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Abstract

In this paper, we prove some coincidence and common fixed point theorems for a pair of
discontinuous weakly compatible self mappings satisfying generalized contractive condition
in the setting of Cone-b- metric space under assumption that the Cone which is used is non-
normal. Our results are generalizations of some recent results.
Key Words: Coincidence and common fixed point, pair of weakly compatible mappings,
generalized contractive self mapping, Cone-b- metric space, normal Cone, non-normal
Cone.
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Introduction

Metric fixed point theory is a branch of fixed point theory which finds its primary
application in functional analysis. It is a sub-branch of the functional analytic theory in which
geometric conditions on the mapping and / or underlying space play a crucial role. Although it
has a purely metric facet, it is also a major branch of nonlinear functional analysis with close
ties to Banach space geometry, [1]. Historically; the basic idea of metric fixed point principle
firstly appeared in explicit from Banach’s thesis 1922 [2,p.5], where it was used to establish
the existence of solution to an integral equation. This principle Banach contraction mapping is
remarkable in its simplicity contraction; it is perhaps the most widely applied fixed point
theorem in all of analysis. This is because the contractive condition on the mapping is simple
and easy to test because:
(i) IT requires only complete metric space for its setting.
(i) IT provides a contractive algorithm (iterative method).
(iii) IT finds almost conociale applications in the theory of differential and integral equations
specially the existence solution, uniqueness solution.

All these properties motivate authors to study this principle and there appeared many
types of contraction mapping on metric space.
Recently, Bakhtin [3] introduced b-metric space as a generalization of metric spaces. He
proved the Contraction mapping principle in b-metric spaces that generalized the famous
Banach Contraction principle in metric spaces. Since then, several papers have dealt with
fixed point theory or the variation principle for single-valued and multi-valued operators in
b-metric spaces (as shown in [4 Jand [5]). in [6] Haung and Zhang introduced Cone metric
spaces as a generalization of metric spaces by replacing the set of real numbers by an ordered
Banach space and they proved some fixed point theorems for contractive mappings by using
the normality of a Cone in results which expanded certain results of fixed points in metric
spaces, and other authors who worked in the same way like [7] and [8]. In [9], Hussain and
Shah introduced Cone b-metric spaces as a generalization of b-metric spaces and Cone metric
spaces and they established some topological properties in such space and improved some
recent results about KKM mappings in the setting of a Cone b-metric space, as well as in [10]
they generalized the results of [9] and obtained some fixed point theorems of contractive
mappings without the assumption of normality of the Cone. In this paper, we generalized the
results of [9] and [10] and prove some coincidence and common fixed point theorems for a
pair of discontinuous weakly compatible self mappings satisfying generalized contractive
condition by using a certain vector valued altering function satisfying some properties in the
setting of Cone-b- metric space where the normality of the Cone is omitted, we shall call this
altering function by Cone-b-altering function.

Preliminaries

Consistent with Haung and Zhang [6], the following definitions:

Let E be a normed space and P be a subset of E, P is called a Cone if:
M P is closed, non empty and P = {0}.
(i) ax + by e P for all x, y € P and non-negative real numbers a, b.

(iii) P (-P)={0}.
Given a Cone P c E, we define a partial ordering “<” with respect to P by x <y if and

only if y —x e P, we write x <y to indicate that x <y but x # y, while x < y stand fory — x e
int(P), where int(P) is the interior of P.
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The Cone P is called normal if there is a number k > 0 such that for all X,y eE, 0 <x <y
implies [Ix|l < Kllyll, the least positive number satisfying the above inequality is called the
normal constant of P.

Example (2.1): [7]

Let E =Cr([0,1]) with supremum norm and P ={ fe E :f > 0 }where || f]| =sup {[f(xi)|, Xi
€[0,1] } for all f, g € P, put f(x) =x, g(x) =2x , then 0<f<g, ||f]| =1, |lg]| =2 . So |[f|| <l||gl|
and K=1 . Therefore P is normal cone with normal constant K=1.

Remark (2.2):[7]
There are cones are not normal ,the following example show that :

Example (2.3):[7] ,
Let E =Cr%([0,1]) with the norm |[f|| =|Ifll.. +|If |l and consider the cone P ={ fE E :f >0 } ,
where [[fll., =max {[f(x1)], [f(x2)l.... [f(xn)], xi €[0,1] VI =1,2,......n }

|If ||lo =max {|f’(x1), [{"(X2),...., |f'(Xn)|, Xi €[0,1] VI =1,2,......n }
For each k>1 ,put f(x)=x and g(x) =x**. Then 0<g<f, ||f]| =2 and ||g|| =2k+1, since k|[fl|</lg],
k is not a normal constant of P. Therefore , P is non —normal cone .
In the following we always suppose that E is a normed space , P is a cone in E with int(p)#@
and < s a partial ordering with respect to P .

Definition 2.4: [6]
Let X be non-empty set, a mapping d: XxX —— E is called a Cone metric space on X if
the following conditions are satisfied:
(i) 0 <d(x,y) forall x,y € X with x =y and d(x,y) =0 ifand only if x = y.
(i) d(x,y) = d(y,x) for all x, y € X.
(i) d(x,y) <d(x,z) + d(z,y) forall x, y, z € X.
Then the ordered pair (X,d) is called a Cone metric space.

Example 2.5 :[6]

Let E =R? with usual norm on R? defined by ||x|| =max{|xa|,[x. [} for all XER? , x=(X1,X2),
xi€R,i=1,2, P={(x,y) € E: x,y>0} =R?, X=R and d:X x X—E such that :d(x,y)=(|x-y| ,a|x-Y]),
where 0>0 is a constsnt .Then (X,d) is a cone metric space .

Definition 2.6: [9]

Let X be a non empty set and S > 1 be a given real number. A mapping d: XxX—— E is
said to be Cone b-metric if and only if, for all X, y, z € X, the following conditions are
satisfied:
(1) 0 <d(x,y) withx =y and d(x,y) =0ifandonly if x =y.
(ii) d(x,y) = d(y.x).
(iii) d(x,y) < S[d(x,z) + d(z,y)].

The pair (X,d) is called a Cone-b-metric space.

Example 2.7:[10]
Let X={1,2,3,4}, E=R? P={(x,y)€ E :x>0, y>0 }. Define d:XxX—E by

d(x,y) = {(|Xy|l, |x—y|*l)if X # y}

0 if x=y
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Then (X,d) is a cone b-metric space with the coefficient S =

Definition (2.8): [9]

Let (X,d) be a Cone b-metric space, x € X and {x,} be a sequence in X. Then
(i) {xn} converge to x whenever for every ¢ € E with 0 « ¢, there is a natural number N
such that d(x,,x) « ¢ for all n > N. We denote this by lim x, =x or x, = X (n = o).

nN—oo
(i1) {xn} is Cauchy sequence whenever for every ¢ € E with 0 « c, there is a natural number
N such that d(X,,Xm) <« ¢ for all n, m > N.
(i) (X,d) is a complete Cone-b-metric space if every Cauchy sequence is convergent.

g|lo

Definition (2.9): [11]
If Y be any partially ordered set with relation “<” and f : Y —— Y, we say that f is non-
deceasing if, X,y € Y, x<y = f(x) <f(y).

Definition (2.10): [11]
A function f: P—— P is called subadditive if for all x,y € P, f (x +y) <f (x) +f (y).
Seong-Hoon Cho [12] defined the «-increasing function by following:
A function F:P —— P is called «-increasing if for each x, y € P, Xx < y if and only if
F(x) < F(y).
In the following we shall introduce Cone-b-altering function.

Definition (2.11):

Let (X,d) be a Cone-b-metric space, let F:P —— P be a vector valued function, F is
called a Cone-b-altering function if:
(i) Fisnon-decreasing, subadditive, <«<-increasing and surjective.

(i) Ifor {trr< p,[imF(t,) =0 < limt, =0

n—c n—oo

(i) F(a*t) = aF(t) fora>1,k=12,.......

Example (2.12):

Let F(t) =t forall t € P then F is Cone-b-altering function.

The following lemmas which are necessary through our work in this sequel are often
used in Cone metric spaces in which the Cone need not be normal.

Lemma (2.13): [8]
Let P be a Cone and {a,} be a sequence in E. If ¢ € int(P) and 0 < a, — 0 (as n — ),
then there exists N such that for all n > N, we have a, < c.

Lemma (2.14): [8]
Letx,y,z e E, ifx <y and y«< z then X < z.

Lemma (2.15): [9]
Let P be a Cone and 0 < u « c for each ¢ € int(P), thenu = 0.

Lemma (2.16): [13]

Let P be a Cone. If u € P and u < ku for some 0 <k <1, thenu =0.
The following definitions and proposition are necessary in this sequel.
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Definition (2.17): [11]
Let X be any non-empty set, f, g:X —— X be mappings, a point w € X is called point of
coincidence of f and g if there is x € X such that fx = gx = w.

Definition (2.18): [11]
Let X be any non-empty set, f, g:X —— X be mappings, the pair (f, g) is called weakly
compatible if x € X, fx = gx = fgx = gfx.

Proposition (2.19): [11]
Let X be any non-empty set and f, g:X —— X be mappings. If (f,g) is weakly compatible
pair and have a unique point of coincidence then it is uniqgue common fixed point of f and g.

Main Result

Theorem (3.1):

Let (X,d) be a Cone metric space with the coefficient S > 1, suppose the mappings
f, g:X—— X satisfying for all x, y € X:

Fd(fx,fy)] < aiF[d(gx.gy)] + a:F[d(fx,gx)] + asF[d(fy,gy)]+ aF[d(fx,gy)] + asF[d(fy,QX)]( )
..(3.1.1

where this constant a; € [0,1) and a; + a, + a3 + S(as + as) < 1,1 =1,2,3,4,5 and F be Cone-b-

altering function. If f (X) < g(X) and f (X) is complete, then f and g have a unique point of

coincidence. Furthermore if the pair (f,g) is weakly compatible pair then f, g have a unique

common fixed point.

Proof:

Let Xo € X be arbitrary point in X. Since f (X) < g(X), we can choose a point x; in X
such that f xo = g Xy, if we continue in same way we can choose X, +1 in X for x, in X such that
OXn+1=Tx, forall n>0.

If X =Xn+1, Y =Xqin (3.1.1), we have:
FLA(fXn + 1,Xn)] < @1F[d(g%n + 1,9%n)] + a2F[d(Xn + 1,9%n + 1)] +asF[d(fXn,0X%n)]+asF[d(fXn + 1,0X%0)]+
asF[d(fXn,0Xn +1)]

FLA(fXn + 1, TXn)] < @1F[d(fXn, IXn—1)] + @2F[d(fXn + 1, IXn)] + asF[d(fXn, X n-1)]+
agF[d(fXn + 1, X n-1)] + asF[d(fXpn, Xn)]

< aF[A(fXn, X n— )] + a2F[d(fXn + 1, FX )] + asF[A(Xn, FX 0 1)]+
SasF[d(Xn + 1, TX )] + SaaF[d(fXn, Xn-1)]

(1 —az—aq) F[d(fXn + 1, TXn)] < (a1 + a3 + Sas) F[A(fXn, TXn-1)] ..(3.1.2)
Using symmetry of (3.1.2) in X, y we have:
(1 — az — Sas) F[d(fXn+1, TXn)] < (a1 + a2 + Sas) F[d(fXn, Xn-1)] ..(3.1.3)

Now combine (3.1.2) and (3.1.3) we have:
Fld(fXn + 1, X )] < 22aF8 +3+S@+35) progx, fx,_y)]
2-a,—a,—S(a, +a;)
2a,+a,+a,+S(a, +a,)
2—-a,—a,—S(a, +a;) ’
We must prove that A < 1.
Sincea; +a;+ag+S(ag+as) <1

Put ;=
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= a2+a3+S(a4+a5)<1—a1
= —a—-a3—S(agt+as)> a;-1
= 2—a2—a3—S(a4+a5)> a;+1
1 < 1
2-a,—-a,—S(a,+a;) a+1
_, 2a,+a,+a,+5(a, +a;) < 2a,+a,+a,+S(a, +a,)
2—-a,—a,—S(a, +a,) a, +1

Therefore 0 <A <1, sowe have
FLA(fXn + 1, X 1n)] < A F[d(fXn, IXn-1)] <.....< A" F[d(fXg, f Xo)]
Now, for any m>1 ,p>1, it follows that
d(FXme+p, TXm) < S[A(fXm+p, Xmep-1) + d(Xmsp -1, FXm)

= Sd(me+p me+p 1) + Sd(me+p 1, me)

<S d(me+p, me+p 1)] +S [ d(me+p 1s me+p 2) + d(me +p-2, me)]

= SA(Xm+p, T Xmep-1) + 52 d(fxerIO 1, T Xmep-2)] + 8 d(fxm+|O 2, FXm)

< Sd(fXmep, T Xmep-1) + 52 d(fXmep-1, T Xmep-2)] + S d(1‘xm+p 2 FXm)+ S d(PXmep-2, T
Xitp-3)+oen S A(PXmez, TXmen)+ 87 (X, Xim).
But by (i) of definition (2.11)of F; F is non —decreasmg and sub additive functlon we have :
FLA(fXmep, fxm)]]< F[Sd(fXmsp, f xm+|O )] +F[ 2 d(PXmsp-1, T Xmep-2)] +F[ s d(PXm+p-2, T Xmep-
)]+ +F[SP T d(FXms2, TXmen)]+ F[SP d(fXmee, FXm)]
Also by (iii) of above definition we have :

=

<1

F[d(me+p me)]]< SF[d(me+p f Xm+p 1)] + S F[d(me+p1 f Xm+p 2)] + S F[d(me+p2 f Xm+p
o)t S d(fmiz, Xmea)]+ S FL (e, )]

<s A™ P F[A{fXe, fXo)]+2 A™ P2 F[A{fxy, fXo)[+s°  A™P3  F[d{fxy,fxo)]+.t P 4™
F[d{fx0,fxo)]+ P A™ F[d{fx,xo0)].

- szl’““’[(sS f;) " Fdgi o)+ AT Flo{x o)

S p/ll’I’H-l

< 2 FLd{fxy,fxo)]+ P2 A™ F[d{fx1,fX0)]—0 as m—oo

Hence, lim d(fXm:p, Xm) = O by (ii) of definition (2.11) of F. So by lemma (2.13),

there exists  k e N such that d(fXm+p, fXm) < ¢ for each ¢ € int(P) and for all m > k.If n=m+p

,s0 for all m,n >k , {fx,} is a Cauchy sequence in f (X), but f (X) is complete, so the sequence

{fxn} must be convergent in f (X), so there exists u € f (X) and fx, — u.

Now, since u e f (X) < g(X), let u = g(v) for some v € X. We show that gv = fv.

d(fv,u) < S[d(fv,fxn)] + d(fx,,u)]

d(fv,u) < Sd(fv,fx,) + Sd(fx,,u)

So by properties of F we have:

Fld(fv,u)] < SF[d(fv,fx,)] + SF[d(fX,,u)]

By (3.1.1), we have:

Fld(fv,u)] < S[ai:ldF(I];d(gV),]an)]+3-2F[d(fV:gV)]+a3F[d(an,gxn)]+a4F[d(fV:an)] + asF[d(fxn,gv)]] +
SF[d(fxn,u

< S[arF[d(u, X, -1)] + a2F[d(fv,u)] + asF[d(fXy, X, _1)] + asF[d(fv, fxn_1)] +
asF[d(fxn,u)] ] + SF[d(fXn,u)]

= Sa;F[d(u, fxn-1)] + SaxF[d(fv,u)] + SasF[d(fXn, X, -1)] + SasF[d(fv, fxn-1)] +
SasF[d(fxn,u)] + SF[d(fx,,u)]
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< SarF[d(u, fxn-1)] + SaF[d(fv,u)] + S?asF[d(fx,,u)] + S?asF[d(u, fX,_1)] +
S%a,F[d(fv,u)] + SPasF[d(u, fxo-1)] + SasF[d(fXn,u)] + SF[d(fXn,u)]
That implies:
1— Sa, — S%a) < S +Sa+Sa pryy fx,_ )]+ S+ +S Fra(ix,u
( 2 ) Y [d(u, Xn-1)] —Sa %, [d(fxn,u)]
Now, let ¢ € int(P) be given. We can choose ny € N such that

2
Fld(fxe_1,u)] « F~Y 12582578, €| gpqg
Sa, +S%a,+S%, 2

S’a, +Sa, +S 2
So by (i) of definition (2.11) of F; F is «-increasing and surjective, we have:

2
Fld(fx,_,u)] <« | 12582258, €| apqg
Sa, +S%a,+S%, 2

FLd (P u)] < F*[M.EJ forall n > no.

-1(1-Sa,-S%, ¢

FldPau)] «F (szaﬁs,as +s'EJ

So that implies; F[d(fv,u)] « c, thus by lemma (2.15) we have F[d(fv,u)] = 0 and so by (ii)
of definition (2.11) of F; we obtain that d(fv,u) = 0 and so by fv = u = g(v), thus u is a point of
coincidence of f and g.
To prove u is unique, suppose u’ is another point of coincidence then there is v/ € X such that
u' =fv'=gv,so by (3.1.1) we have:
Fld(fv, fv")] < aiF[d(gv,gv")] + a.F[d(fv,gv)] + asF[d(fv',gv")] + asF[d(fv,gv")] + asF[d(fv',gv)]

Fld(u,u’)] < aiF[d(u,u”)] + a:F[d(u,u)] + asF[d(u’,u")] + asF[d(u,u’)] + asF[d(u’,u)]
=(a; + a4 + as) F[d(u,u)]
<(ay+ay+az+as+as) Fd(u,u)]
But S > 1, so we have:
Fld(u,u’)] < (a1 + a, + as + Say + Sas) F[d(u,u’)]
Fld(u,u")] < (a1 + a, + a3 + S(as + as)) F[d(u,u")]
Since a; + a, + ag + S(ay + as) < 1, so by lemma (2.16) we have F[d(u,u’)] = 0 and so d(u,u’) =
0 (i.e.), u = u'. Therefore, f and g have a unique point of coincidence.
Moreover, if the pair (f ,g) is weakly compatible then by proposition (2.19), u is unique
common fixed point of fand g.

Now we have the following corollaries:

Corollary (3.2):

Let (X,d) be a Cone-b-metric space with the coefficient S > 1. Suppose the mappings
f, g:X—— X satisfy for all x, y € X:
d(fx,fy) < aid(gx,gy) + a2d(fx,gx) + asd(fy,gy) + asd(fx,gy) + asd(fy,gx) ...(3.1.4)
where the constant a; € [0,1) and a; + a + az + S(a4 + as) < 1,1 =1,2,3,4,5. If f (X) < g(X)
and f (X) is complete, then f and g have a unique point of coincidence. Furthermore if the pair
(f,g) is weakly compatible pair then f, g have a unique common fixed point.
Proof:

By taking F(t) =t for all t € P, we obtain the required result.
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Corollary (3.3):

Let (X,d) be a complete Cone-b-metric space with the coefficient S > 1. Suppose the
mappings f, g:X —— X satisfy for all X,y € X:
d(fx,fy) <aid(x,y) + ad(fx,x) + azd(fy,y) + a,d(fx,y) + asd(fy,x) ..(3.1.5)
where the constant a; € [0,1) and a; + a, + a3 + S(ay + a5) < 1,1 =1,2,3,4,5. Then f has a
unique fixed point in X.
Proof:

By taking F(t) =t for all t € P and taking g(x) = x for all x € X, we obtain the required
result.
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The following corollary is theorem (2.3) of [10].

Corollary (3.4):

Let (X,d) be a complete Cone-b-metric space with the coefficient S > 1. Suppose f:X
—— X be a mapping satisfy for all x, y € X:
d(fx, fy) <axd(fx,x) + azd(fy,y) + a;d(fx,y) + asd(fy,x) ..(3.1.6)

where the constant a; € [0,1) and a, + as+ S(as + as) < min{1, %}, i =2,3,4,5. Then f has a

unique fixed point in X.
Proof:
By taking F(t) =t for all t € P and g(x) = x for all x € X, also by taking a; = 0 in theorem
(3.1) we obtain the required result.
The following corollary is theorem (2.1) in [10] .

Corollary (3.5):

Let (X,d) be a complete Cone-b-metric space with the coefficient S > 1. Suppose
f: X—— X be a mapping satisfy for all x, y € X:
d(fx, fy) <a;d(x,y) ..(3.1.7)
where the constant a; € [0,1). Then f has a unique fixed point in X.
Proof:

By taking F(t) =t for all teP and g(x) = x for all x € X, also by taking a;=az=a,=as=0 in
theorem (3.1) we obtain the required result.

Corollary (3.6):

Let (X,d) be a Cone-b-metric space with the coefficient S > 1. Suppose the mappings
f, g::X—— X satisfy for all x, y € X:
FIA(fx, fy)] < a1 F[d(gx,gy)]+A{F[d(fx,9x)]+F[d(fy.ay)]}+B{F[d(fx,9y)+F[d(fy,gx)]} ...(3.1.8)
where the constants a;, A, B € [0,1) with a; + 2A + 2SB < 1 and F be altering function. If
f (X) < g(X) and f (X) is complete, then f and g have a unique point of coincidence.
Furthermore if the pair (f,g) is weakly compatible pair then f, g have a uniqgue common fixed
point.
Proof:

By taking A = a; =azand = a4 = as in theorem (3.1) we obtain the required result.

Corollary (3.7):

Let (X,d) be a complete Cone-b-metric space with the coefficient S > 1. Suppose the
mappings f, g::X—— Xsatisfy for all x, y € X:
FLd(fx, fy)] < as F[d(fx,gy)] + asF[d(fy,gy)] - (3.1.11)
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where the constants a; € [0,1) and S(as + as) < 1, i = 4, 5 and F be Cone-b-altering function. If
f (X) < g(X) and f (X) is complete, then f and g have a unique point of coincidence.
Furthermore if the pair (f,g) is weakly compatible pair then f, g have a uniqgue common fixed
point.
Proof:

By taking a; = a; = az = 0 in theorem (3.1) we obtain the required result.
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