

Groups Effect of Types D_5 and A_5 on The Points of Projective Plane Over F_q , q = 29.31

Emad B. A. K. Al-Zangana

Department of Mathematics/College of Science/Al-Mustansiriyah University E-mail: emad77_kaka@yahoo.com

Abstract

The purpose of this paper is to find an arc of degree five in PG(2,q), q=29,31, with stabilizer group of type dihedral group of degree five D_5 and arcs of degree six and ten with stabilizer groups of type alternating group of degree five A_5 , then study the effect of D_5 and A_5 on the points of projective plane. Also, find a pentastigm which has collinear diagonal points.

Key words: Projective plane, arc.

Introduction

Let F_q denotes the Galois field of q elements and V(3,q) be the vector space of row vectors of length three with entries in F_q . Let PG(2,q) be the corresponding projective plane. The *points* $[x_0, x_1, x_2]$ of PG(2,q) are the 1-dimensional subspaces of V(3,q). Subspaces of dimension two of the form $V(aX_0 + bX_1 + cX_2)$ are called *lines*. The number of points and the number of lines in PG(2,q) is $q^2 + q + 1$. There are q + 1 points on every line and q + 1 lines through every point.

The lines of PG(2,q) are constructed by the following way:

 $P_{i_1}, P_{i_2}, \dots, P_{i_{q^2+q+1}}$ be the points lie on the line $\ell_1 = V(X_2)$ where the index i_j refers to the position of the point P_{i_j} in the plane. Fixed the line $\ell_1 = V(X_2)$ as a first line. The second line is constructed by adding 1 to the index i_j and so on.

Definition 1.1[1]: An (n;r) arc K or arc of degree r in PG(k,q) with $n \ge r+1$ is a set of n points with property that every hyperplane meets K in at most r points of K and there is some hyperplane meeting K in exactly r points. An (n;2)-arc is also called an n-arc.

Definition 1.2[1]: An (n;r)-arc is *complete* if it is maximal with respect to inclusion; that is, it is not contained in an (n+1;r)-arc.

Definition 1.3[1]: A line of PG(k,q), k > 1 is an i-secant of an (n;r) arc K if $|\ell \cap K| = i$. A 2-secant is called a *bisecant*, a 1-secant a *unisecant* (tangent) and a 0-secant is an external line.

Let c_i be the number of points of $PG(2,q)\setminus K$ with index exactly i. So, the parameters c_0 is the number of points through which no bisecant of K passes and c_3 is the number of points where three bisecants meet.

Theorem 1.4[1]: (The Fundamental Theorem of Projective Geometry)

If $\{P_0, ..., P_{n+1}\}$ and $\{P'_0, ..., P'_{n+1}\}$ are both subsets of PG(n,q) of cardinality n+2 such that no n+1 points chosen from the same set lie in a hyperplane, then there exists a unique projectivity \mathfrak{I} such that $P'_i = P_i \mathfrak{I}$ for i = 0,1,...,n+1.

Definition 1.5[1]: Let $U_0 = [1,0,0], U_1 = [0,1,0], U_2 = [0,0,1], U = [1,1,1].$ The set $\Gamma_q = \{U_0, U_1, U_2, U\}$ is called the *standard frame*.

Definition 1.6[3]: Let χ_1 and χ_2 be two projective spaces of dimension n. A projectivity $\mathfrak{I}:\chi_1 \to \chi_2$ is a bijection given by a non-singular $(n+1)\times (n+1)$ matrix A such that $P(X') = P(X)\mathfrak{I}$ if and only if tX' = XA, where $t \in Fq \setminus \{0\}$.

Two projective spaces χ_1 and χ_2 are projectively equivalent if there is a projectivity between them

Definition 1.7[1]: A point of index three is called a *Brianchon point* or *B-point* for short. Write $j \cdot kl \cdot mn = P_i P_i \cap P_k P_l \cap P_m P_n$ for *B-point*.

Remark 1.8[1]: (i) An (n+1;r) arc is constructing from an (n;r)-arc, K by adding one point of index zero to K.

- (ii) Two arcs K and K' are projectively equivalent if there is a projectivity between them.
- (ii) With parameters c_0 , K is complete if and only if $c_0 = 0$.

Some groups that occur in this paper are listed below. For more details see [2].

 C_n = cyclic group of order n;

 S_n = symmetric group of degree n;

 A_n = alternating group of degree n;

 $D_n = \text{dihedral group of order } 2n = \langle r, s | r^n = s^2 = (rs)^2 = 1 \rangle.$

During this research the primitive element v = 2 in F_{29} and $\omega = 3$ in F_{31} are used.

Hirschfeld stated in [1] that in PG(2,9) there is a unique arc of degree five with stabilizer group isomorphic to a dihedral group of degree five D_5 . Also, there is a unique arc of degree six with stabilizer group isomorphic to alternating group of degree five A_5 . In 1984, Sadeh [3] and in 2011 Al-Zangana [4] proved the same results in PG(2,11) and PG(2,19) also they proved that the same arc of degree six has ten B-points which is an arc of degree ten with stabilizer group of type A_5 . In 1995, Storm and Maldeghem [5] proved in PG(2,q) when $q \equiv \pm 1 \mod(10)$ they proved theoretically these results.

According to these previous results, the following question arises:

- 1- What is the arc of degree five which has stabilizer group of type dihedral group of degree five D_5 and what is the effect of D_5 on the points of projective plane.
- 2- What is the pentastigm which has collinear diagonal points.
- 3- What is the arcs of degree six and ten which have stabilizer groups of type alternating group of degree five A_5 and what is the effect of A_5 on the points of projective plane.

1- Inequivalent Arcs of Degree Five

From the fundamental theorem of Projective Geometry, there is a unique inequivalent arc of degree four in the projective plane with stabilizer group isomorphic to S_4 . So, the standard frame $\Gamma_q = \{U_0, U_1, U_2, U\}$ formed a projectively unique 4-arc in the projective plane.

An arc of degree five is constructed by adding one point of index zero to Γ_q . And to find equivalents arcs, a mathematical programming language GAP has been used [6].

Theorem 2.1: (i) There are ten inequivalent 5-arcs through the frame Γ_{29} in PG(2,29) with parameters $[c_0, c_1, c_2] = [601,250,15]$ as summarized in Table 1.

(ii) There are eleven inequivalent 5-arcs through the frame Γ_{31} in PG(2,31) with parameters $[c_0, c_1, c_2] = [703,270,15]$ as summarized in Table 2.

Table 1: Inequivalent 5-arc and their stabilizer group in PG(2,29)

No.	5-Arc	Stabilizer Group
1	$A_1 = \Gamma_{29} \cup \{P(v^{27}, v^{14}, 1)\}$	$C_2 = \langle [[0, v^{15}, 0], [v^{13}, 0, 0], [v^{13}, 1, v^{14}]] \rangle$
2	$A_2 = \Gamma_{29} \cup \{P(v^{24}, v^{11}, 1)\}$	I

3	$A_3 = \Gamma_{29} \cup \{P(v^2, v^6, 1)\}$	$C_2 = \langle [[v^{17}, 0, 0], [0, 0, v^{14}], [0, v^{20}, 0]] \rangle$
4	$A_4 = \Gamma_{29} \cup \{P(v^8, v^4, 1)\}$	$C_2 = \langle [[0,0,v^{14}],[0,v^{18},0],[v^{22},0,0]] \rangle$
5	$A_5 = \Gamma_{29} \cup \{P(v^{10}, v^{12}, 1)\}$	I
6	$A_6 = \Gamma_{29} \cup \{P(v^{12}, v^{16}, 1)\}$	$C_2 = \langle [[0, v^2, 0], [v^{26}, 0, 0], [0, 0, v^{14}]] \rangle$
7	$A_7 = \Gamma_{29} \cup \{P(v^{26}, v^{15}, 1)\}$	$C_2 = \langle [[v^{12}, v, v^{14}], [v^{26}, v^{26}, v^{26}], [0, 0, v^3]] \rangle$
8	$A_8 = \Gamma_{29} \cup \{P(v^{27}, v^5, 1)\}$	I
9	$A_9 = \Gamma_{29} \cup \{P(v^{18}, v^7, 1)\}$	$C_4 = \langle [[0, v^{14}, 0], [1, 1, 1], [v^{14}, 0, 0]] \rangle$
10	$A_{10} = \Gamma_{29} \cup \{ P(v^{22}, v^{16}, 1) \}$	$D_5 = \left\langle r = [[v^8, 0, 0], [0, 0, v^{14}], [0, v^2, 0]], \right\rangle$ $s = [[0, v^8, 0], [1, 1, 1], [v^2, 0, 0]]$

Table 2: Inequivalent 5-arc and their stabilizer group in PG(2,31)

No.	5-Arc	Stabilizer Group
1	$A_1' = \Gamma_{31} \cup \{P(\omega^2, \omega^{10}, 1)\}$	I
2	$A_2' = \Gamma_{31} \cup \{ P(\omega^6, \omega^4, 1) \}$	I
3	$A_3' = \Gamma_{31} \cup \{P(\omega^{12}, \omega^{27}, 1)\}$	$C_2 = \langle [[\omega^{19}, 0, 0], [\omega^{27}, \omega^{18}, \omega^{15}], [\omega^3, \omega^3, \omega^3]] \rangle$
4	$A'_4 = \Gamma_{31} \cup \{P(\omega^{13}, \omega^{29}, 1)\}$	I
5	$A_5' = \Gamma_{31} \cup \{P(\omega^{17}, \omega^{11}, 1)\}$	I
6	$A'_6 = \Gamma_{31} \cup \{P(\omega^{14}, \omega^{20}, 1)\}$	$C_2 = \langle [[\omega^{29}, \omega^5, \omega^{15}], [\omega^{14}, \omega^{14}, \omega^{14}], [0, 0, \omega^{17}]] \rangle$
7	$A_7' = \Gamma_{31} \cup \{P(\omega^{15}, \omega^9, 1)\}$	$C_2 = \langle [[\omega^{15}, \omega^{15}, \omega^{15}], [0, 0, 1], [0, 1, 0]] \rangle$
8	$A_8' = \Gamma_{31} \cup \{P(\omega^8, \omega^{20}, 1)\}$	$C_2 = \langle [[\omega^{23}, \omega^5, \omega^{15}], [0, \omega^6, 0], [\omega^{15}, \omega^{15}, \omega^{15}]] \rangle$
9	$A_9' = \Gamma_{31} \cup \{P(\omega^{26}, \omega^9, 1)\}$	$C_4 = \left\langle [[\omega^9, \omega^9, \omega^9], [\omega^{11}, \omega^{24}, \omega^{15}], [0, 0, \omega]] \right\rangle$
10	$A'_{10} = \Gamma_{31} \cup \{P(\omega^5, \omega^{25}, 1)\}$	$S_{3} = \left\langle \begin{bmatrix} [0, \omega^{10}, 0], [\omega^{20}, 0, 0], [0, 0, \omega^{15}] \end{bmatrix}, \right\rangle$ $\begin{bmatrix} [\omega^{10}, 0, 0], [0, \omega^{20}, 0], [1, 1, 1] \end{bmatrix}$
11	$A'_{11} = \Gamma_{31} \cup \{P(\omega^4, \omega^{27}, 1)\}$	$D_{5} = \left\langle r' = [[\omega^{26}, 0, 0], [1, 1, 1], [\omega^{19}, \omega^{11}, \omega^{15}]], \right\rangle$ $s' = [[0, \omega^{7}, 0], [\omega^{19}, \omega^{11}, \omega^{15}], [1, 1, 1]] \right\rangle$

Collinearities of the Diagonal Points of Pentastigm.

Definition 3.1[3]: An n-stigm in PG(2,q) is a set of n points, no three of which are collinear, together with the $\frac{1}{2}n(n-1)$ lines that are joins of pairs of the points. The points and lines are called vertices and sides of the n-stigm. The vertices form an n-arc. A 5-stigm is also called pentastigm.

The diagonal points of an n-stigm are the intersections of two sides which do not pass through the same vertex.

In general, any 5-arc has 15 diagonal points since

Vol. 26 (3) 2013

$$\frac{1}{2} \binom{5}{2} \binom{3}{2} = 15$$

and these points are exactly the fifteen points of index two. Write $ij \cdot kl$ for $P_i P_i \cap P_k P_l$.

Let $P_0 = U_0$, $P_1 = U_1$, $P_2 = U_2$, $P_3 = U$, $P_4 = P(a_0, a_1, a_2)$ be the vertices of a pentastigm ρ . So, the following equation is satisfied:

$$a_0 a_1 a_2 (a_0 - a_1)(a_0 - a_2)(a_1 - a_2) \neq 0.$$

In this section, the inequivalent 5-arc that has a five diagonal points is found in PG(2,q), q = 29, 31.

Lemma 3.2[1]: The condition that five diagonal points of a pentastigm ρ are collinear in PG(2,q) is that $x^2 - x - 1 = 0$ has solution in \mathbb{F}_q .

Corollary 3.3:

- (i) If q = 29, the equation $x^2 x 1 = 0$ has two solutions 6, -5.
- (ii) If q = 31, the equation $x^2 x 1 = 0$ has two solutions 13, -12.

So, there is a Pentastigm with five collinear points in PG(2,29) and PG(2,31).

Theorem 3.4: (i) In PG(2,29), the pentastigm which has the 5-arc A_{10} as vertices has five diagonal points which are collinear on the line $\ell_{627} = V(X_0 - X_1 - 5X_2)$ as shown below.

(1)
$$01 \cdot 23 = P(1.1.0)$$

(6)
$$02 \cdot 34 = P(v^{16}, 0, 1)$$

(1)
$$01 \cdot 23 = P(1,1,0)$$
, (6) $02 \cdot 34 = P(v^{16},0,1)$, (11) $04 \cdot 13 = P(1,v^{16},1)$,

(2)
$$01 \cdot 24 = P(v^6, 1, 0)$$

(7)
$$03 \cdot 12 = P(0,1,1)$$

(2)
$$01 \cdot 24 = P(v^6, 1, 0),$$
 (7) $03 \cdot 12 = P(0, 1, 1),$ (12) $04 \cdot 23 = P(v^{16}, v^{16}, 1),$

(3)
$$01 \cdot 34 = P(v^{22}, 1, 0)$$

(8)
$$03 \cdot 14 = P(v^{22}, 1, 1)$$

(3)
$$01 \cdot 34 = P(v^{22}, 1, 0)$$
, (8) $03 \cdot 14 = P(v^{22}, 1, 1)$, (13) $12 \cdot 34 = P(0, v^{8}, 1)$,

(4)
$$02 \cdot 13 = P(1,0,1)$$

(9)
$$03 \cdot 24 = P(v^6, 1, 1)$$

(4)
$$02 \cdot 13 = P(1,0,1)$$
, (9) $03 \cdot 24 = P(v^6,1,1)$, (14) $13 \cdot 24 = P(1,v^{22},1)$,

(5)
$$02 \cdot 14 = P(v^{22}, 0, 1)$$
, (10) $04 \cdot 12 = P(0, v^{16}, 1)$, (15) $14 \cdot 23 = P(v^{22}, v^{22}, 1)$.

(10)
$$04 \cdot 12 = P(0, v^{16}, 1)$$

(15)
$$14 \cdot 23 = P(v^{22}, v^{22}, 1)$$

Amongst these diagonal points, the five diagonal points

$$01 \cdot 23 = P(1,1,0),$$

$$02 \cdot 14 = P(v^{22}, 0, 1),$$

$$03 \cdot 24 = P(v^6, 1, 1),$$

$$04 \cdot 13 = P(1, v^{16}, 1),$$

$$12 \cdot 34 = P(0, v^8, 1),$$

lie on the line $\ell_{627} = V(X_0 - X_1 - 5X_2)$.

(ii) In PG(2,31), the pentastigm which has the 5-arc A'_{11} as vertices has five diagonal points which are collinear on the line $\ell_{379} = V(X_0 + 19X_1 + 12X_2)$ as shown below.

(1)
$$01 \cdot 23 = P(1,1,0)$$
,

(6)
$$02 \cdot 34 = P(\omega^{25}, 0, 1)$$

(1)
$$01 \cdot 23 = P(1,1,0)$$
, (6) $02 \cdot 34 = P(\omega^{25},0,1)$, (11) $04 \cdot 13 = P(1,\omega^{26},1)$,

(2)
$$01 \cdot 24 = P(\omega^8, 1, 0)$$

(7)
$$03 \cdot 12 = P(0,1,1)$$

(2)
$$01 \cdot 24 = P(\omega^8, 1, 0)$$
, (7) $03 \cdot 12 = P(0, 1, 1)$, (12) $04 \cdot 23 = P(\omega^{26}, \omega^{26}, 1)$,

(3)
$$01 \cdot 34 = P(\omega^{19}, 1, 0)$$

(8)
$$03 \cdot 14 = P(\omega^4, 1, 1)$$

(3)
$$01 \cdot 34 = P(\omega^{19}, 1, 0)$$
, (8) $03 \cdot 14 = P(\omega^{4}, 1, 1)$, (13) $12 \cdot 34 = P(0, \omega^{4}, 1)$,

(4)
$$02 \cdot 13 = P(1,0,1)$$

(9)
$$03 \cdot 24 = P(\omega^8, 1.1)$$

(4)
$$02 \cdot 13 = P(1,0,1)$$
, (9) $03 \cdot 24 = P(\omega^8,1,1)$, (14) $13 \cdot 24 = P(1,\omega^{22},1)$,

(5)
$$02 \cdot 14 = P(\omega^4, 0, 1)$$

(10)
$$04 \cdot 12 = P(0, \omega^{26}, 1)$$

(5)
$$02 \cdot 14 = P(\omega^4, 0.1)$$
, (10) $04 \cdot 12 = P(0, \omega^{26}, 1)$, (15) $14 \cdot 23 = P(\omega^4, \omega^4, 1)$.

Amongst these diagonal points, the five diagonal points

$$01 \cdot 34 = P(\omega^{19}, 1, 0),$$

$$02 \cdot 14 = P(\omega^4, 0, 1),$$

$$03 \cdot 12 = P(0,0,1),$$

$$04 \cdot 23 = P(\omega^{26}, \omega^{26}, 1),$$

$$13 \cdot 24 = P(1, \omega^{22}, 1),$$

lie on the line $\ell_{379} = V(X_0 + 19X_1 + 12X_2)$.

The Group Action of D_5 on the 5-Arc

In this section, the group action of D_5 on the 5-arc A_{10} in PG(2,29) and on the 5-arc A'_{11} in PG(2,31) has been studied.

(I) When q = 29.

From Table 1, the Dihedral group D₅ generated by

$$r = \begin{bmatrix} v^8 & 0 & 0 \\ 0 & 0 & v^{14} \\ 0 & v^2 & 0 \end{bmatrix}, \quad s = \begin{bmatrix} 0 & v^8 & 0 \\ 1 & 1 & 1 \\ v^2 & 0 & 0 \end{bmatrix}$$

is the stabilizer group of the 5-arc A_{10} . The effects of the group D_5 on the projective plane PG(2,29) are given below.

1. The group D_5 fixes the conic $C_{A_{10}}$.

2. The group D_5 acts transitively on A_{10} since

$$(U_0, rs) \mapsto U_1,$$

$$(\mathbf{U}_0, rs^4) \mapsto \mathbf{U}_2,$$

$$(U_0, rs^2) \mapsto U,$$

 $(U_0, rs^3) \mapsto P(v^{22}, v^{16}, 1).$

- 3. Each of the five projectivities r, rs, rs^2, rs^3, rs^4 fixes 25 points amongst the 601 points of index zero by transforming each point to itself.
- 4. Each of these 25 points lies on a line which is a unisecant to A_{10} and a bisecant of the conic

$$C_{A_{10}} = X_0 X_1 + 5 X_0 X_2 - 6 X_1 X_2.$$

These lines are

$$\ell_{244} = V(5X_2 - X_1);$$

$$\ell_{790} = V(X_0 + X_1 - X_2);$$

$$\ell_{659} = V(X_0 + 4X_2);$$

$$\ell_{72} = V(X_0 - 5X_1);$$

$$\ell_{422} = V(X_0 - 6X_1 + 5X_2).$$

5. Each of the five projectivities r, rs, rs^2, rs^3, rs^4 fixes 31 points of PG(2,29) by transforming each point to itself. These points are exactly the following:

$$\ell_{244} \cup \{P(0,v^8,1)\};$$

$$\ell_{790} \bigcup \{P(1,1,0)\};$$

$$\ell_{659} \cup \{P(v^6,1,1)\};$$

$$\ell_{72} \cup \{P(1,v^{16},1)\};$$

$$\ell_{422} \bigcup \{P(v^{22},0,1)\}.$$

Table 3: Points of index zero fixed by elements of D_5 in PG(2,29)

		$\ell_i \setminus \{P_1, P_2, P_3, P_4, P_5\}$
1	r	$\ell_{244} \setminus \{P(1,0,0), P(0,v^{22},1), P(v^{17},v^{22},1), P(0,v^{22},1), P(v^{22},v^{22},1)\}$
2	rs	$\ell_{790} \setminus \{P(v^{14},1,0), P(\omega^{22},\omega^{16},1), P(1,0,1), P(v^{27},v^{27},1), P(0,1,1)\}$
3	rs ²	$\ell_{659} \setminus \{P(0,1,0), P(v^{16},0,1), P(v^{16},v^{16},1), P(v^{16},1,1), P(v^{16},v^{10},1)\}$
4	rs^3	$\ell_{72} \setminus \{P(0,0,1), P(v^{10}, v^{16}, 1), P(1, v^{6}, 1), P(v^{22}, 1, 0), P(v^{22}, 1, 1)\}$
5	rs ⁴	$\ell_{422} \setminus \{P(1,1,1), P(0,\nu^{16},1), P(\nu^{6},1,0), P(\nu^{22},\nu^{17},1), P(\nu^{8},0,1)\}$

- 6. These additional points to the lines are exactly the diagonal points of 5-arc A_{10} .
- 7. The other four projectivities fix only one point $P(v^{16}, v^{22}, 1)$ which is the point intersection of the five lines ℓ_{244} , ℓ_{790} , ℓ_{659} , ℓ_{72} , ℓ_{422} .

(II) When q = 31.

From Table 2, the Dihedral group D₅ generated by

$$r' = \begin{bmatrix} \omega^{26} & 0 & 0 \\ 1 & 1 & 1 \\ \omega^{19} & \omega^{11} & \omega^{15} \end{bmatrix}, \quad s' = \begin{bmatrix} 0 & \omega^7 & 0 \\ \omega^{19} & \omega^{11} & \omega^{15} \\ 1 & 1 & 1 \end{bmatrix}$$

is the stabilizer group of the 5-arc A'_{11} . The effects of the group D_5 on the projective plane PG(2,31) are given below.

- 1. The group D_5 fixes the conic $C_{A'_1}$.
- 2. The group D_5 acts transitively on A'_{11} since

$$\begin{split} &(\mathbf{U}_0,r's')\mapsto \mathbf{U}_1,\\ &(\mathbf{U}_0,r's'^3)\mapsto \mathbf{U}_2,\\ &(\mathbf{U}_0,r's'^4)\mapsto \mathbf{U},\\ &(\mathbf{U}_0,s'^2)\mapsto \mathbf{P}(\boldsymbol{\omega}^4,\boldsymbol{\omega}^{27},1)\,. \end{split}$$

- 3. Each of the five projectivities r', r's', $r's'^2$, $r's'^3$, $r's'^4$ fixes 27 points amongst the 703 points of index zero by transforming each point to itself.
- 4. Each of these 27 points lies on a line which is a unisecant to A'_{11} and a bisecant of the conic

$$\begin{split} &C_{A_{11}'} = X_0 X_1 + 17 X_0 X_2 - 18 X_1 X_2 = \{ \mathsf{P}(-7(t^2 - 7t), -5(1 - 9t), \mathsf{t}) \, | \, t \in \mathsf{F}_{31}^* \} \,. \\ &\text{These lines are} \\ &\ell'_{643} = \mathsf{V}(19 X_2 - X_1); \\ &\ell'_{927} = \mathsf{V}(5 X_0 - 2 X_1); \\ &\ell'_{29} = \mathsf{V}(X_0 + 11 X_2); \\ &\ell'_{900} = \mathsf{V}(X_0 + 11 X_1 + 19 X_2); \\ &\ell'_{757} = \mathsf{V}(X_0 - X_1 - X_2). \end{split}$$

Table 4: Points of index zero fixed by elements of D_5 in PG(2,31)

		· · · · · · · · · · · · · · · · · · ·
		$\ell'_i \setminus \{P_1, P_2, P_3, P_4, P_5\}$
1	r'	$\ell'_{643} \setminus \{P(1,0,0), P(0,\omega^4,1), P(\omega^4,\omega^4,1), P(\omega^{12},\omega^4,1), P(1,\omega^4,1)\}$
2	r's'	$\ell'_{927} \setminus \{P(0,0,1), P(\omega^{14}, \omega^{10}, 1), P(\omega^{4}, 1, 0), P(1, \omega^{26}, 1), P(\omega^{4}, 1, 1)\}$
3	$r's'^2$	$\ell'_{29} \setminus \{P(0,1,0), P(\omega^8, \omega^8, 1), P(\omega^8, 1, 1), P(\omega^8, \omega^{26}, 1), P(\omega^8, 0, 1)\}$
4	$r's'^3$	$\ell'_{900} \setminus \{P(\omega^8,1,0), P(1,1,1), P(\omega^4, \omega^{20},1), P(\omega^{19},0,1), P(0,\omega^{26},1)\}$
5	r's'4	$\ell'_{757} \setminus \{P(\omega^4, \omega^{26}, 1), P(0, \omega^{15}, 1), P(1,0,1), P(1,1,0), P(\omega^{24}, 1,1)\}$

5. Each of the five projectivities r', r's', $r's'^2$, $r's'^3$, $r's'^4$ fixes 33 points of PG(2,31) by transforming each point to itself. These points are exactly the following:

$$\ell'_{643} \cup \{P(1,\omega^{22},1)\};$$

$$\ell'_{927} \cup \{P(\omega^{19},1,0)\};$$

$$\ell'_{29} \cup \{P(\omega^{26},\omega^{26},1)\};$$

$$\ell'_{900} \cup \{P(\omega^{4},0,1)\};$$

$$\ell'_{757} \cup \{P(0,1,1)\}.$$

- **6.** These additional points to the lines are exactly the diagonal points of 5-arc A'_{11} .
- 7. The other four projectivities fix three points $P(\omega^{27}, \omega^{29}, 1)$, $P(\omega^{3}, \omega^{23}, 1)$, $P(\omega^{8}, \omega^{4}, 1)$ which $P(\omega^{8}, \omega^{4}, 1)$ is the intersection point of the five lines $\ell'_{643}, \ell'_{927}, \ell'_{29}, \ell'_{900}, \ell'_{757}$.

Unique Inequivalent Arc of Degree Six With Stabilizer of Type As

In this section, the unique 6-arc K through the frame which has a stabilizer group G(K) isomorphic to A_5 is found. Also, the effect of A_5 on the PG(2,q), q=29,31 is discussed.

Let $K = \{P_1 = U_0, P_2 = U_1, P_3 = U_2, P_4 = U, P_5 = P(a,b,1), P_6 = P(c,d,1)\}$. There are fifteen ways of choosing three bisecants no two of which intersect on K. These three bisecants form either a triangle or will intersect at a B-point.

(I) When q = 29.

From the 5-arc A_{10} , an arc of degree six β_{29} is constructed by adding $P(v^{14}, v^8, 1)$ of index zero; that is, $\beta_{29} = A_{10} \cup \{P(v^{14}, v^8, 1)\}$.

This arc has the following properties:

- 1- This arc has parameters $[c_0, c_1, c_2, c_3] = [480, 360, 15, 10]$. Since $c_0 \neq 0$, so β_{29} is not complete arc.
- 2- The stabilizer group of β_{29} is of type A_5 as given below

$$G(\beta_{29}) = \langle g, h | g^2 = h^3 = (gh)^5 = 1 \rangle,$$

where

$$g = \begin{bmatrix} v^{14} & 0 & 0 \\ 0 & v^{14} & 0 \\ 1 & 1 & 1 \end{bmatrix}, \quad h = \begin{bmatrix} 0 & v^{22} & 0 \\ 0 & 0 & 1 \\ v^{16} & 0 & 0 \end{bmatrix}.$$

3- The group $G(\beta_{29})$ has a subgroup of type D_5 generated by α_1, α_2 fixes the conic

$$C_{A_{10}} = X_0 X_1 + 5X_0 X_2 - 6X_1 X_2 = \{P(4(t^2 + t), -13(1+t), -9t) \mid t \in F_{29}^*\},$$

where

$$\alpha_{1} = \begin{bmatrix} v^{8} & 0 & 0 \\ 0 & 0 & v^{14} \\ 0 & v^{2} & 0 \end{bmatrix}, \quad \alpha_{2} = \begin{bmatrix} 0 & v^{8} & 0 \\ 1 & 1 & 1 \\ v^{2} & 0 & 0 \end{bmatrix}, \quad \alpha_{1}^{2} = \alpha_{2}^{5} = 1.$$

4-The calculation shows that the parameter $c_3 = 10$, so β_{29} has ten B-Points as given below.

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

(2)
$$12 \cdot 36 \cdot 45 = P(v^{22}, 1, 0);$$
 (7) $15 \cdot 23 \cdot 46 = P(0, v^{16}, 1);$

(3)
$$13 \cdot 24 \cdot 56 = P(1,0,1);$$
 (8) $15 \cdot 26 \cdot 34 = P(v^{16}, v^{16}, 1);$

(4)
$$13 \cdot 26 \cdot 45 = P(v^{16}, 0, 1);$$
 (9) $16 \cdot 24 \cdot 35 = P(1, v^{22}, 1);$

(5)
$$14 \cdot 23 \cdot 56 = P(0,0,1);$$
 (10) $16 \cdot 25 \cdot 34 = P(v^{22}, v^{22}, 1).$

5-The set $K = \{P(v^6, 1, 0), P(v^{22}, 1, 0), P(1, 0, 1), P(v^{16}, 0, 1), P(0, 0, 1), P(v^{22}, 1, 1), P(0, v^{16}, 1), P(v^{16}, v^{16}, 1), P(1, v^{22}, 1), P(v^{22}, v^{22}, 1)\}$ of B-Points of β_{29} form a non complete 10-arc with parameters

 $[c_0, c_1, c_2, c_3, c_4, c_5] = [60,480,210,90,15,6].$

The stabilizer group of K is isomorphic to A_5 .

8. The remaining five possibilities form triangles. In Table 5, the sides of these triangles and their vertices are given.

(IV) (III) $P_1P_2 = V(X_2)$ $P_1 P_3 = V(X_1)$ $P_1P_4 = V(X_1 - X_2)$ $P_1P_5 = V(X_1 + 4X_2)$ $P_1P_6 = V(5X_2 - X_1)$ $P_{3}P_{4} = V(X_{0} - X_{1}) \qquad P_{2}P_{5} = V(X_{0} - 5X_{2}) \qquad P_{2}P_{6} = V(X_{0} + 4X_{2}) \qquad P_{2}P_{4} = V(X_{0} - X_{2}) \qquad P_{2}P_{3} = V(X_{0})$ $P_{5}P_{6} = V(X_{0} + X_{1} - X_{2}) \qquad P_{4}P_{6} = V(X_{0} - 6X_{1} + 5X_{2}) \qquad P_{3}P_{5} = V(5X_{0} - X_{1}) \qquad P_{3}P_{6} = V(X_{0} - 5X_{1}) \qquad P_{4}P_{5} = V(6X_{0} - X_{1} - 5X_{2})$ P(1,1,0) $P(v^{22},0.1)$ $P(v^{16},1,1)$ $P(1,v^{16},1)$ $P(0, v^{22}, 1)$ $P(v^{14},1,1)$ $P(v^{10}, v^{16}, 1)$ $P(v^{17}, v^{22}, 1)$ $P(v^8,0,1)$ $P(v^6, 1, 1)$ $P(v^{27}, v^{27}, 1)$ $P(v^{22}, v^{17}, 1)$ $P(v^{16}, v^{10}, 1)$ $P(0, v^8, 1)$ $P(1, v^6, 1)$

Table 5: Five triangles fixed by A_5 **in** PG(2,29)

7- Let $W = \{I, II, III, IV, V\}$ be the set of five triangles in Table 5. Each elements of the group $G(\beta_{29}) \cong A_5$ fixes the set W.

(II) When q = 31.

From the 5-arc A'_{11} , an arc of degree six β_{31} is constructed by adding $P(\omega^8, \omega^4, 1)$ of index zero; that is, $\beta_{31} = A'_{11} \bigcup \{P(\omega^8, \omega^4, 1)\}.$

This arc has the following properties:

- 1- β_{31} has parameters $[c_0, c_1, c_2, c_3] = [572, 390, 15, 10]$. Since $c_0 \neq 0$, so β_{31} is not complete arc.
 - 2- The stabilizer group of β_{31} is of type A_5 as given below

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

$$G(\beta_{31}) = \langle g', h' | g'^2 = h'^3 = (g'h')^5 = 1 \rangle,$$

where

$$g' = \begin{bmatrix} \omega^{16} & 0 & 0 \\ 0 & \omega^{16} & 0 \\ 1 & 1 & 1 \end{bmatrix}, \quad h' = \begin{bmatrix} 0 & \omega^{20} & 0 \\ 0 & 0 & 1 \\ \omega^{10} & 0 & 0 \end{bmatrix}.$$

3-The identity subgroup of the group $G(\beta_{31})$ fixes the conic

$$C_{A_{11}'} = X_{0}X_{1} + 17X_{0}X_{2} - 18X_{1}X_{2}$$
.

4-The calculation show that the parameter $c_3 = 10$, so β_{31} has ten *B*-Points as given below.

- (1) $12 \cdot 34 \cdot 56 = P(1,1,0);$ (6) $14 \cdot 26 \cdot 35 = P(\omega^8,1,1);$
- (2) $12 \cdot 35 \cdot 46 = P(\omega^8, 1, 0);$ (7) $15 \cdot 23 \cdot 46 = P(0, \omega^{26}, 1);$
- (3) $13 \cdot 24 \cdot 56 = P(1,0,1);$ (8) $15 \cdot 24 \cdot 36 = P(1,\omega^{26},1);$
- (4) $13 \cdot 26 \cdot 45 = P(\omega^8, 0, 1);$ (9) $16 \cdot 23 \cdot 45 = P(0, \omega^4, 1);$
- (5) $14 \cdot 26 \cdot 36 = P(\omega^4, 1, 1);$ (10) $16 \cdot 25 \cdot 34 = P(\omega^4, \omega^4, 1).$

5-The set K' = { P(1,1,0), P(ω^8 ,1,0), P(1,0,1), P(ω^8 ,0,1), P(ω^4 ,1,1), P(ω^8 ,1,1), P(0, ω^{26} ,1), P(1, ω^{26} ,1), P(0, ω^4 ,1), P(ω^4 , ω^4 ,1)} of *B*-Points of β_{31} form a non complete 10-arc with parameters

$$[c_0, c_1, c_2, c_3, c_4, c_5] = [60,480,210,90,15,6].$$

The stabilizer group of K' is isomorphic to A_5 .

8. The remaining five possibilities form triangles. In Table 6, the sides of these triangles and their vertices are given.

Table 6: Five triangles fixed by A_5 **in** PG(2,31)

(I)	(II)	(III)	(IV)	(V)
$P_1 P_2 = V(X_2)$	$P_1 P_3 = V(X_1)$	$P_1 P_4 = \mathbf{V}(X_1 - X_2)$	$P_1 P_5 = V(18X_2 - X_1)$	$P_1 P_6 = V(19X_2 - X_1)$
$P_3P_6 = V(X_0 + 12X_1)$	$P_2 P_5 = V(X_0 - 19X_2)$	$P_3P_3=V(X_0)$	$P_2 P_6 = V(X_0 - 20X_2)$	$P_2P_4 = V(X_0 - X_2)$
$P_4 P_5 = V(X_0 - 12X_1 + 11X_2)$	$P_4 P_6 = V(X_0 + 11X_1 + 19X_2)$	$P_5 P_6 = V(X_0 - X_1 - X_2)$	$P_3P_4 = V(X_0 - X_1)$	$P_3 P_5 = V(X_0 + 11X_1)$

Ibn Al-Haitham	Jour.	for Pure	& Appl. Sci
	J	,	

$P(\omega^4, 1, 0)$	$P(\omega^4, 0, 1)$	P(0,1,1)	$P(\omega^8,\omega^{26},1)$	$P(1,\omega^4,1)$	l
$P(\omega^{19},0,1)$	$P(\omega^{19},0,1)$	$P(\omega^{24},1,1)$	$P(\omega^{26},\omega^{26},1)$	$P(\omega^{12},\omega^4,1)$	l
$P(\omega^{14}, \omega^{10}, 1)$	$P(\omega^4, \omega^{20}, 1)$	$P(0,\omega^{15},1)$	$P(\omega^8,\omega^8,1)$	$P(1,\omega^{22},1)$	l
			, , ,		l
					l

9. Let $W' = \{I, II, III, IV, V\}$ be the set of five triangles in Table 6. Each elements of the group $G(\beta_{31}) \cong A_5$ fixes the set W'.

Conclusion

- 1- There is an arc of degree five $\xi = \{P_1, P_2, P_3, P_4, P_5\}$ which has stabilizer group $G(\xi)$ of type D_5 .
- 2- The pentastigm which has ξ as a vertex has collinear diagonal points.
- 3- The effect of the group $G(\xi)$ on points of PG(2,q), q=29,31 depends on the order of its elements. Let G^2 be the set of five elements of $G(\xi)$ of order two and G^5 be the set of four elements of $G(\xi)$ of order five.
- (i) Each element of G^2 fixes five a subset of the plane of length q+2 by sending it to itself. Each of this set, is a line ℓ_i^* with extra point P_i^* , i=1,2,3,4,5. The five extra points P_i' are exactly the diagonal points of ξ . Also, these lines are the bisecant to the conic C_{ξ} which passes through ξ and unisecants to ξ .
- (ii) Each element of G^5 fixes a point \mathbf{P}^* which is the intersection point of the five lines $\ell_i^*, i = 1, 2, 3, 4, 5$.
- 4- The unique six arc with stabilizer group of type A_5 is constructed by adding the point \mathbf{P}^* to ξ . So, the following figure is fixed by the group $G(\xi)$.

Figure 1.

According to these results and Storm and Maldeghem results [4, proposition 12] the following conjecture is deduced.

Conjecture: In PG(2,q), when $q \equiv \pm 1 \mod(10)$ there is a unique arc of degree five ξ fixed by group $G(\xi)$ of type D_5 and there is a unique arc of degree six consists of ξ and a point P^* which is fixed by the elements of $G(\xi)$ of degree five. And the group $G(\xi)$ fixed the Figure 1.

References

- [1] Hirschfeld J. W. P., (1998), Projective geometries over finite fields, 2nd Edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York.
- [2] Thomas A. D. and Wood G. V., (1980), Group tables, Shiva Mathematics Series, Series 2., Devon Print Group, Exeter, Devon, UK.
- [3] Sadeh A. R., (1984), Cubics surfaces with twenty seven lines over the eleven elements, PhD thesis, University of Sussex, United Kingdom.
- [4] Al-Zangana E. M., (2011), The geometry of the plane of order nineteen and its application to error-correcting codes, Ph.D. thesis, University of Sussex, United Kingdom.
- [5] Storme L. and Maldeghem V., (1995), Primitive arcs in PG(2,q), J. Combin. Theory, Ser. A, 69, (200-216).
- [6] GAP Group, (2013), GAP. Reference manual, URL http://www.gap-system.org.

\mathbf{F}_q و من الأنواع في الأسقاطي في من الأنواع \mathbf{D}_5 و الأسقاطي في تاثير الزمر من الأنواع و [q=29,31]

عماد بكر عبد الكريم الزنكنة قسم الرياضيات / كلية العلوم / الجامعة المستنصرية

الخلاصة

الغرض من هذا البحث أيجاد قوس من الدرجة الخامسة في المستوي الأسقاطي , PG(2,q), وات الغرض من هذا البحث أيجاد قوس من الدرجة الخامسة D_5 و اقواس من الدرجة السادسة والعاشرة ذات زمرة مثبتة من النوع زمرة داهيدرل من الدرجة الخامسة D_5 ومن ثم دراسة تأثير D_5 و D_5 في نقاط المستوي الأسقاطي . وكذلك، ايجاد بنتاستام ذات نقاط قطرية على استقامة واحدة. الكلمات المفتاحية: المستوي الاسقاطي، القوس.