On Solution of Regular Singular Ordinary Boundary Value Problem

Luma. N. M. Tawfiq
Heba. W. Rasheed
Dept. of Mathematics /College of Education for Pure Science (Ibn Al-Haitham)/
University of Baghdad

Received in: 20 October 2011 , Accepted in: 7 December 2011

Abstract

This paper devoted to the analysis of regular singular boundary value problems for ordinary differential equations with a singularity of the different kind, we propose semi-analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.

Keyword : Singular boundary value problems, ODE, BVP.
Introduction

In the study of nonlinear phenomena in physics, engineering and other sciences, many mathematical models lead to singular two-point boundary value problems (SBVP) associated with nonlinear second order ordinary differential equations (ODE).

In mathematics, a singularity is in general a point at which a given mathematical object is not defined, or a point of an exceptional set where it fails to be well-behaved in some particular way, such as Many problems in varied fields as thermodynamics, electrostatics, physics, and statistics give rise to ordinary differential equations of the form:

\[y'' = f(t, y, y'), \quad 0 < x < 1 \quad , \quad (1) \]

On some interval of the real line with some boundary conditions.

A two-point BVP associated to the second order differential equation (1) is singular if one of the following situations occurs:

a and/or b are infinite; \(f \) is unbounded at some \(x_0 \in [0,1] \) or \(f \) is unbounded at some particular value of \(y \) or \(y' \).

How to solve a linear ODE of the form:

\[A(x)y'' + B(x)y' + C(x)y = 0 \quad , \quad (2) \]

The first thing we do is, rewrite the ODE as:

\[y'' + P(x)y' + Q(x)y = 0 \quad , \quad (3) \]

where, of course, \(P(x) = B(x) / A(x) \), and \(Q(x) = C(x) / A(x) \).

there are two types of a point \(x_0 \in [0,1] \) : Ordinary Point and Singular Point. Also, there are two types of Singular Point : Regular and Irregular Points, A function \(y(x) \) is analytic at \(x_0 \) if it has a power series expansion at \(x_0 \) that converges to \(y(x) \) on an open interval containing \(x_0 \).

A point \(x_0 \) is an ordinary point of the ODE (3), if the functions \(P(x) \) and \(Q(x) \) are analytic at \(x_0 \). Otherwise \(x_0 \) is a singular point of the ODE.

\[i.e. \quad P(x) = P_0 + P_1(x-x_0) + P_2(x-x_0)^2 + \cdots = \sum_{i=0}^{\infty} p_i (x-x_0)^i \quad , \quad (4) \]

\[Q(x) = Q_0 + Q_1(x-x_0) + Q_2(x-x_0)^2 + \cdots = \sum_{i=0}^{\infty} q_i (x-x_0)^i \quad , \quad (5) \]

If \(A \), \(B \) and \(C \) are polynomials then a point \(x_0 \) such that \(A(x_0) \neq 0 \) is an ordinary point. On the other hand if \(P(x) \) or \(Q(x) \) are not analytic at \(x_0 \) then \(x_0 \) is said to be a singular.

A singular point \(x_0 \) of the ODE (3) is a regular singular point of the ODE if the functions \(xP(x) \) and \(x^2Q(x) \) are analytic at \(x_0 \). Otherwise \(x_0 \) is an irregular singular point of the ODE.

L.F. Shampine in [3] give other definition, which illustrated by the following:

If \(\lim_{x \to x_0} (x-x_0)^n P(x) \) finite and \(\lim_{x \to x_0} (x-x_0)^n Q(x) \) finite, \(n \geq 2 \), that is, if both \((x-x_0)^n P(x) \) and \((x-x_0)^n Q(x) \) posses a Taylor series at \(x_0 \), then \(x_0 \) is called a regular singular point, otherwise \(x_0 \) is an irregular singular point.

If \(A \), \(B \) and \(C \) are polynomials and suppose \(A(x_0) = 0 \), then \(x_0 \) is a regular singular point if:

\[\lim_{x \to x_0} (x-x_0)(B / A) \quad \text{and} \quad \lim_{x \to x_0} (x-x_0)^2(C / A) \quad \text{are finite} \quad , \quad (7) \]

Now, we state the following theorem without proof which gives us a useful way of testing if a singular point is regular.

Theorem 1 [4]

If the \(\lim_{x \to 0} P(x) \) and \(\lim_{x \to 0} Q(x) \) exist, are finite, and are not 0 then \(x = 0 \) is a regular singular point. If both limits are 0, then \(x = 0 \) may be a regular singular point or an ordinary point. If either limit fails to exists or is \(\pm \infty \) then \(x = 0 \) is an irregular singular point.

There are four kinds of singularities:

- The first kind is the singularity at one of the ends of the interval \([0,1]\);
The second kind is the singularity at both ends of the interval [0,1]
The third kind is the case of a singularity in the interior of the interval;
The forth and final kind is simply treating the case of a regular differential equation on an infinite interval.
In this paper, we focus of the first three kinds.

2. Solution of Second Order SBVP

In this section we suggest semi analytic technique to solve second order SBVP as following, we consider the SBVP:

\[x^m y'' + f(x, y, y') = 0 \]
\[g_i(y(0), y(1), y'(0), y'(1)) = 0, \quad i = 1, 2 \]

where \(f, g_1, g_2 \) are in general nonlinear functions of their arguments.

The simple idea behind the use of two-point polynomials is to replace \(y(x) \) in problem (8), or an alternative formulation of it, by a \(P_{2n+1} \) which enables any unknown boundary values or derivatives of \(y(x) \) to be computed.

The first step therefore is to construct the \(P_{2n+1} \), to do this we need the Taylor coefficients of \(y(x) \) at \(x = 0 \):

\[y = a_0 + a_1 x + \sum_{i=2}^{\infty} a_i x^i \]

where \(y(0) = a_0, y'(0) = a_1, y''(0) / 2! = a_2, \ldots, y^{(i)}(0) / i! = a_i, \quad i = 3, 4, \ldots \)

then insert the series forms (9) into (8a) and equate coefficients of powers of \(x \) to obtain \(a_2 \).

Also we need Taylor coefficient of \(y(x) \) about \(x = 1 \):

\[y = b_0 + b_1(x-1) + \sum_{i=2}^{\infty} b_i (x-1)^i \]

where \(y(1) = b_0, y'(1) = b_1, y''(1) / 2! = b_2, \ldots, y^{(i)}(1) / i! = b_i, \quad i = 3, 4, \ldots \)

then insert the series form (10) into (8a) and equate coefficients of powers of \(x-1 \) to obtain \(b_2 \), then derive equation (8a) with respect to \(x \) and iterate the above process to obtain \(a_3 \) and \(b_3 \), now iterate the above process many times to obtain \(a_4, b_4 \), then \(a_5, b_5 \) and so on, that is, we can get \(a_i \) and \(b_i \) for all \(i \geq 2 \), the notation implies that the coefficients depend only on the indicated unknowns \(a_0, a_1, b_0, b_1 \), we get two of these four unknown by the boundary condition. Now, we can construct a \(P_{2n+1}(x) \) from these coefficients \((a_i b_i) \) by the following:

\[P_{2n+1} = \sum_{i=0}^{n} \{ a_i Q_i(x) + (-1)^i b_i Q_i(1-x) \} \]

where \(Q_i(x) = \sum_{s=0}^{i} \binom{n+s}{s} x^s = Q_j(x) / j! \)

we see that (11) have only two unknowns from \(a_0, b_0, a_1 \) and \(b_1 \) to find this, we integrate equation (8a) on \([0, x]\) to obtain:

\[x^m y(x) - mx^{m-1} y(x) + m(m-1) \int_0^x x^{m-2} y(x) \, dx + \int_0^x f(x, y, y') \, dx = 0 \]

and again integrate equation (12a) on \([0, x]\) to obtain:

\[x^m y(x) - 2m \int_0^x y(x) \, dx + m(m-1) \int_0^x (1-x)x^{m-2} y(x) \, dx + \int_0^x (1-x)f(x, y, y') \, dx = 0 \]

Putting \(x = 1 \) in (12) then gives:

\[b_1 - mb_0 + m(m-1) \int_0^1 x^{m-2} y(x) \, dx + \int_0^1 f(x, y, y') \, dx = 0 \]

and

251 | Mathematics
Use P_{2n+1} as a replacement of $y(x)$ in (13) and substitute the boundary conditions (8b) in (13) then, we have only two unknown coefficients b_1, b_0 and two equations (13) so, we can find b_1, b_0 for any n by solving this system of algebraic equations using MATLAB, so insert b_0 and b_1 into (11), thus (11) represents the solution of (8).

Extensive computations have shown that this generally provides a more accurate polynomial representation for a given n.

3. Examples

In this section, many examples will be given to illustrate the efficiency, accuracy, implementation and utility of the suggested method. The bvp4c solver of MATLAB has been modified accordingly so that it can solve some class of SBVP as effectively as it previously solved nonsingular BVP.

Example 1

Consider the following SBVP:

$$x^2 y''(x) - 9xy'(x) + 25y(x) = 0, \quad 0 \leq x \leq 1$$

With BC: $y'(0) = 0$, $y(1) = 1$. The exact solution is: $y(x) = x^5$.

It is clear that $x = 0$, is regular singular point and it is singularity of first kind. Now, we solve this example using semi-analytic technique. From equations (11) we have:

$$P_9(x) = x^5$$

For more details, table(1) give the results for different nodes in the domain, for $n = 4$, i.e. P_9 and errors obtained by comparing it with the exact solution. Figure (1) gives the accuracy of the suggested method.

Example 2

Consider the following SBVP:

$$(1-x^2)y'' + xy' + y = 0, \quad 0 \leq x \leq 1$$

With BC: $y'(0) = 0$, $y'(1) = -y(1)$.

It is clear that $x = 1$, is regular singular point and it is singularity of first kind. Now, we solve this example using semi-analytic technique. From equation (11) we have: if $n = 2$, we have P_3 as follows:

$$P_3 = -0.001706970110x^5 + 0.0098130167x^4 - 0.0293029872x^3 + 0.0766016098x^2 - 0.3333333333x + 0.9288921481x + 1.857842962$$

Now, increase n, to get higher accuracy, let $n = 4$, i.e.,

$$P_9 = -0.0003876355x^9 + 0.0005210583x^8 - 0.007761001x^7 + 0.0167512244x^6 - 0.3333333333x^5 - 0.928990971x^4 + 1.8578198142$$

For more details, table (2) gives the results of different nodes in the domain, for $n = 2$, 3, 4. Also, figure (2) illustrate suggested method for $n= 4$.

Example 3

Consider the following SBVP:

$$-x^2 y'' - 2xy' + 2y = -4x^2, \quad 0 \leq x \leq 1$$

With BC: $y(0) = y(1) = 0$ and exact solution is $y = x^2 - x$.

It is clear that $x = 0$, is regular singular point and it is singularity of first kind. Now, we solve this example using semi-analytic technique. From equation (11) we have: $P_0 = x^2 - x$.

For more details, table (3) give the results of different nodes in the domain, for $n = 4$. Also, figure (3) illustrate suggested method for $n= 4$.

4. Behavior of the solution in the neighborhood of the singularity $x = 0$
Our main concern in this section will be the study of the behavior of the solution in the neighborhood of singular point. Consider the following SIVP:

\[y''(x) + \left(\frac{(N-1)}{x}\right) y'(x) = f(y), \quad N \geq 1, \quad 0 < x < 1, \quad (14) \]

\[y(0) = y_0, \quad \lim_{x \to 0^+} x y'(x) = 0 \quad (15) \]

where \(f(y) \) is continuous function.

As the same manner in [6], let us look for a solution of this problem in the form:

\[y(x) = y_0 - C x^k (1 + o(1)) \quad (16) \]

\[y'(x) = -C k x^{k-1} (1 + o(1)) \]

\[y''(x) = -C k (k-1) x^{k-2} (1 + o(1)) \quad x \to 0^+ \]

where \(C \) is a positive constant and \(k > 1 \). If we substitute (16) in (14) we obtain:

\[C = \left(\frac{1}{k}\right) \left(\frac{f(y_0)}{N}\right)^{k-1} \quad (17) \]

In order to improve representation (16) we perform the variable substitution:

\[y(x) = y_0 - C x^k (1 + g(x)) \quad (18) \]

we easily obtain the following result which is similar to the results in [6].

Theorem 2

For each \(y_0 > 0 \), problem (14), (15) has, in the neighborhood of \(x = 0 \), a unique solution that can be represented by:

\[y(x, y_0) = y_0 - C x^k \left(1 + g(x) \right) \]

where \(k, C \) and \(g \) are given by (17) and (18), respectively.

We see that these results are in good agreement with the ones obtained by the method in [6], they are also consistent with the results presented in [7]. In order to estimate the convergence order of the suggested method at \(x = 0 \), we have carried out several experiments with different values of \(n \) and used the formula:

\[c_{y_0} = - \log_2 \left(\frac{|y_0^{n_3} - y_0^{n_2}|}{|y_0^{n_2} - y_0^{n_1}|} \right) \]

where \(y_0^{ni} \) is the approximate value of \(y_0 \) obtained with \(n_i, n_i = 1, 2, 3, 4, \ldots \)

References

Table (1): The result of the method for P_9 of example 1

| a_0 | b_1 | $P_9(x)$ | exact solution $y(x)$ | Osculatory interpolation P_9 | Error $|y(x) - P_9|$ |
|-------|-------|-----------|-----------------------|-------------------------------|---------------------|
| 0 | 5 | 0 | 0 | 0.00010000000000000 | 0 |
| 0.1 | 0.00001000000000000 | 0.00010000000000000 | 0 | 0.00030000000000000 | 0 |
| 0.2 | 0.00024000000000000 | 0.00024000000000000 | 0 | 0.01024000000000000 | 0 |
| 0.3 | 0.01024000000000000 | 0.01024000000000000 | 0 | 0.03125000000000000 | 0 |
| 0.4 | 0.03125000000000000 | 0.03125000000000000 | 0 | 0.16807000000000000 | 0 |
| 0.5 | 0.16807000000000000 | 0.16807000000000000 | 0 | 0.32768000000000000 | 0 |
| 0.6 | 0.32768000000000000 | 0.32768000000000000 | 0 | 0.59049000000000000 | 0 |
| 0.7 | 0.59049000000000000 | 0.59049000000000000 | 0 | 0 | 0 |
| 0.8 | 0.59049000000000000 | 0.59049000000000000 | 0 | 0 | 0 |
| 0.9 | 0.59049000000000000 | 0.59049000000000000 | 0 | 0 | 0 |

Table (2): The result of the method for $n = 2, 3, 4$ of example 2

<table>
<thead>
<tr>
<th>a_0</th>
<th>b_0</th>
<th>P_9</th>
<th>P_7</th>
<th>P_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.65149136577708</td>
<td>1.85781271585573</td>
<td>1.857784296228232</td>
<td>1.857819814228270</td>
</tr>
<tr>
<td>0.1</td>
<td>1.650963483915249</td>
<td>1.948204807591012</td>
<td>1.948169418187120</td>
<td>1.94819814228270</td>
</tr>
<tr>
<td>0.2</td>
<td>2.0188998053375218</td>
<td>2.018075735440336</td>
<td>2.018110988145184</td>
<td>2.01819814228270</td>
</tr>
<tr>
<td>0.3</td>
<td>2.067026555234895</td>
<td>2.089526555234895</td>
<td>2.089560915079904</td>
<td>2.08959057875687</td>
</tr>
<tr>
<td>0.4</td>
<td>2.090411805337528</td>
<td>2.089526555234895</td>
<td>2.089560915079904</td>
<td>2.08959057875687</td>
</tr>
<tr>
<td>0.5</td>
<td>2.103301805337528</td>
<td>2.089526555234895</td>
<td>2.089560915079904</td>
<td>2.08959057875687</td>
</tr>
<tr>
<td>0.6</td>
<td>2.106301805337528</td>
<td>2.089526555234895</td>
<td>2.089560915079904</td>
<td>2.08959057875687</td>
</tr>
<tr>
<td>0.7</td>
<td>2.109301805337528</td>
<td>2.089526555234895</td>
<td>2.089560915079904</td>
<td>2.08959057875687</td>
</tr>
<tr>
<td>0.8</td>
<td>2.112301805337528</td>
<td>2.089526555234895</td>
<td>2.089560915079904</td>
<td>2.08959057875687</td>
</tr>
<tr>
<td>0.9</td>
<td>1.799735452392664</td>
<td>1.799735452392664</td>
<td>1.799757582816419</td>
<td>1.799783731088339</td>
</tr>
<tr>
<td>1</td>
<td>1.651491365775585</td>
<td>1.650963483906875</td>
<td>1.650983731093794</td>
<td>1.650983731088339</td>
</tr>
</tbody>
</table>

Table (3): The result of the method for $n = 4$ of example 3

| a_1 | b_1 | y: exact | P_9 | $|y-P_9|$ |
|-------|-------|------------|-------|------|
| -1 | 1 | -0.210000000000000 | -0.210000000000000 | 0 |
| 0.3 | -0.240000000000000 | -0.240000000000000 | 0 |
| 0.9 | -0.090000000000000 | -0.090000000000000 | 0 |

254 | Mathematics
Table (4): Comparison between suggested and other method given in [5] of example 3

| x_i | Exact solution $y(x)$ | $y_1(x)$ using piecewise linear algorithm | $y_2(x)$ using cubic spline | $P_9(x)$ using Osculatory interpolation | Errors $|y(x) - P_9|$ |
|-------|------------------|----------------------------------|--------------------------|--|------------------|
| 0.3 | -0.210000000000 | -0.212333333333 | -0.210000000000 | -0.210000000000 | 0 |
| 0.6 | -0.240000000000 | -0.241333333333 | -0.240000000000 | -0.240000000000 | 0 |
| 0.9 | -0.090000000000 | -0.090333333333 | -0.090000000000 | -0.090000000000 | 0 |

Fig. (1): Comparison between the exact and semi-analytic solution P_9 of example 1

Fig. (2): illustrate suggested method for $n=4$, i.e., P_9 of example 2.

Fig. (3): illustrate suggested method for $n=4$, i.e., P_9 of example 3.
الخلاصة

الهدف من هذا البحث عرض دراسة تحليلية لمسائل القيم الحدودية النظامية الشاذة للتعاملات التفاضلية الاعتيادية

ونباعة مختلفة إذ أثبتنا نقترح التقنية شبه التحليلية باستخدام الادراج التماسى في النقطتين للحصول على الحل بوصفة متعددة حدود، كذلك ناقشنا عدد من الأمثلة لتوضيح الدقة، الكافية، وسهولة أداء الطريقة المقترحة وأخيرا ناقشنا سلوك الحل في حوار النقطان الشاذة و إيجاد الحل التربيعي لها. و اقتراحنا صيغة جديدة مطورة لتخمين الخطأ تساعد في تقليل الحسابات العملية وإظهار النتائج بشكل مرئي فيما يخص المسائل الشاذة.

الكلمات المفتاحية: مسائل القيم الحدودية الشاذة، معادلات تفاضلية اعتيادية، مسائل القيم الحدودية