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Abstract

In this paper, we applied the concept of the error analysis using the linearization method
and new condition numbers constituting optimal bounds in appraisals of the possible errors.
Evaluations of finite continued fractions, computations of determinates of tridiagonal systems,
of determinates of second order and a "fast” complex multiplication. As in Horner's scheme,
present rounding error analysis of product and summation algorithms.

The error estimates are tested by numerical examples. The executed program for calculation is
"MATLAB 7" from the website "Mathworks.com"
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Primarily

Horner's method can be used to convert between different positional number systems. In
which case x is the base of the number system, and the a; coefficients are the digits of the base
X representation of a given number and can also be used if x is a matrix, in which case the
gain in the computational efficiency is even greater. In fact when x is a matrix, further

acceleration is possible which exploits the structure of matrix multiplication, and only Jn
instead of n multiplies are needed (at the expense of requiring more storage) using the 1973
method of Paterson and Stockmeyer [1].

For example, to find the product of two numbers , (0.15625)and m.

(0.15625) m = (0.00101p) m = (23+2°)m= (2% m + (2°) m

=22M+ @23 m)=23(m+2*(m)).

Introduction

In a series of textbooks and papers the linearization method is explained and applied to
simple examples, in particular, associated error estimates had been missing. These questions
have now been thoroughly studied and answered in our perturbation theory for evaluation
algorithms of arithmetic expression [2]. The theortical results are applied in this paper to a
series of elementary but important algorithms and, at the same time, tested numerically. The
results show that our new condition numbers yield much more detailed informations on
possible errors than wilkinson's [3] backward analysis.
We analyze the computation of sequences of partial products and sums. The computation of
partial products is always a well — conditioned algorithm, while in the class of elementary one
— step algorithms is introduced. In particular the associated absolute and relative a priori and a
posteriori, condition numbers are established. The error analysis of Horner's scheme shows
that our posteriori condition numbers in essence, coincide with error bounds described by
Adams [4]. The Taylor & the Newton form of a polynomial. Another important member of
the class of elementary one- step algorithms is the Horner like algorithm for evaluating finite
continued fractions. A first numerical example deals with rounding errors in the evaluation of

partial fractions for Yon @ Next the recursive computation of determinates of tridiagonal

matrices is analyzed and the error estimate tested numerically with success by a matrix of 100
rows. In comparison with the stability constants of Babuska [5] for solving tridiagonal linear
system.

Our condition numbers constitutes explicit measures for the accumulated errors.

Finally, with the evaluation of determiants of second order. As an application the numerical
stability of the common complex multiplication and a "fast" complex multiplication are
analyzed and compared.

The detailed rounding error analysis of numerically solving two linear equations in two
unknowns has already been established [6]. An error analysis of Gaussian elimination for
general linear systems is in preparation. The rounding error analysis of difference and
extrapolation schemes is found by our method [7].

The study of numerical algorithms proceeds in the following way first the sequence

f=(f,---,f) of input and arithmetic operations is determined, specifying the

algorithm. Then the graph of the functional dependences, the paths of error propagation, and
associated weights are described. The system of linear error equations can easily be read from
the graph of the algorithm. Its solutions yield approximations of the absolute and relative a
priori and a posteriori errors, respectively.

That in this case the condition numbers can easily be determined by recursion formulae.
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Let u=(uy,---,U,), v=(v,,:-,0,) denote the sequences of input data, intermediate and
final results and their numerical approximations. By Au, = v, —u, are meant the absolute and

by Put :Aut/ut the relative a priori errors of the approximations o, of u, . The
fundamental a priori error estimates then read

|AUt|SO't77+Ot(772) , |PUt|§,0t77+Ot(772), t=0,...,n ..(D)

where o, , O, are the absolute and relative a priori condition numbers and 77 is the floating

point accuracy constant.
The numerical examples in the paper are computed in the decimal floating point arithmetic.

The symmetric rounding function I’dN is performed by rounding the 10 digit results to N

decimal places. N digits decimal floating point arithmetic is realized by rounding to N places
after each operation. The constant 77 in the numerical examples is thus specified by

n=5x10" (2

In general, 17 < 1 such that the remaindes terms Ot (772) in (1) can be neglected against the

first order terms. In applying the error estimate in (1) to numerical examples, it should be
noticed that the condition numbers yield optimal bounds of the possible errors. The actual

errors, as a rule, are significantly smaller than indicated by o, 77 , 0,17 .

By variation of the parameters, however, we have in most cases, found examples where the
actual maximal errors are over estimated at most by factor 5 to 10 such that the magnitude of
the error is described correctly.

The sign _ indicates that the numerical result has been computed in higher precision than the
given digits show. A priori condition numbers and a priori errors have always been computed
with the highest precision of 10 decimal places.

Computation of Products Algorithm

The methods of our error analysis differ essentially in the number of steps of the idea of
algorithm from wilkinson's rounding error analysis (see Wilkinson [3]).
Therefore, the usual product algorithm are discussed thoroughly in this paper. In particular,
the condition numbers for perturbations by rounding errors in the arithmetic operations and
for data perturbations will be determined and the general error estimates (1) be tested by
selected numerical examples.
2.1 Sequences of Partial Products
A finite or infinite product is computed by means of sequence of partial products

Upo=by,u, =bu,, , t=12---n ...(3)
Such that

t
U, :1_[bj .(4)

j=0

Introducing the indeterminate steps Ut_i =Y, this algorithm is defined, analogously by the

sequence of functions
Fo(X)=by ,F ,(x)=b,, F(X)=x X, ,fort=1---,n ...(5)
t—= t—=
2

The associated linear relative a priori error equation read
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=€, I =6, L=T  +l 48 o
2
b b X
h=e , L=r,+e +e ,t=1--n ...(6)
To simplify notation, as here so in the following by etb ,e; ,--- are meant relative errors
Pb,,Pc,,--- and by e’ ,e’ ,e ,--- the relative rounding errors of the floating point

operations x, +,/, --- the graph of this algorithm is a tree, all non zero weights b are equal

to one (see Fig 1.1).
Obviously, the linear system (6) has the solution

t
r=es+> (e +ef) ,t=L-n ()
j=0

From this representation one immediately derives the associated relative a priori condition
numbers p° of data perturbations only ( e; =0,

‘e'}" <n), and p! of perturbations by rounding errors in the arithmetic operations only (

e? =0,lej|<n):

pl=t+l ,pf=t, p.=p>+p°=2t+1 ...(8)
Consequently

ptR:ptD -1 ,t=1--n, .--(9)
So that the computation of partial products is well- conditioned algorithm.

1. Numerical Examples

Example 3.1

U, =(exp.0)", t=12,- ...(10)

This sequence of powers is established by the above algorithm  for
b,=1,b, =b=exp.01=1.01

We compute the sequence numerically in 2 digits decimal floating points. The basis b
rounded to 2 digits, becomes b’ =1.01 having the relative error e’ =e° =4.93x107°. In this

case, (7) yields the representation

t
r=tx4.93x107° + ) e} (11)

i1

Table 1.1.1 contains the relative errors Pu, divided by t for t=10,20,...,300. It turns out that
Pu, increases, in essence. Linearly with t as te”. the relative errors e, seem not to participate

in the growth of the error.
Table 1.1.1 shows that the mean values over e cancel to can be estimated by

Iy e
t j=1

For t= 120,...,300. thus it is seen that mean value sequence (€] ) are by a factor of 1x1072

<5x10”" ..(12)

%Put ~4.93x10°°

less than the floating point accuracy constant 7 =5x10°. That is, randomly distributed
rounding errors e/ cancle to a considerable extent.
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Example 3.2
sin(zx) 2 X’
- H( ) ..(13)
(see Abramowitz-stequn [7,p.75]). The associated sequence of partial products is computed
for x=217, M:izl?ﬁxw*z in the form
T X 137
2
v, =1, v, =rd, (rd,(b)v_) , b, =1—:—2 =12, ..(14)

In 6- digit decimal floating point such that 7 =5x10"° . The exact partial products Uy are
computed approximately in 10 — digit decimal floating point. Table 1.1.2 lists, blockwise, the
index t, the numerical approximation v, , the associated relative error pu, = (v, —u,)/u, and
the error sums

t b t b t t

X

2.8 Z‘ej‘ EDIIENEDY
j=1 j=1 j=1

j=1

X
€

...(15)

The numerical results show that the absolute error sums of the sequences (e?) , (e]) increase,
in essence, linearly with t. in the error sums, however, the errors e'l? : ef again cancel to a
large extent. Accordingly, the relative errors Pu,do not grow systematically but remain

bounded in modulus by about 87 = 4x107°.
In addition, it is easily verified using the listed results that the linear error approximations r;
in (7) approximate the relative error Pu, very accurately.

2.1 The Summation Algorithm
The algorithm u, =¢, , u, =u,, +c¢, ,t=1---,n ...(1) yields the

sequence of partial sums u, = Zt:cj ...(2) specifying the input of
coefficients by intermediate st(;)os u =c, , the algorithm is defined by the sequence of
functions 2

F,(X)=c¢c,, Fti(x) =c,, F(X) = Xt—1+xt,£ , fort=1---,n ...(3)
The linear absoltjte a priori error equations re;d

S; =Co€ ,S, =S,, +Ce +ue ,fort=21---n (4
The associated graph (see Fig 1.2) is a tree, all nonvanishing weights b2 are equal to one.
The absolute a priori condition number o, are determined according to refences, with weights

a :‘Ct‘yf , a, =‘Ut‘7/tT » recursively by
2

c C T
oo =lColrs . ov=o el Huly, L t=L-n .5
These condition numbers have the expicit representation

t
O = |C0|78 +Z(‘Cj
1

ys+Huily) ...(6)
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When the errors in the coefficients e; have the same order of magnitude as rounding errors in
the arithmetic operations, the partial condition numbers o , &} of the summation algorithm

under data perturbations only, assuming exact arithmetic operations (y{ =1, y; =0), and

under rounding errors in the arithmetic operations, assuming exact data (y; =0 , y; =1),
become

atD:ch : gtR:Ztl:‘uj‘, (7

t
Cj Z‘U,—

Pr = . P =T ... (8)

Oy D R
Such that O = m =Py + P ...(9)
t

As an example, consider the partial sums of the exponential series

2 0 )

X X
expx=1+— m +?+ ZC,- then Z‘Cj‘ = exp|x| and for sufficiently large n one
=0 j=0

has
exp|X| , Xx20
expx |exp2x ,x<O0

D

oy =explx . p, =

...(10)

Hence for negative x the condition numbers increase exponentially with increasing |x|

Forsythe [13] discuss the example of computing exp (=5.5) = 4.08 x10~° where the terms c;
of the series are computed exactly in floating point to five decimal places such that
‘pcj‘ <17 =5x10"°. The summation is extended over so many terms until the first five digits

of the partial sums remain unchanged, that is, rd.(v,)=rd.(v,,,), thus n=25,
v, =2.64x10and the associated condition number o =exp5.5=2.45x10°. From
the error estimate (1)in the introduction we obtain that |AU n| <oPn=1.22x10" whereas the

actual absolute error |AUn| =1.45x10"°. Analogous conditions are met in computing partial

sums of the series for sin x, cos x, In x etc and similar alternating series.
Example 3.3 In the same way as above, partial sums of the Bessel functions

x5
Jo(¥) = Z( 1)’ /

As S|multaneously, the absolute a priori condition numbers

(1)

270 | Mathematics



2013 ole 2 3= 26 Abnh |
Ibn Al-Haitham Jour. for Pure & Appl. Sci. L

2 .

(X))

D _2—4_ 1, (X)
= —— =1,

e
computed Table 1.2.1 shows some values of J,(x)’and the absolute errors
AJo(x) =35 (x)" =34 (x)
In the neighborhood of the fourth zero 11.79 ... . The function I, increases from 1.54x10" to
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o ...(12) are

1.6x10" in this interval. Hence 1.6 x10* x5x107° =.8 is the approximate a priori bound for
the absolute errors AJ,(x) . This bound is six times the largest error at 11.82

When the terms c; of the sum (2) are positive we have

ol =1, pt<t ...(13)
and thus
pl<tp’ t=1--,n ..(14)

Hence the computation of sums with positive terms is always quasi-well-conditioned. In
contrast to the condition numbers o, the condition numbers p/ are not independent of the
ordering of the terms ¢g ,..., C; . in computing the sums (2) in the floating point arithmetic of a
computer, the ordering of the terms should be so chosen that the condition numbers &,

o2 and thus the bounds in the error estimates (1) become as small as possible. For a sum with

positive terms this is achieved if the terms c; constitute an increasing sequence. Note that the
ordering by increasing absolute values is commonly recommended with out any restrictions.
However, if both positive and negative terms c; occur in the sum, this is in general, no longer
true as in the following example shows. In this case the terms have to be ordered with respect
to a smallest sum of the absolute values of the partial sums.

Example 3.4
S =1.025x10° —0.9123x10° —0.9663x10° —0.9315x10° ...(15) where
¢, =1.025x10°,---,¢c, =-0.9315x10° see Wilkinson [3,1.25]. Adding

c, =1025,---,c, =-0.93150ne obtains the partial sums and, by (7), (9), the condition
numbers

u, =112.7 ,u, =16.07 ,u,=6.755 ,of =1355 , p =20.06 ...(16)
In 4- digit decimal floating point the summation is performed without rounding errors and
gives the result v, =u, =6.76

In converse order c,=-9.315,---,c, =1025, the terms are arranged with respect to
increasing absolute values. Then

u, =-105.945 ,u, =-1018.245 ,u,=6.755 ,of =1130 , pf ~167.4 ..(17)
These condition numbers are more than eight times larger than the above condition numbers
(16). In 4- digit decimal floating point now the approximate sum v, =7.000is computed

having the relative error pu, Z3.6x10 and the approximate error bound o} 28.4x10°2.

271 | Mathematics



2013 ole 2 3= 26 Abnh |
Ibn Al-Haitham Jour. for Pure & Appl. Sci. o

espuba] g oy ol i v
VYol. 26 (2) 2013

Example 3.5
. 1
u, =) ——
o (k+1)°
We compute this partial sum of the infinite series of x*/6=1.645 for n=1023 in 6- digit

decimal floating point. The exact partial sum rounded to six places in u,=1.6439. the
associated absolute a priori condition numbers

Oy :|C0|7(§ 1y Oy =014 +|Ct|7tc +|ut|7t+ t=1,...n
Are computed recursively from the equation
O'0=|CO|,Gt=O't_l+|Ut|+|Ct| t=1,....n ...(19)

...(18)

The relative a priori condition number is finally determined by p, = o, /|un|. The numerical
summation in natural ordering yields partial sums which are constant for t >m=446.

Vin=1.64308, p, =445, pu, ~2.29x10™ ...(20)

The error bound p,7=2.23x10" overestimates the error pu_ by factor of about 10. in
converse order of increasing terms the algorithm computes

Vo=1644, p =557 ..(21)

This value coincides with the above rounded value of u, in all decimal places. We observe
considerable differences in the magnitude of the condition numbers (20), (21).

In context, let us refer already to the result dealing cascade summation. There we shall
compute

Vo=1643, p =11 ..(22)
This approximation differs by one unit of the last decimal place from the rounded u,. the last

condition number (22) lies between the two condition numbers above such that the second
summation procedure is best for this series.

Conclusion

The perturbations of function values p(z), due to perturbations of the argument z, have been
described already.
Hence we limit the further study to the case of unperturbed arguments, realized in practice by
the input of machine numbers as arguments z. the bound for the absolute a posteriori error

|A Ui|/77 has been stated by Tsao [12,(5.5)]. Who also proposes the recursive computations of

the bound. A similar result is found in Adams [4]. Where it is attributed to kahan. The
theortieal results of the paper have been applied to a series of concrete algorithms, and have
proved to be very effective means of both a priori and a posteriori error analysis.
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Fig 1: Graph of the linear relative a priori error equations for sequences of partial products
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Fig 2: Graph of the linear absolute error equations for the summation algorithm
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Table( 1.1.1): Relative errors in the computation of (exp.01)"

t gPut t gPut t gPut
t t t

10 3.9 110 4.9 210 4.9

20 4.5 120 4.9 220 4.9

30 4.6 130 4.9 230 4.9

40 4.7 140 4.9 240 4.9

50 4.8 150 4.9 250 4.9

60 48 160 4.9 260 4.9

70 4.8 170 4.9 270 4.9

80 48 180 4.9 280 4.9

90 4.8 190 4.9 290 4.9

100 4.9 200 4.9 300 4.9

_ . . sin(z x) .
Table( 1.1.2): computation of partial products for pavanll x=2.17
100 200 300 400 500
7.69x107 7.51x1072 7.46x107° 7.43x1072 7.41x1072
-6.21x10°° -1.10x10°° -1.46x10°° -2.30x10°° -3.17x10°°
-3.48x10°° -1.61x10°° -4.07x10°° -3.43x10°° -2.48x10°°
2.38x10° 5.05x10°° 7.71x10°° 1.02x107 1.27x107
-2.72x10° -9.43x10°° -1.05x10°° -1.96x10°° -2.93x10°°
5.37x10°° 8.59%10°° 1.20x107 1.53x107 1.86x107*
600 700 800 900 1000
7.40x1072 7.39x1072 7.39x1072 7.38x1072 7.38x1072
-2.73x107° -1.69x10°° -3.74x10°° 5.87x10°° -1.49x10°°
-5.35x10~" -2.54x10°° -1.36x10°° 8.69x10’ -1.08x10°°
1.52x107 1.77x107 2.04x107* 2.25%x107* 2.49x107
-2.69%x107° -1.44x10°° -3.61x10°° 5.00x10°° -1.39x10°°
2.23x107* 2.56x107* 2.84x10™* 3.25x107* 3.71x10™
Table( 1.2.1): Numerical Computation of Jy(X)

X Jo (%) Jo(X)' AJy(X)
11.78 -2.68x107° -5.21x107° -4.95%x107?
11.79 -3.56x107* 7.52x1072 7.52x1072
11.80 1.97x10°° -9.17x107° -9.37x107°
11.81 4.29x10°° -2.47x107° -2.89x107?
11.82 6.61x107° 1.38x107" 1.32x107*
11.83 8.93x10°° 3.72x107? 2.83x1072
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