“ (1 +0(1)) ,
y'(x) =—Ck (k—1)x“*(1 +0o(1)), x—0"
where C is a positive constant and k > 1. If we substitute (13) in (11) we obtain :

C = (k) (fiyo) N)“? . (14)
In order to improve representation (13) we perform the variable substitution :
y(X) =yo — C X“(1 +9(x)) . (19)

we easily obtain the following result which is similar to the results in [5].
Theorem 2
For each y, > 0, problem (11), (12) has a unigue solution in the neighborhood of x = 0
that can be represented by:
Y(X, Yo) =Yo — C X (1 + g x“ + 0(x)) ,
where k, C and g are given by (14) and (15), respectively.

We see that these results are in good agreement with the ones obtained by the method
in [5], they are also consistent with the results presented in [4]. In order to estimate the
convergence order of the suggested method at x = 0, we have carried out several experiments
with different values of n and used the formula :

cyo = — logz (Iyo™ = vo™| / lyo"™= yo™ | ) , (16)
where yo" is the approximate value of y, obtained with nj = 1,2, 3, 4,...
Now, we apply the formula in equation (16) to the example 1, as following :

Let yo; is the approximate value of y, evaluated by suggested method withn =1i,i=2,3,4,5
6.
Pon+1 Yo
Ps 1.000048243794667
P7 1.000009487495905
Py 1.000000801904571
P11 1.0000000507769192
P13 1.0000000024600459

First ,we take i=2, 3, 4, i.e., C , =-log, | Yos = Yos |
| y03 - y02 |
—006
C, = —log, 20895133393d53%€ — _; 157734820323959 .

v * 3.875629876204378¢
The value of Cy illustrates that the convergence order estimate of this case is close to 2.

Now, if we take i= 3, 4, 5, i.e.,

| Yos = Yo | _ 1o 7.511276518545884e

| You = Yo | ? 8.68551333934539¢ °
The value of Cyy illustrates that the convergence order estimate of this case is close to

4. Now if we take i=4,5,6 , i.e.,

| Yoo = Yos | _ | 4.831687316908528¢

|Vos — Vo | 7.511276518545884e "

The value of Cyo illustrate that the convergence order estimate of this case is close to 4,
and so on, if we increase n, we see that the order of convergence also increases.

= 3.531494058780649.

CYO = _|092

=3.958459111546360

Cyo =-log,

335 | Mathematics



2013 ple 3 saxd]) 26 alh]
Ibn Al-Haitham Jour. for Pure & Appl. Sci. G ®.

ooyl g opal pglsll pi®)| g alxe
Vol. 26 (3) 2013

References

[1] Robert, L. B., and Courtney, S. C. (1996) " Differential Equations A Modeling
perspective' , United States of America.

[2] Rachunkova, I., Stan¢k, S., and Tvrdy, M. (2008) " Solvability of Nonlinear Singular
Problems for Ordinary Differential Equations”, New York, USA.

[3] Hamdan, S. M. (2010) "Singular Two Points Boundary Value Problem"”, MSc thesis in
Computational Mathematics, An-Najah National University, Faculty of Graduate Studies,
Nablus, Palestine.

[4] Abukhaled, M., Khuri, S. A. and Saufy, A. (2011) "A Numerical Approach for Solving A
Class of Singular Boundary Value Problems Arising in Physiology”, International Journal of
Numerical Analysis and Modeling, Vol.8, No.2, PP:353- 363.

[5] Morgado, L., and Lima, P. (2009) " Numerical methods for a singular boundary value
problem with application to a heat conduction model in the human head"”, Proceedings of the
International Conference on Computational and Mathematical Methods in Science and
Engineering, CMMSE.

Table 1:The result of the method for n = 4,5,6, and result in [3] for Examplel

exact solution y(x)

y1(X) using
numerical
solution

Osculatory
interpolation Py

Osculatory
interpolation Py

Osculatory
interpolation Py3

0.000

1.000000000000000

1.0000005109

1.000000801904571

1.000000050776919

1.000000002460046

0.125

0.997405961908059

0.9974064705

0.997406758716985

0.997406012221857

0.997405964341573

0.250

0.989743318610787

0.9897438277

0.989744154146833

0.989743371348405

0.989743321151803

0.500

0.960768922830523

0.9607707751

0.960769739668355

0.960768977298348

0.960768925594060

0.750

0.917662935482247

0.9176644937

0.917663076945894

0.917662942247223

0.917662935723868

1.000

0.866025403784439

0.8660254037

0.866025403784439

0.866025403784439

0.866025403784439

Table 2:The accuracy of the method for n=6 ,i.e, P13 and result in [3] for Examplel

Xi exact solution y(x) | Error | y(x) - yi(x) | Error | y(x) - P3|
0.000 | 1.000000000000000 0.0000005109 2.460045944729927¢ "%
0.125 | 0.997405961908059 0.0000005086 2.433513945909738e %
0.250 | 0.989743318610787 0.0000005091 2.541016064228074e™"”
0.500 | 0.960768922830523 0.0000018522 2.763537509942182¢ %
0.750 | 0.917662935482247 0.0000015582 2.416213895628516e ™
1.000 | 0.866025403784439 0.0000000000 0.0000000000

S.S.E=2.612609927853621e-017
Table 3 :The exact and suggested solution for n = 7 of Example 2
P15
EN -1.386294361119891
bo -1.6094379124341
exact solution y(x) P1s Errors | y(X) - P15

0 -1.386294361119891 | -1.386294361119891 | 4.440892098500626e*°
0.1 | -1.386296861116765 | -1.386296860835485 | 2.812807764485115¢""
0.2 | -1.386374357920061 | -1.386374329577653 | 2.834240797611187¢""
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0.3 | -1.386901676666466 | -1.386901427706747 | 2.489597183963355¢ "’

0.4 | -1.388851089901581 | -1.388850379927776 | 7.099738041915771e™"’

0.5 | -1.394076501561946 -1.394075561622373 | 9.399395723974635¢"

0.6 | -1.405547818041777 -1.405547194355350 | 6.23686427614345¢"""

0.7 | -1.427453098935757 | -1.427452912675769 | 1.862599887658689¢ "

0.8 | -1.465031601657275 | -1.465031584864205 | 1.679306937951708e %

0.9 -1.523986772187307 -1.523986772073695 | 1.136124527789661¢”""

1 -1.609437912434100 -1.609437912434100 | 2.220446049250313¢"°

S.S.E =1.874293078482109e-012

—— Analyical
[ - it

4] a2z a4 0.8 asg 1
=

Figure 1: Emden problem — SBVP

the solution at n=4

1.02

1

0.98

0.96

0.94

0.92

0.9

0o.88

o.86 s s s s s s s s s
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a1

Figure 2: Comparison between the exact and semi-analytic solution Py of examplel

the solution at Nn=6

o.88

0.86

o 0o.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3 :Comparison between the exact and semi-analytic solution P;3 of examplel
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the solution at n=7

! ! ! ! ! ! ! ! !
(o) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4:Comparison between the exact and suggested solution P15 of example2
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