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Abstract

In this paper, we proved the existence and uniqueness of the solution of nonlinear
Volterra fuzzy integral equations of the second kind.
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Introduction

The concept of integration of fuzzy functions has been introduced by Dubois and Prade
[1], Goetschel and Voxman [2], Kaleva [3] and others. However, if the fuzzy function is
continuous, all the various procedures yield the same result. The fuzzy integral is applied in
fuzzy integral equations, such that there is a growing interest in fuzzy integral equations
particularly in the past decade. The fuzzy integral equations have been studied by authors of
[4,5,6,7] and others.

In this paper, the existence and uniqueness theorem is proved for nonlinear Volterra
fuzzy integral equation under the Lipschitz condition and arbitrary kernels by means of the
successive iterations involving fuzzy set-valued function of a real variable where values are
normal, convex, upper semi continuous and compactly supported fuzzy sets in R".

The authors of [8] proved the existence and uniqueness of the solution of linear Volterra
fuzzy integral equations of the second kind. P. Prakash and V. Kalaiselvi [9] proved the
existence and uniqueness of the solution of nonlinear Volterra fuzzy integral equations with
infinite delay of the form

a(x) = f(x,u®)) + ffoo gx,t,u(t))dt, x€]=(—00,0) (1.1)
where f:] X E" - E™ and g:] x]Jx E™ - E™ are levelwise continuous and satisfy the
generalized Lipschitz condition. K. Balachandran and K. Kanagarajan in [10] proved the
existence and uniqueness of the solution of general nonlinear Volterra-Fredholm fuzzy
integral equations of the form

u(®) = F(x,u®), [; f; (%, tu(® dt, ..., f| fm(x tu® dt, (1.2)
fy g tu®dt .., [ gmx tu®dy, 0<x <b,

The purpose of this paper is to prove the existence and uniqueness of the solution of
nonlinear Volterra fuzzy integral equations of the second kind

u(x) = f(x) + [] K(x t,u())de (1.3)

where f is fuzzy continuous function on I = [a, b], K is continuous fuzzy function over the
region A=IxXIXE" = {(x,t,u(t))]a<t<x<b, u(t) € E"} and u(x) is the solution of
equation (1.3) to prove its existence and uniqueness.

Preliminaries
By Px(R™), we denote the family of all nonempty compact convex subsets of R". Let [ =
[a, b] be a compact interval and denote [3]

E"={p: R" - [0,1]}
such that p satisfies (i) through (iv) below
i) p is normal i.e. there exists an x, € R™ such that p(x,) = 1,
i) p is fuzzy convex,
i) p is upper semi continuous, i.e the a — level sets [p]* are closed for each o € [0,1],

iv)  [p]° = cl{x € R?|p(x) > 0} is compact.

where the a — level sets [p]* is defined by [p]* = {x € R*|p(x) = a} for 0 < a < 1 and [p]°
for o = 0. Then from (i)-(iv), it follows that [p]* € Px(R™) forall 0 < o < 1.
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If g: R™ x R™ - R" is a function, then using Zadeh's extension principle, we can extend g to
g:E" x E™ - E™ by the relation

g8(p,q)(z) = sup min{p(x),q(y)}
z=g(xy)
for each p,q € E*, 0 < a < 1 and continuous function g. It is well known that

[g(p, 1% = g([p]* [a]®)

Moreover, we have

[p +a]* = [p]* + [q]% [kp]® = k[p]*, where k € R.
Define D: E™ x E" - R* by

D(p,q) = supld([p]“, [q]®),

O<a=<

where d is the Hausdorf metric defined in Px(R™) by

d(A, B) = max{sup inf|x — y|, sup inf|x — y|}
x€A YEB yeEB XEA

for each A, B € Px(R"), then D is a metric in E™.

Definition 2.1 [3] A function F:1 — E" is called strongly measurable, if for all a € [0,1] the
set-valued function F: 1 — Pg(R") is defined by

Fo(x) = [Fx)]*
is Lebesgue measurable, where Px(R™) has the topology induced by the Hausdorf metric d.

Definition 2.2 [3] A function F:1 - E" is called integrably bounded if there exists an
integrable function h such that ||y|| < h(x)forall y € Fy(x).

Definition 2.3 [3] Let F:1 - E™. The integral of F over I, denoted by fl F(x)dx or
fab F(x) dx, is defined levelwise by

[f F(x)dx]* = f F,(x)dx = {f f(x)dx |f:1 - R" is a measurable function for F}

I I I

forall0 < a < 1.

Definition 2.4 [3] A function F:1 — E" is called levelwise continuous at t, € I if the set-
valued function F,(x) = [F(x)]% is continuous at t = t, with respect to the Hausdorf metric d
forall a € [0,1].

Proposition 2.1 [3] LetF,G:1 — E™ be integrable and 6 € R. Then

1. [(F+G) = [F+[G,

2. [6F =0 [F,

3. D(F, G) is integrable,
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Theorem 2.1 [3,11] For any p,q,r,s € E™ and 6 € R, then the following hold

e (E", D) is a complete metric space,
 D(0p,0q) = |8|D(p, q),

i D(p +r,q+ I') = D(p,(]),
eD(p+q,r+s) <D(p,r)+D(q,5s).

Definition 2.5 [12] A function F:1 — E™ is called bounded if there exists a constant M > 0
such that D(F(x),0) < M forall x € I.

Definition 2.6 [7] A function F:1 — E™ is said to be continuous if for arbitrary fixed x, € I
and € > 0 there exists § > 0 such that if |x — x| < 8, then D(F(x),F(x,)) < € for each x €
L.

Main Results
Theorem 3.1 (Existence and uniqueness)

Assume the following conditions are satisfied

i) f:[a,b] > E" is continuous and bounded,

i) K:A— E" is acontinuous function,

iii) if u,v:[a,b] > E" are continuous, then the Lipschitz condition

D(K (x,t,u(t)), K (x,t,v(t))) < LD(u(x),v(x)) (3.1)

s satisfied, with 0<L < 1

where A=TIXI X E" = {(x,t,u(t))]a<t<x<b, u(t) € E"}.
Then there exists a unique fuzzy solution u(x) of (1.3) and the successive iterations

o (X) = f(x)

v (X) = F(X)+ zl LXK(x,t,ui_l(t))dt, n>0 (3:2)
are uniformly conl\;;rgent to u(x) on [a,b]; where
U, (x) = f(x)

u,(X) = j K(xtu_ (t))dt, nx1

First we prove the following Lemma.

(3.3)

Lemma 3.1 If the conditions of Theorem (3.1) are hold and u, is given by (3.3) then for
n>0
1) u,(x) is bounded,

I1) u,(x) is continuous.
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Proof:
I) Clearly u,(x) = f(x) is bounded by part (i) of theorem (3.1). Assume u, ,(x) is bounded.

From (3.1), (3.3) and proposition (2.1) we have
D(u, (x),0) = D[ j:K(x,t,un_l(t))dt,Bj < ['D(K (v, , (0).0}t

<L j:D(un_l(x),a)dt
<L sup D(un_l(x),a)jxdt
xe[a,b] a

<(b-a)L sup D(u__,(x),0),

xel[a,b]

where 0 is the zero function. Hence by induction u,(x) is bounded.

I1) To prove the continuity of u,(X), we suppose a < x <X <b, hence by proposition (2.1) and
theorem (2.1) we have

D(u, ().t () = B[ [ K (x 0, [ K(;(,t,un_l(t))dtj
= o [ KOt )0, [ KR, )t + [ K (R tu, )0
< DU: KOt Uy, @)t K(i,t,unl(t))dt} D( [ K(f(,t,unl(t))dt,a)
< ["D(K O,y 5 (1), K (Rt (0) Kt + j D(K (% t,u, ,(t)).0 it

< (b—a) sup D(K(x,t,u,; (1)), K(%,t,u, ,(t))+ LD(un—l(X)’a)Jj dt

te[a,b]
< (b-a) sup D(K (x,t,u, (1), K (X, t,u, ,()))+ L(R—x) sup Du, ,(x),0)
tefa,b] xe[a,b]

Since K is continuous, we obtain
D(u,(x),u,(X)) >0 as x—X.
Thus u,(x) is continuous on [a,b].

Proof of Theorem (3.1)

We shall prove that all w,(x), n>0 are bounded on [a,b]. It is clear that y (x)= f(x) is
bounded by the assumption. Suppose that v, ,(x) is bounded. From (3.2) and theorem (2.1)
we have

D(y, (x),0) = D[ f(x)+ Z j K(xt, ui_l(t))dt,ﬁj

= D( f(x)+ Zl: j K (x.t,u_(t)dt + j K(xt, unl(t))dt,ﬁJ
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= {200 + [ Kt (©)atD)

<Dy, ,(x),0)+ D( j:K(x,t,unl(t))dt,ﬁ)

= D(w, ,(x),0) + D(u,(x),0)

From induction and Lemma (3.1) part (I) we have that y, (x) is bounded. Consequently,
{w.(X)}._, is asequence of bounded functions on [a,b].

In the following, we prove that y, (x) are continuous on [a,b]. By Lemma (3.1) part (I1) and
theorem (2.1) and proposition (2.1) for a< x < X<b, we have

Dy, (x).v7, (7)) = D( (00+ 3 [ KOt u o) F(R+ [ K(i,t,uu(t»dtj
< D(f(x), f(%))+D Z j K(x,t,ui_l(t))dt,zn: j K()?,t,ui_l(t))dtj

_ D(f(x), f(R))+ D Z [ K(x,t,uil(t))dt,zn: ['KE LU0t +Zn; [ K()?,t,uil(t))dt)

D(f (x), f (%))+ D Z j K (x.t,u,_ (t))dt, Z j K(%t, ui_l(t))dtj
D

[ K(i,t,uil(t))dt,ﬁj

<

N
<D(f(x), f(R))+ ID(zl K (x,t,u,,(t)), Zl K(t, ui_l(t))jdt

; jD(Zj K()?,t,ui_l(t)),ﬁjdt

< D(f(x), f(R))+ (b—a) sup D(Zn: K(x,t,uil(t)),Zl] K(i.t,uil(t))j

tela,b] i=1

+ (X —X) sup D(Zn: K (%,t,u;_,(1)),0)

tefab] o1
Finally we obtain
D(y,(X),w,(X)) >0 as x—X.
Therefore the sequence {w,(x)},_, is continuous on [a,b].

To prove uniform convergence of the sequence {w,(x)}._,, for n>0 we have

S ROTACIE D( F09+ 3 [ K (ot @)y, (x)j

= D( f(X) + Z j K (x,t,u_,(t))dt+ j K (x,t, un(t))dt,t//n(x)]

(1,00 + [ KX L, )ty ()
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_ D( [ K(x,t,un(t))dt,a)
<[ D(K (x,t,u, (1)).0 kit
< [ LD(u, (x).0 it

< (b-a)L sup Du,(x),0)

xe[a,b]
Hence we obtain

sup D(y,.,(X),, (X)) < (b—a)L sup D(u,(x),0) (3.4)

xe[a,b] xe[a,b]

On the other hand, by (3.1) we can obtain for n>1,
D(u (x),0) = D( LXK(x,t,un_l(t))dt,'d)

< ['D(K (x.t,u, (1)) O}t
< (b-a)LD(u__,(x),0)
by the same way we have
D(u, 4(x).0) < (b-a)LD(u, ,(x),0)
Thus we obtain

D(u,(x),0) < (b—a)LD(u,_,(x),0)
<{(b—-a)L}¥D(u, ,(x),0)

<{(b—2a)L}"D(u,(x),0) ={(b—a)L}" D(f (x),0)
<{(b-a)L}" sup D(f(x),0)

xe[a,b]

this implies that
sup D(u,(x),0) < Q{(b-a)L}" (3.5)

xel[a,b]

where Q = sup D(f (x),5). For n>0, from (3.4) and (3.5) we obtain

xel[a,b]

Dy, (X).y, (X)) < SUIO] D (/4.2 (0),,(¥)) < Q{(b - )L}

xe[a,b

The series Q(b—a)LZ{(b—a)L}n Is convergent, hence the series ZD(WM(X),(//”(X)) IS
n=0 n=0

convergent uniformly on [a,b] by the comparison test, this implies the uniform convergence
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of the sequence {w,(x)}._,. If we denote u(x)=Ilimy, (x), then u(x) satisfies (1.3). It is

obviously continuous and bounded on [a,b].

At last, we prove the uniqueness of solution. Let u(x) and v(x) be two continuous solutions
of (1.3) on [a,b], then

0< D(u(x),v(x))= D(U(X) + ¥/, (X).¥(X) +,(x))

< D(U(x),y7, () + D(vV(x).17, (%))
and since y, (X) is convergent to solution of (1.3), then
D(U(X).,(x)) =0,
D(U(X).,(x)) =0,

when n — oo, then D(u(x),v(x))=0 that is u(x) = v(x) . This completes the proof.
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