

Synthesis And Characterization Of Some 1,3,4 - Thiadiazole Derivatives

Ismaeel Y. Majeed Iman F. Mustafa Muhand J. Mahmoud

Dept. of Chemistry/College of Education For pure Science (Ibn Al-Haitham)/ University of Baghdad

Received in:19 February 2013, Accepted in:19 May 2013

Abstract

A series of N- benzoyl - 2 – alkyl -1- (2- thio – 1,3,4- thiadiazole -5- yl) , have been synthesized from DL- α – amino acids , The methyl and sulfon thio ethers of these compounds were also prepared , representative samples of the prepared compounds were characterized from their IR- spectrum and elemental analysis .

Key Words:1,3,4 – thiadiazole derivatives, thio – ethers, sulfon compounds.

Introduction

Thiadiazoles and in particular 1,3,4- thiadiazole derivatives were among the various heterocycles that received more attention during the last two decades as antimicrobial agents.[1,2]

Most of the substitutions have been carried out at the 2- and 5- positions of the thiadiazole ring , these inclued , the introduction of a double bond on the thiadiazole ring is reported to have a strong antibacterial activity [3, 4] antifungal[5,6] , antimitotic [7] widely used formedicinal [8] and antihistaminic [9] , substituted thiadiazoles have been reported to display nematocidal [10] and antiinflammatory [11]. Keeping these facts in mind it was thought worth while to synthesize some new [5-(N- benzoyl - alkyl amino) - (1,3,4-thiadiazole -2- thione] derived from N- benzoyl α – amino acids derivatives see (scheme1).

Scheme -1 –

Experimental

Melting points were determined by using "Electro thermal "melting point apparatus mettler . I.R. spectra were recorded using FTIR -8300 fourier transforn infared spectrophototmeter schimadzu , for KBr disc . Microanalytical samples were analysed at the Ministry of Oil Laboratories , Baghdad .

• N- Benzoyl α – amino acid [I _{a,b,c}]

This was carried out following the procedure of vogel [12].

• N- Benzoyl methylester of α – amino acid [II _{a,b,c}]

A solution of sodium carbonate (0.01 mole) in water was added gradually with continous stirring to N- benzoyl α – amino acid [I $_{a,b,c}$] (0.01 mole) which was dissolved in dry acetone , to a stirred solution dimethyl sulfate (0.01 mole) was added . The mixture was refluxed for 3hr . Evaporated under reduced pressure and extracted with ethyl acetate .

A syrup was obtaind which showed one spot on T.L.C. (ethyl acetate as a solvent system).

• N – Benzoyl α – amino acid hydrazide [III $_{a,b,c}$]

To a stirred solution of (0.01 mole) of N- benzoyl $\alpha-$ amino methyl ester [II $_{a,b,c}$] in ethanol (10 ml) hydrazine hydrate (0.02 mole) was added . The mixture was refluxed for 3hr . After cooling a white crystalline solid was formed , the crude product was filtered and recrystallized from ethanol .

m.p. of [III $_a$] = 175 – 177 $_c$ $_o$,[III $_b$] = 243-244 $_c$ $_o$,[III $_c$] = 230-232 $_c$ $_o$ yield % of [III $_a$] 73% , [III $_b$] 82% , [III $_c$] 86%

• N- benzoyl α – amino acid xanthate salt : [13] [IV _{a,b,c}]

N- benzoyl α – amino acid hydrazide [$III_{a,b,c}$] (0.0l mole) was mixed with (10~ml) ethanolic KOH solution , a clear solution was thus obtained , carbon disulphide (0.01 mole) (5ml) was now added to it and the resulting solution was stirred for overnight at room temperature , the yellow precipitate is separated and washed with ether .

m.p. of [IV $_{a}$]= 140-141 $_{c}$ $_{c}$ $_{c}$ [IV $_{b}$] = 220-222 $_{c}$ $_{c}$ decom . [IV $_{c}$]= 190-192 decom yield % of [IV $_{a}$] 74% , [IV $_{b}$] 67% , [IV $_{c}$] 62%.

• $[5 - (N-benzoyl - alkyl amino) - 1,3,4 - thiadiazole -2-thione)[13] [V_{a,b,c}]$

Xanthate salt (0.01 mole) was dissolved in ice cold conc . Sulphuric acid (10 ml) , the resulting solution was kept at room temperature for 2hr. Stirred at intervals and then poured over crushed ice . It was stirred , diluted with water and flitered , the residue obtained was washed and recrystallized from ethanol – water . Physical properties of compounds $[V_{a,b,c}]$ are shown in (Table -1-) .

\bullet [5- ($N-benzoyl-methyl\ amino)$ - 1,3,4 – thiadiazole –2 –thio ether] [14] [VI $_{a,b,c}$] .

The compounds [V $_{a,b,c}$] ($0.01\ mole$) , were dissolved in dioxane ($10\ ml$) , which contained ($0.01\ mole$) potassium hydroxide , alkyl iodide ($0.01\ mole$) was added drop wise with stirring , the reactans were refluxed 1hr . and monitored by (T.L.C) . After evaporating the solvent under reduced pressure , water was added , and the crude product was extracted with ethyl acetate and dried over anhydrous sodium sulphate . Evaporation of the organic solvent gave a solid that was crystallized from (benzene – petroleum ether 40-60) physical properties are shown in (Table – 1 -) .

• [5- (N – benzoyl –alkyl amino) – 2- methyl sulphonyl – 1,3,4 – thiadiazole)] [15] [VII $_{a,b,c}$] .

The alkyl thioether [VI $_{a,b,c}$] (0.01 mole) was dissolved in 80% aqueous acetic acid (3 ml), to this solution of potassium permanganate (0.03 mole) in water (5 ml), was added during a period of 0.5hr. 30% hydrogen peroxide was added in a quantity sufficient to

discharge the colour . Work - up neutralization with sodium hydrogen carbonate soluation , extracting with ethyl acetate and evaporation of the organic solvent .

Results and Discussion

In the present work a series of 1,3,4 – thiadiazole derivatives were synthesized from glycine , DL – 3-5- diiodo tyrosine and DL- trptophan as outlined in (scheme 1) . The key intermediates. N- benzoyl (α - amino acid hydrazide) [III $_{a,b,c}$] were prepared by the reaction of methyl ester of (N- benzoyl - α - amino acid) [I $_{a,b,c}$] with hydrazine . The IR spectra showed the normal secondary amide stretching of the acid hydrazide which appeared at ($1640-1600~\text{cm}^{-1}$) as compared to stretching of the carbonyl group in the corresponding esters , which appeared at ($1740-1660~\text{cm}^{-1}$) .

Scheme -2 –

Treating the acid hydrazides [III $_{a,b,c}$] with carbon disulphide in alkalin medium gave yellow solids ,which are characterized as N- benzoyl- α -amino acid Xanthate salt [IV $_{a,b,c}$],The IR spectra showed to stretching bands at ($3300-3330~{\rm cm}^{-1}$) which could be attributed to – NH group , and the disappearance of – NH $_2$ bands at ($3290-3275~{\rm cm}^{-1}$) which could be due to obtain the reaction . Another characteristic bands were observed at ($1074-1050~{\rm cm}^{-1}$) which could be due to C = S , then the bands at ($1630-1635~{\rm cm}^{-1}$) were obtained which could be attributed to a secondary amide (V C=O amide I) and abroad band was obtained at ($1670-1640~{\rm cm}^{-1}$) which could be attributed to the (amide II).

Then treated the xanthate salt [IV $_{a,b,c}$] with Conc. sulphuric acid , to obtain 1,3,4 – thiadiazole [V $_{a,b,c}$] .

IR spectra showed stretching bands at (1065 - 1060 cm-1), ($2233-2490 \text{cm}^{-1}$) which could be attributed (C = S) [16], -SH stretching and the disappearance of the C=O

hydrazide (amid I) indicated the reaction is obtained , and a strong stretching band appeared at ($1485-1488~\text{cm}^{-1}$) which could be due to (N-C=S)[17] stretching band in thiadiazole ring . See (figure -1-)

Alkylation of compounds [V $_{a,b,c}$] with alkyl iodide in basic medium see (scheme -2-) afforded [5- (N- benzoyl alkyl amino - 1,3,4 – thiadiazole -2- thio ether] [VI $_{a,b,c}$] in 80% yield .

The IR spectra of these compounds showed the disappearance of the C=S and the SH stretching's at ($1065\text{-}1060\text{cm}^{\text{-}1}$) ($2233\text{-}2490\text{cm}^{\text{-}1}$) respectively . New bands at (1423 cm $^{\text{-}1}$) and at (1303 cm $^{\text{-}1}$) appeared which could be attributed to the new $\text{-}S\text{-}CH_3$ stretching band in compound [VI $_a$] , then another characteristic band was observed at ($1410~\text{cm}^{\text{-}1}$) which could be due to ($\text{-}SCH_2$) $^{(18)}$ in compound [VI $_b$] . See (figure -2-) .

The sulphones [VII $_{a,b,c}$] were prepared by oxidation of [VI $_{a,b,c}$] with potassium permanganate and hydrogen peroxide see (scheme -2-) .

The IR spectra are characterized by the sulphone 0=S=0 absorption[18] bands at (1319 – 1325 cm⁻¹) and (1155 – 1159cm⁻¹) see (figure -3-).

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

References

- 1. Asif ,M. and Asthana, Ch. (2010) Synthesized of some new substituted -2,4- diphenyl -5-amino 1,3,4 thiadiazole derivatives ,Acta pharmaceutica sciencia $\underline{52}$:443-451
- 2. Kokila, P.; Sarju, P.; Rinku, P. and Rekha, P. (2011)
- Synthesized some new and biologically [1,2,4] triazolo [3,4- b] [1,3,4] thiadiazole -2- aryl thiazolidinone -4- ones ,Research Journal of chemical Sciences $\underline{1}$ (1):18 24
- 3. Sharma ,V. and Sharma, K.V. (2006) Synthesis and Biological some 3,5- Diaryl -1-benzothiazolopyrazoline Derivatires , Reaction of chalcones with 2- Hydrazino benzothiazoles ", E Journal of chemistry , $\underline{6}$ (2): 356 384
- 4. Lamani ,R. S.; Shelty, N.S.; Kamble ,R.R.; Khazi, I.A. (2009) Synthesized novel methylene bridged benzisoxazolylimidazo [2,1 b] [1,3,4] thiadiazoles, Eur. J. Med . Chem . 44(7):2828-2833
- 5. Elsayed Rashed, A.; Shamroukh ,A.H.; Hegab, M.I. and Awad , H.M. (2005)Synthesis of some biologically Active pyrazoles and C- Nucleosides , Acta chim , Solv. <u>52:</u>429-434 .
- 6. Mehta ,D.S.; Vashi , B.S.; Shah ,V.S. (1997) Synthesized a series of 2-Arylsulfonamido -
- 5- (Benzthiazol 2yl thiamethyl)-1,3,4 thiadiazoles , Asian Journal of chemistry $,\underline{9}$ (3) :333-335 .
- 7. Ghiram, D. ; Schwartz and Simiti , I. ; Faramacia , $\underline{22}$ (141) , (1974) chem . Abs . $\underline{82}$ (43274 c) (1975).
- 8. Siddiqui ,N.; Alam, M.S. and Ahsan, W. (2008) Synthesis, anticonvulsant and toxicity evalution of 2-(1H- lndol -3- yl) acetyl N- (substituted phenyl) hydrazine carbothioamides and their related heterocyclic derivatives, Acta pharm, 58:445-454.
- 9. Alagarsmy , V.; Gividhar, R. and Yadar, M.R. (2005) Synthesis and HI Antihistaminic Activity of some Novel 1- Substituted -4- (3 methyl phenyl) 1,2,4 triazolo [4-3-a] quinazolin -5 (4H) ones "Boil , pharm , Bull $\underline{28}$ (8):1531-1534
- 10. Maver , W.; Boehner, B. and Dawes, D. Ger. Offen , (1974) , 2,418 , 363 ; 225hem.. Abs . (1975) , 82 , 31328 K .
- 11. Unangst , P.C.; Shrum , G. –P.; Connor , D.- T .; Dyer , R-D.; Schrier R-J. (1992) J.Med . chem , <u>35</u> :369i

- 12. Vogel , I.A. (1974) Atext book of practical organic chemistry " $3^{\rm rd}$ Edit , Longman , London 439 584 ,
- 13. Badger , G.M. (1961) " The chemistry of Heterocyclic compounds " Academic press , 1 nc , London , LTD, 183b-187c-188.
- 14.Mustafa,I.F. (1997)Synthesis and characterization of some oxadiazole and triazole derivatives, Mu'tah Journal for Research and studies, <u>12(3)</u>:153-165
- 15. House ,H.O. (1972) " Modern Synthetic reaction ", 2nd Ed., 276,
- 16. Mahmoud ,M.J.; Mustafa ,I.F. ; Ali , M.A. (1997) Synthesis of 1,3,4- oxadiazole sulphones , College of Science 1:191-196 ..
- 17. Copper, J.W. (1980) Spectroscopic techniques for organic chemistry, Wiley new yourk
- 18. Koji ,N. (1962) Infrared Absorption spectorscop , Nankodo company limited , Tokyo , <u>54</u>

Fig.(1): (compound V_c)

Fig. (2): (compound VI_a)

Fig.(3): (compound VII _b)

Table (1) :Physical properties of compounds [V-VII] a,b,c

Com. No .	Molecular formula	Molecular weight	R	R-	Yield %	m.p.	Analysis %					
							Cal cd. %			found%		
							С	Н	N	С	Н	N
V a	$C_{10}H_{9}N_{3}S_{2}O$	251	Н	157	85	98-99	47.80	3.58	16.73	47.78	3.57	16.72
V b	C ₁₈ H ₁₆ N ₄ S ₂ O	368	CH ₂ -	-	73	124-126	58.69	4.37	15.21	58.60	4.21	15.01
Vc	C ₁₇ H ₁₃ N ₃ S ₂ O ₂ I ₂	611	НО-СН2-	2	78	105-106	33.38	2.12	6.87	33.36	2.10	6.85
VI a	$C_{11}H_{11}N_3S_2O$	265	H	CH ₃	89	78-79	49.81	4.15	15.84	49.79	4.14	15.83
VI b	$C_{12}H_{13}N_3S_2O$	279	Н	C ₂ H ₅	81	81-83	51.61	4.65	15.05	51.60	4.63	15.03
VI c	C ₁₇ H ₁₅ N ₃ S ₂ O	341	H	CH ₂ Ph	83	93-94	59.82	4.39	12.31	59.71	4.25	12.11
VII a	$C_{11}H_{11}N_3S_2O_3$	297	H	CH ₃	88	125-127	44.44	3.70	14.14	44.21	3.52	14.12
VII b	$C_{12}H_{13}N_3S_2O_3$	311	H	C_2H_5	91	172-173	46.30	4.18	13.50	46.29	4.16	13.49
VII c	$C_{17}H_{15}N_3S_2O_3$	373	H	CH ₂ Ph	93	120-122	54.64	4.02	11.26	54.55	3.85	11.12

تحضير وتشخيص بعض مشتقات (4,3,1) ثايودايزول وتشخيصها

إسماعيل ياسين مجيد أيمان فيصل مصطفى مهند جميل محمود قسم الكيمياء / كلية التربية للعلوم الصرفة (ابن الهيثم) / جامعة بغداد

استلم البحث في: 19 شباط 2013 ، قبل البحث: 19 آيار 2013

الخلاصة

تم في هذا البحث تحضير سلسلة من المركبات N- بنزويل -2- الكيل -1- (2- ثايو - 4,3,1 – ثايودايزول -5- يل) من (الفا حمض اميني) وقد اجريت لهذه المركبات عملية الالكلة بهاليدات الالكيُّل وتحويلها الْيُ مركباتُ الثَّايُو اثير ، وكذلك اجريت عملية الاكسدة لمركب الثايو اثير وتحويله الى مركب السلفون. وقد شخصت هذه المركبات باستخدام مطيافيه الأشعة تحت الحمراء ، وتحليل العناصر .

الكلمات المفتاحية: مشتقات 1 و 3و 4-ثايادايازول ، ثايو ايثرات ،مركبات السلفون.