On A Bitopological (1,2)*- Proper Functions

Sabiha I . Mahmood

Department of Mathematics/College of Science/ Al-Mustansiriyah University

Received in: 14 junuary 2013 Accepted in : 1 april 2013

Abstract

In this paper, we introduce a new type of functions in bitopological spaces, namely, $(1,2)^*$ -proper functions. Also, we study the basic properties and characterizations of these functions. One of the most important of equivalent definitions to the $(1,2)^*$ -proper functions is given by using $(1,2)^*$ -cluster points of filters. Moreover we define and study $(1,2)^*$ -perfect functions and $(1,2)^*$ -compact functions in bitopological spaces and we study the relation between $(1,2)^*$ -proper functions and each of $(1,2)^*$ -closed functions , $(1,2)^*$ -perfect functions and $(1,2)^*$ -compact functions and each of $(1,2)^*$ -closed functions , $(1,2)^*$ -perfect functions and $(1,2)^*$ -compact functions and we give an example when the converse may not be true .

Key words: $(1,2)^*$ -proper functions, $(1,2)^*$ -perfect functions , $(1,2)^*$ -compact functions , $(1,2)^*$ -cluster points, $(1,2)^*$ -T₂-spaces , $(1,2)^*$ -compactly closed sets and $(1,2)^*$ -K-spaces .

المجلد 26 (العدد 2) عام 2013

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

مجلة إبن إهيثم للعلوم الصرفة و التطبيقية 2013 (2) Vol. 26

Introduction

The concept of a bitopological space (X,τ_1,τ_2) was first introduced by Kelly [1], where X is a nonempty set and τ_1 , τ_2 are topologies on X. Lellis Thivagar et. al. [2] introduced the concepts of (1,2)*-compact spaces and studied their properties . Ravi et. al. [3] introduced the concepts of (1,2)*-closed functions . The purpose of this paper is to introduce a new class of functions, namely , (1,2)*-proper functions . We give the definition by depending on the definition of (1,2)*-closed functions . Also, we study the characterizations and basic properties of (1,2)*-proper functions . We can prove that a (1,2)*-continuous function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (1,2)*-proper if and only if whenever ξ is a filter on X and $y \in Y$ is a (1,2)*-cluster point of $f(\xi)$, then there is a (1,2)*-cluster point x of ξ such that f(x) = y. Moreover we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces may not be true .

Throughout this paper $(X, \tau_1, \tau_2), (Y, \sigma_1, \sigma_2)$ and (Z, η_1, η_2) (or simply X, Y and Z) represent non-empty bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned. If $A \subseteq X$, then $(A, \tau_{1_A}, \tau_{2_A})$ is called a bitopological subspace of (X, τ_1, τ_2) .

1.Preliminaries

First we recall the following definitions:

Definition(1.1)[4]: A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -open if $A = U_1 \bigcup U_2$ where $U_1 \in \tau_1$ and $U_2 \in \tau_2$. The complement of a $\tau_1 \tau_2$ -open set is called $\tau_1 \tau_2$ -closed.

Notice that $\tau_1 \tau_2$ - open sets need not necessarily form a topology [4].

Definition(1.2)[4]: Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then:

i) The $\tau_1 \tau_2$ - closure of A, denoted by $\tau_1 \tau_2 cl(A)$, is defined by:-

 $\tau_1 \tau_2 \operatorname{cl}(A) = \bigcap \{F : A \subseteq F \& F \text{ is } \tau_1 \tau_2 - \operatorname{closed} \}.$

ii) The $\tau_1\tau_2$ - interior of A , denoted by $\tau_1\tau_2$ int(A) , is defined by:-

 $\tau_1 \tau_2 \operatorname{int}(A) = \bigcup \{ U : U \subseteq A \& U \text{ is } \tau_1 \tau_2 - \operatorname{open} \}.$

Definition(1.3)[2]: A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ from a bitopological space (X, τ_1, τ_2)

into a bitopological space (Y,σ_1,σ_2) is called (1,2)*-continuous if $f^{-1}(V)$ is $\tau_1\tau_2$ -closed set in X

for every $\sigma_1 \sigma_2$ -closed set V in Y.

Definition(1.4)[5]: Let $(X_{\alpha}, \tau_{\alpha}, \tau'_{\alpha})_{\alpha \in \wedge}$ be a family of bitopological spaces . On the product set $X = \underset{\alpha \in \wedge}{\pi} X_{\alpha}$ we define a bitopological structure (τ, τ') by taking τ as the product topology generated by the τ_{α} s and τ' as the product topology generated by the τ'_{α} s.

Definition(1.5)[6]: A filter ξ on a set X is a non-empty collection of non-empty subsets of X which has the following properties:-

i) Every finite intersection of sets of ξ belongs to ξ .

ii) Every subset of X which contains a set of ξ belongs to ξ .

Definition(1.6)[6]: A non-empty collection ξ_0 of non-empty subsets of a set X is called a filter base for some filter on X if and only if for each $F_0^1, F_0^2 \in \xi_0$, there exists $F_0^3 \in \xi_0$ such that $F_0^3 \subseteq F_0^1 \cap F_0^2$.

Definition(1.7): A subset A of a bitopological space (X, τ_1, τ_2) is called a $(1,2)^*$ -neighborhood of a point x in X if there exists a $\tau_1 \tau_2$ -open set U in X such that $x \in U \subseteq A$. The family of all $(1,2)^*$ -neighborhoods of a point $x \in X$ is denoted by $N^*(x)$.

Definition(1.8): A filter ξ on a bitopological space (X, τ_1, τ_2) has $x \in X$ as an $(1,2)^*$ -cluster point (written $\xi^{(1,2)^*} \propto x$) iff each $F \in \xi$ meets each $N \in N^*(x)$.

Remark(1.9): A filter ξ on a bitopological space (X, τ_1, τ_2) has $x \in X$ as an $(1,2)^*$ -cluster point iff $x \in \bigcap \{\tau_1 \tau_2 cl(F) : F \in \xi \}$.

Proof: To prove that $\xi \propto^{(1,2)^*} x \Leftrightarrow x \in \bigcap \{ \tau_1 \tau_2 cl(F) : F \in \xi \}.$ $\therefore \xi \propto^{(1,2)^*} x \Leftrightarrow \forall N \in N^*(x) \& \forall F \in \xi, N \bigcap F \neq \phi$ $\Leftrightarrow \forall N \in N^*(x), F \bigcap N \neq \phi, \forall F \in \xi$ $\Leftrightarrow x \in \tau_1 \tau_2 cl(F), \forall F \in \xi$ $\Leftrightarrow x \in \bigcap \{ \tau_1 \tau_2 cl(F) : F \in \xi \}.$

Definition(1.10): A filter base ξ_0 on a bitopological space (X, τ_1, τ_2) has $x \in X$ as an $(1,2)^*$ cluster point (written $\xi_0^{(1,2)^*} \propto x$) iff each $F \in \xi_0$ meets each $N \in N^*(x)$. *Definition(1.11)[5]:* A bitopological space (X, τ_1, τ_2) is called a $(1,2)^*$ - T_2 -space (or quasi-Hausdorff space if for any two distinct points x and y of X, there are two $\tau_1\tau_2$ -open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Definition(1.12)[2]: A bitopological space (X, τ_1, τ_2) is said to be a $(1,2)^*$ -compact space if and only if every $\tau_1 \tau_2$ -open cover of X has a finite subcover.

Theorem(1.13): A bitopological space (X, τ_1, τ_2) is $(1,2)^*$ -compact if and only if given any family $\{F_{\alpha}\}_{\alpha \in \wedge}$ of $\tau_1 \tau_2$ -closed subsets of X such that the intersection of any finite number of the F_{α} is non-empty, then $\bigcap_{\alpha \in \wedge} F_{\alpha} \neq \phi$.

Proof: It is Obvious .

Theorem(1.14): A bitopological space (X, τ_1, τ_2) is $(1,2)^*$ -compact if and only if every filter

on X has an $(1,2)^*$ -cluster point .

Proof: \Rightarrow Suppose that (X, τ_1, τ_2) is a $(1,2)^*$ -compact space and ξ be a filter on X.

Take $\Omega = \{\tau_1 \tau_2 cl(F) : F \in \xi\}$, then by (1.5) Ω has the finite intersection property (f.i.p.). But X is (1,2)*-compact, then by (1.13), $\bigcap \Omega \neq \phi$. This implies that any point of this intersection is an (1,2)*-cluster point of ξ .

 $\Leftarrow Let \ \Omega \ be a \ collection \ of \ \tau_1\tau_2 \ \text{-closed subsets of} \ X \ such \ that \ \Omega \ has \ the \ f.i.p \ .$ Then there exists a filter $\xi \ on \ X \ such \ that \ \Omega \subseteq \xi \ .$

 $\Rightarrow \bigcap \{\tau_1 \tau_2 cl(F) : F \in \xi\} \subseteq \bigcap \{\tau_1 \tau_2 cl(A) : A \in \Omega\}. \text{ Since } \xi \text{ has an } (1,2)^* \text{-cluster point , then } \\ \text{there exists } x \in \bigcap \{\tau_1 \tau_2 cl(F) : F \in \xi\} \Rightarrow \bigcap \{\tau_1 \tau_2 cl(F) : F \in \xi\} \neq \phi .$

Since $\bigcap \{\tau_1 \tau_2 cl(F) : F \in \xi\} \subseteq \bigcap \{\tau_1 \tau_2 cl(A) : A \in \Omega\}$, then $\bigcap \{\tau_1 \tau_2 cl(A) : A \in \Omega\} \neq \phi$. But Ω is

a collection of $\tau_1\tau_2$ -closed subsets of X, then $\bigcap \{A : A \in \Omega\} = \bigcap \{\tau_1\tau_2 cl(A) : A \in \Omega\}$. Hence $\bigcap \{A : A \in \Omega\} \neq \phi$ and by (1.13), X is a (1,2)*-compact space.

2. (1,2)*-CLOSED FUNCTIONS

Definition(2.1)[3]: A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ from a bitopological space (X, τ_1, τ_2)

into a bitopological space (Y, σ_1, σ_2) is called $(1,2)^*$ -closed (resp. $(1,2)^*$ -open) if f(F) is $\sigma_1\sigma_2$ -

closed (resp. $\sigma_1\sigma_2$ -open) in Y for every $\tau_1\tau_2$ -closed (resp. $\tau_1\tau_2$ -open) set F in X.

Examples(2.2):

i) Let $f : (\mathfrak{R}, \mu, \mu) \to (\mathfrak{R}, \mu, \mu)$ be a function which is defined by : f(x) = 0, $\forall x \in \mathfrak{R}$. Then f is an $(1,2)^*$ -closed function.

ii) An inclusion function $i:(F, \tau_F, \tau'_F) \rightarrow (X, \tau, \tau')$ is $(1,2)^*$ -closed iff F is a $\tau\tau'$ -closed set in X.

Theorem(2.3): A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -closed if and only if for each subset B of Y and each $\tau_1 \tau_2$ -open set U in X containing $f^{-1}(B)$, there exists a $\sigma_1 \sigma_2$ -open set V in Y containing B such that $f^{-1}(V) \subseteq U$.

Proof: \Rightarrow Suppose that B is an arbitrary subset in Y and U is an arbitrary $\tau_1\tau_2$ -open set in X containing $f^{-1}(B)$. Put V = Y - f(X - U). Then by (2.1), V is a $\sigma_1\sigma_2$ -open set in Y. Since $f^{-1}(B) \subseteq U \Rightarrow X - U \subseteq f^{-1}(Y - B) \Rightarrow f(X - U) \subseteq Y - B \Rightarrow B \subseteq Y - f(X - U) \Rightarrow B \subseteq V$ and $f^{-1}(V) \subseteq U$.

Conversely, Let F be any $\tau_1\tau_2$ -closed set in X. Put B = Y - f(F), then we have $f^{-1}(B) \subseteq X - F$. Since X - F is $\tau_1\tau_2$ -open, then by hypothesis there exists a $\sigma_1\sigma_2$ -open set

V in Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore, we obtain f(F) = Y - V and hence f(F) is $\sigma_1 \sigma_2$ -closed in Y. This shows that f is a (1,2)*-closed function.

Theorem(2.4): Let (X,τ_1,τ_2) , (Y,σ_1,σ_2) and (Z,η_1,η_2) be three bitopological spaces ,

and $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2), g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two functions. Then: i) If f and g are $(1,2)^*$ -closed, then $g \circ f$ is $(1,2)^*$ -closed. ii) If $g \circ f$ is $(1,2)^*$ -closed and f is $(1,2)^*$ -continuous and onto, then g is $(1,2)^*$ -closed.

iii) If $g \circ f$ is $(1,2)^*$ -closed and g is $(1,2)^*$ -continuous and one-to-one ,then f is $(1,2)^*$ -closed.

Proof:

i) To prove that $g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is a $(1,2)^*$ -closed function . Let F be any $\tau_1 \tau_2$ -closed subset of X . Since f is a $(1,2)^*$ -closed function, then f(F) is a $\sigma_1 \sigma_2$ -closed set in Y. Since g is a $(1,2)^*$ -closed function, then g(f(F)) is a $\eta_1 \eta_2$ -closed set in Z, hence $(g \circ f)(F)$ is a $\eta_1 \eta_2$ -closed set in Z. Thus $g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is a $(1,2)^*$ -closed function.

ii) To prove that $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is a $(1,2)^*$ -closed function. Let F be any $\sigma_1\sigma_2$ -closed subset of Y. Since f is $(1,2)^*$ -continuous, then $f^{-1}(F)$ is a $\tau_1\tau_2$ -closed set in X. Since $g \circ f$ is $(1,2)^*$ -closed, then $(g \circ f)(f^{-1}(F)) = g(f \circ f^{-1}(F))$ is a $\eta_1\eta_2$ -closed set in Z. Since f is onto ,then g(F) is a $\eta_1\eta_2$ -closed set in Z. Thus $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is a $(1,2)^*$ -closed function.

iii) To prove that $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is a $(1,2)^*$ -closed function. Let F be any $\tau_1\tau_2$ closed subset of X. Since $g \circ f$ is $(1,2)^*$ -closed, then $(g \circ f)(F)$ is a $\eta_1\eta_2$ -closed set in Z. Since g is $(1,2)^*$ -continuous, then $g^{-1}(g \circ f(F)) = (g^{-1} \circ g)(f(F))$ is a $\sigma_1\sigma_2$ -closed set in Y. Since g is one-to-one, then f(F) is a $\sigma_1\sigma_2$ -closed set in Y. Thus $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is a $(1,2)^*$ -closed function.

Theorem(2.5): Let $f : (X, \tau, \tau') \to (Y, \sigma, \sigma')$ be a $(1,2)^*$ -closed function. Then for each subset T of Y, the function $f_T : (f^{-1}(T), \tau_{f^{-1}(T)}, \tau'_{f^{-1}(T)}) \to (T, \sigma_T, \sigma'_T)$ which agrees with f on $f^{-1}(T)$ is also $(1,2)^*$ -closed function.

Proof: Let F be a $\tau_{f^{-1}(T)} \tau'_{f^{-1}(T)}$ -closed subset of $f^{-1}(T)$. Then there is a $\tau \tau'$ -closed subset F_1 of X such that $F = F_1 \cap f^{-1}(T)$. Since $f_T(F) = f(F_1) \cap T$ and f is $(1,2)^*$ -closed function, then $f(F_1)$ is $\sigma \sigma'$ -closed in Y. Hence $f(F_1) \cap T$ is a $\sigma_T \sigma'_T$ -closed set in T. Thus f_T is a $(1,2)^*$ -closed function.

Theorem(2.6): If $f : (X, \tau, \tau') \rightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -closed function ,then the restriction of f

to a $\tau\tau'$ -closed subset F of X is a (1,2)*-closed function of F into Y.

Proof: Since F is a $\tau\tau'$ -closed set in X, then the inclusion function $i: (F, \tau_F, \tau'_F) \rightarrow (X, \tau, \tau')$

is a (1,2)*-closed function. Since $f: (X, \tau, \tau') \to (Y, \sigma_1, \sigma_2)$ is a (1,2)*-closed function, then by (2.4) $f \circ i: (F, \tau_F, \tau'_F) \to (Y, \sigma_1, \sigma_2)$ is a (1,2)*-closed function. But $f \circ i = f/F$, thus the restriction function $f/F: (F, \tau_F, \tau'_F) \to (Y, \sigma_1, \sigma_2)$ is a (1,2)*-closed function.

Remark(2.7): If $f_1: (X_1, \tau_1, \tau_2) \rightarrow (Y_1, \sigma_1, \sigma_2)$ and $f_2: (X_2, \tau'_1, \tau'_2) \rightarrow (Y_2, \sigma'_1, \sigma'_2)$ are two $(1,2)^*$ -closed functions. Then $f_1 \times f_2: (X_1 \times X_2, \tau_1 \times \tau'_1, \tau_2 \times \tau'_2) \rightarrow (Y_1 \times Y_2, \sigma_1 \times \sigma'_1, \sigma_2 \times \sigma'_2)$ is not necessarily a $(1,2)^*$ -closed function.

Example: Let $f_1:(\mathfrak{R},\mu,\mu) \to (\mathfrak{R},\mu,\mu)$ be a function which is defined by : $f_1(x) = 0$, $\forall x \in \mathfrak{R}$. And Let $f_2:(\mathfrak{R},\mu,\mu) \to (\mathfrak{R},\mu,\mu)$ be a function which is defined by : $f_2(x) = x$, $\forall x \in \mathfrak{R}$. Where f_2 is the identity function on \mathfrak{R} . Clearly f_1 and f_2 are $(1,2)^*$ -closed functions , but $f_1 \times f_2:(\mathfrak{R} \times \mathfrak{R},\mu',\mu') \to (\mathfrak{R} \times \mathfrak{R},\mu',\mu')$ such that $(f_1 \times f_2)(x,y) = (0,y)$, $\forall (x,y) \in \mathfrak{R} \times \mathfrak{R}$ (where μ' is the product topology on $\mathfrak{R} \times \mathfrak{R}$) is not a $(1,2)^*$ -closed function , since the set $A = \{(x,y) \in \mathfrak{R} \times \mathfrak{R} : x \ y = 1\}$ is $\mu'\mu'$ -closed in $\mathfrak{R} \times \mathfrak{R}$, but $(f_1 \times f_2)(A) = \{0\} \times \mathfrak{R} \setminus \{0\} \cong \mathfrak{R} \setminus \{0\}$ is not $\mu'\mu'$ -closed in $\mathfrak{R} \times \mathfrak{R}$.

Theorem(2.8): Let $f_1: (X_1, \tau_1, \tau_2) \to (Y_1, \sigma_1, \sigma_2)$ and $f_2: (X_2, \tau'_1, \tau'_2) \to (Y_2, \sigma'_1, \sigma'_2)$ be functions. If $f_1 \times f_2: (X_1 \times X_2, \tau_1 \times \tau'_1, \tau_2 \times \tau'_2) \to (Y_1 \times Y_2, \sigma_1 \times \sigma'_1, \sigma_2 \times \sigma'_2)$ is $(1,2)^*$ -closed, then f_1 and f_2 are also $(1,2)^*$ -closed functions.

Proof: Suppose that $f_1 \times f_2 : (X_1 \times X_2, \rho_1, \rho_2) \rightarrow (Y_1 \times Y_2, \rho_3, \rho_4)$ is a $(1,2)^*$ -closed function where $\rho_i, i = 1,2,3,4$ be the product topology on $X_1 \times X_2$ and $Y_1 \times Y_2$ respectively. To prove that $f_1 : (X_1, \tau_1, \tau_2) \rightarrow (Y_1, \sigma_1, \sigma_2)$ is $(1,2)^*$ -closed. Let F be a $\tau_1 \tau_2$ -closed subset of X_1 , to prove that $f_1(F)$ is $\sigma_1 \sigma_2$ -closed in Y_1 . Suppose that $G = f_1(F) \Rightarrow F \times X_2$ is $\rho_1 \rho_2$ -closed in $X_1 \times X_2$. Since $f_1 \times f_2$ is $(1,2)^*$ -closed $\Rightarrow (f_1 \times f_2)(F \times X_2) = f_1(F) \times f_2(X_2) = G \times f_2(X_2)$ is $\rho_3 \rho_4$ -closed in $Y_1 \times Y_2$. i.e. $\rho_3 \rho_4 cl(G \times f_2(X_2) = G \times f_2(X_2) \Rightarrow \sigma_1 \sigma_2 cl(G) = G \Rightarrow G = f_1(F)$ is $\sigma_1 \sigma_2$ -closed in $Y_1 \Rightarrow f_1 : (X_1, \tau_1, \tau_2) \rightarrow (Y_1, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -closed function. By the same way we can prove that f_2 is a $(1,2)^*$ -closed function. Thus f_1 and f_2 are $(1,2)^*$ -closed functions.

Definition(2.9)[7]: A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ from a bitopological space (X, τ_1, τ_2)

into a bitopological space (Y, σ_1, σ_2) is called $(1,2)^*$ -homeomorphism if :-

i) f is $(1,2)^*$ -continuous.

ii) f is one-to-one and onto .

iii) f is $(1,2)^*$ -closed (or $(1,2)^*$ -open).

3. (1,2)*-PROPER FUNCTIONS

In this section we introduce a new type of functions in bitopological spaces which we call $(1,2)^*$ -proper functions. Besides we give examples and theorems.

Definition(3.1): A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ from a bitopological space (X, τ_1, τ_2) into

a bitopological space (Y, σ_1, σ_2) is called $(1,2)^*$ -proper if :i) f is $(1,2)^*$ -continuous.

ii) $f \times I_Z : (X \times Z, \tau_1 \times \tau, \tau_2 \times \tau') \rightarrow (Y \times Z, \sigma_1 \times \tau, \sigma_2 \times \tau')$ is (1,2)*-closed for every bitopological space (Z, τ, τ') .

Examples(3.2):

i) Let $f : (\mathfrak{R}, \mu, \mu) \to (\mathfrak{R}, \mu, \mu)$ be a function which is defined by : f(x) = 0, $\forall x \in \mathfrak{R}$. Notice

that f is a (1,2)*-closed function, but f is not a (1,2)*-proper function, since for the usual bitopological space (\mathfrak{R},μ,μ) the function $f \times I_{\mathfrak{R}} : (\mathfrak{R} \times \mathfrak{R},\mu \times \mu,\mu \times \mu) \rightarrow (\mathfrak{R} \times \mathfrak{R},\mu \times \mu,\mu \times \mu)$ which is defined by $(f \times I_{\mathfrak{R}})(x,y) = (0,y), \forall (x,y) \in \mathfrak{R} \times \mathfrak{R}$ is not a (1,2)*-closed function.

ii) An inclusion function $i: (F, \tau_F, \tau'_F) \rightarrow (X, \tau, \tau')$ is (1,2)*-proper iff F is a $\tau\tau'$ -closed set in X.

Theorem(3.3): Every $(1,2)^*$ -proper function is a $(1,2)^*$ -closed function.

Proof: Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a $(1,2)^*$ -proper function , then the function $f \times I_Z: (X \times Z, \tau_1 \times \tau, \tau_2 \times \tau') \rightarrow (Y \times Z, \sigma_1 \times \tau, \sigma_2 \times \tau')$ is $(1,2)^*$ -closed for every bitopological space (Z, τ, τ') . Let $Z = \{t\}$, then $X \times Z = X \times \{t\} \cong X$ & $Y \times Z = Y \times \{t\} \cong Y$ and we can replace $f \times I_Z$ by f. Thus $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -closed function.

Remark(3.4): The converse of (3.3) may not be true in general . Consider the following example:

Example: In (3.2) (i), $f : (\Re, \mu, \mu) \to (\Re, \mu, \mu)$ is a (1,2)*-closed function, but it is not a (1,2)*-

proper function.

Theorem(3.5):Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ -continuous and one-to-one

function.

Then the following statements are equivalent:i) f is $(1,2)^*$ -proper . ii) f is $(1,2)^*$ -closed . iii) f is a $(1,2)^*$ -homeomorphism of X onto a $\sigma_1 \sigma_2$ -closed subset of Y.

Proof: By theorem $(3.3), (i \rightarrow ii)$.

(ii \rightarrow iii). Assume that $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a (1,2)*-closed function. Since X is a $\tau_1\tau_2$ -closed set in X, then f(X) is a $\sigma_1\sigma_2$ -closed set in Y. Since f is (1,2)*-continuous and one-to-one, then f is a (1,2)*-homeomorphism of X onto a $\sigma_1\sigma_2$ -closed subset f(X) of Y.

(iii \rightarrow i). To prove that $f \times I_Z : (X \times Z, \rho_1, \rho_2) \rightarrow (Y \times Z, \rho_3, \rho_4)$ is (1,2)*-closed for every bitopological space (Z, τ, τ') , where ρ_i , i = 1,2,3,4 be the product topology on $X \times Z$ and $Y \times Z$ respectively. Since f is a (1,2)*-homeomorphism of X onto a $\sigma_1 \sigma_2$ -closed subset F of Y, then $f \times I_Z$ is a (1,2)*-homeomorphism of $X \times Z$ onto a $\rho_3 \rho_4$ -closed subset $F \times Z$ of

 $Y \times Z$ and therefore $f \times I_Z$ is $(1,2)^*$ -closed. Thus $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -proper function.

Corollary(3.6): Every $(1,2)^*$ -homeomorphism is a $(1,2)^*$ -proper function.

Remark(3.7): The converse of (3.6) may not be true in general . Consider the following example:-

Example: Let $f : ([0,1], \mu', \mu') \rightarrow (\Re, \mu, \mu)$ be a function which is defined by :

 $\mathbf{f}(\mathbf{x}) = \mathbf{x} \ , \ \forall \ \mathbf{x} \in [0,1].$

(where μ' is the relative usual topology on [0,1]) . Clearly that f is a (1,2)*-proper function, but it

is not $(1,2)^*$ -homeomorphism.

Theorem(3.8):Let $f: (X, \tau, \tau') \to (Y, \sigma, \sigma')$ be a (1,2)*-proper function. Then for each subset T of Y, the function $f_T: (f^{-1}(T), \tau_{f^{-1}(T)}, \tau'_{f^{-1}(T)}) \to (T, \sigma_T, \sigma'_T)$ which agrees with f on $f^{-1}(T)$ is also (1,2)*-proper.

Proof: To prove that $f_T : (f^{-1}(T), \tau_{f^{-1}(T)}, \tau'_{f^{-1}(T)}) \rightarrow (T, \sigma_T, \sigma'_T)$ is $(1,2)^*$ -proper. Since f is $(1,2)^*$ -continuous, then so is f_T . Since f is $(1,2)^*$ -proper, then for every bitopological space (Z, τ, τ') the function $f \times I_Z : (X \times Z, \rho_1, \rho_2) \rightarrow (Y \times Z, \rho_3, \rho_4)$ is $(1,2)^*$ -closed, where $\rho_i, i = 1,2,3,4$ be the product topology on $X \times Z$ and $Y \times Z$ respectively. Since $f_T \times I_Z = (f \times I_Z)_{T \times Z}$, then by (2.5) $f_T \times I_Z$ is $(1,2)^*$ -closed. Thus $f_T : (f^{-1}(T), \tau_{f^{-1}(T)}, \tau'_{f^{-1}(T)}) \rightarrow (T, \sigma_T, \sigma'_T)$ is a $(1,2)^*$ -proper function.

Definition(3.9): If the function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1, 2)^*$ -proper and (X, τ_1, τ_2) is a

 $(1,2)^*$ -T₂-space, then f is called a $(1,2)^*$ -perfect function .

Corollary(3.10): Every $(1,2)^*$ -perfect function is a $(1,2)^*$ -proper function.

Remark(3.11): The converse of (3.10) may not be true in general . Consider the following example:-

Example: Let $f : (\mathfrak{R}, \tau_{cof.}, \tau_{cof.}) \to (\mathfrak{R}, \tau_{cof.}, \tau_{cof.})$ be the identity function , where $\tau_{cof.}$ be the cofinite

topology on ${\mathfrak R}$. Then f is a (1,2)*-homeomorphism and by (3.6) , f is (1,2)*-proper . Since

 $(\Re, \tau_{cof.}, \tau_{cof.})$ is not a $(1,2)^*$ - T_2 -space, then f is not a $(1,2)^*$ -perfect function.

Theorem(3.12): Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two $(1,2)^*$ -

continuous functions . Then:-

i) If f and g are $(1,2)^*$ -proper, then $g \circ f$ is $(1,2)^*$ -proper.

ii) If $g \circ f$ is $(1,2)^*$ -proper and f is onto, then g is $(1,2)^*$ -proper.

iii) If $g \circ f$ is $(1,2)^*$ -proper and g is one-to-one, then f is $(1,2)^*$ -proper.

Proof:

i) It is clear that $g \circ f : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -continuous. Let (Z_1, τ, τ') be any bitopological space. We have : $(g \circ f) \times I_{Z_1} = (g \times I_{Z_1}) \circ (f \times I_{Z_1})$. Since f and g are $(1,2)^*$ -proper, then $f \times I_{Z_1}$ and $g \times I_{Z_1}$ are $(1,2)^*$ -closed. Hence by (2.4), no.(i) $(g \circ f) \times I_{Z_1}$ is $(1,2)^*$ -closed. Thus $g \circ f$ is a $(1,2)^*$ -proper function.

ii) To prove that $g \times I_{Z_1} : (Y \times Z_1, \sigma_1 \times \tau, \sigma_2 \times \tau') \to (Z \times Z_1, \eta_1 \times \tau, \eta_2 \times \tau')$ is $(1,2)^*$ -closed for every bitopological space Z_1 . Since $g \circ f$ is $(1,2)^*$ -proper, then $(g \circ f) \times I_{Z_1} = (g \times I_{Z_1}) \circ (f \times I_{Z_1})$

is $(1,2)^*$ -closed. Since f is $(1,2)^*$ -continuous and onto, then so is $f \times I_{Z_1}$, hence by (2.4), no. (ii) $g \times I_{Z_1}$ is $(1,2)^*$ -closed. Thus $g: (Y,\sigma_1,\sigma_2) \to (Z,\eta_1,\eta_2)$ is a $(1,2)^*$ -proper function.

iii) To prove that $f \times I_{Z_1} : (X \times Z_1, \tau_1 \times \tau, \tau_2 \times \tau') \rightarrow (Y \times Z_1, \sigma_1 \times \tau, \sigma_2 \times \tau')$ is (1,2)*-closed for every bitopological space Z_1 . Since $g \circ f$ is (1,2)*-proper, then $(g \circ f) \times I_{Z_1} = (g \times I_{Z_1}) \circ (f \times I_{Z_1})$

is (1,2)*-closed. Since g is one-to-one and (1,2)*-continuous, then so is $g \times I_{Z_1}$, hence by (2.4), no. (iii) $f \times I_{Z_1}$ is (1,2)*-closed. Thus $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a (1,2)*-proper function.

Corollary(3.13): If $f:(X,\tau,\tau') \to (Y,\sigma_1,\sigma_2)$ is a $(1,2)^*$ -proper function, then the restriction of f to a $\tau\tau'$ -closed subset F of X is a $(1,2)^*$ -proper function of F into Y.

Proof: Since F is a $\tau\tau'$ -closed set in X, then the inclusion function $i:(F,\tau_F,\tau'_F) \to (X,\tau,\tau')$ is a (1,2)*-proper function. Since $f:(X,\tau,\tau') \to (Y,\sigma_1,\sigma_2)$ is a (1,2)*-proper function, then by (3.12), no.(i) $f \circ i:(F,\tau_F,\tau'_F) \to (Y,\sigma_1,\sigma_2)$ is a (1,2)*-proper function. But $f \circ i = f/F$, thus the restriction function $f/F:(F,\tau_F,\tau'_F) \to (Y,\sigma_1,\sigma_2)$ is a (1,2)*-proper function.

Corollary(3.14): If $f:(X,\tau,\tau') \to (Y,\sigma_1,\sigma_2)$ is a (1,2)*-perfect function, then the restriction of f to a $\tau\tau'$ -closed subset F of X is a (1,2)*-perfect function of F into Y.

Proof: It is Obvious .

Corollary(3.15): The composition of two $(1,2)^*$ -perfect functions is a $(1,2)^*$ -perfect function.

Corollary(3.16):Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be functions. If f is a $(1,2)^*$ -perfect function and g is a $(1,2)^*$ -proper function. Then $g \circ f$ is a $(1,2)^*$ -perfect function.

Theorem(3.17): If $f_1: (X_1, \tau_1, \tau_2) \to (Y_1, \sigma_1, \sigma_2)$ and $f_2: (X_2, \tau'_1, \tau'_2) \to (Y_2, \sigma'_1, \sigma'_2)$ are two $(1,2)^*$ -proper functions. Then $f_1 \times f_2: (X_1 \times X_2, \tau_1 \times \tau'_1, \tau_2 \times \tau'_2) \to (Y_1 \times Y_2, \sigma_1 \times \sigma'_1, \sigma_2 \times \sigma'_2)$ is also $(1,2)^*$ -proper function.

Proof: Let (Z, τ, τ') be any bitopological space .We can write $f_1 \times f_2 \times I_Z$ by the composition of $I_{Y_1} \times f_2 \times I_Z$ and $f_1 \times I_{X_2} \times I_Z$. Since f_1 and f_2 are $(1,2)^*$ -proper functions, then

 $\begin{array}{lll} f_1 \times I_{X_2} \times I_Z & \text{and} & I_{Y_1} \times f_2 \times I_Z & \text{are} & (1,2)^*\text{-closed functions} &, \text{ hence by} & (2.4), \text{ no. (i)} \\ (I_{Y_1} \times f_2 \times I_Z) \circ (f_1 \times I_{X_2} \times I_Z) & \text{is} & (1,2)^*\text{-closed} & \text{But} & f_1 \times f_2 \times I_Z = (I_{Y_1} \times f_2 \times I_Z) \circ (f_1 \times I_{X_2} \times I_Z) \\ \Rightarrow & f_1 \times f_2 \times I_Z & \text{is} & a & (1,2)^*\text{-closed} & \text{function} & . & \text{Thus} \\ f_1 \times f_2 & : (X_1 \times X_2, \tau_1 \times \tau_1', \tau_2 \times \tau_2') \rightarrow (Y_1 \times Y_2, \sigma_1 \times \sigma_1', \sigma_2 \times \sigma_2') & \text{is} & a & (1,2)^*\text{-proper function} \\ \end{array}$

Theorem(3.18): Let $f_1: (X_1, \tau_1, \tau_2) \rightarrow (Y_1, \sigma_1, \sigma_2)$ and $f_2: (X_2, \tau'_1, \tau'_2) \rightarrow (Y_2, \sigma'_1, \sigma'_2)$ be two $(1,2)^*$ -continuous functions such that $f_1 \times f_2$ is a $(1,2)^*$ -proper function. Then, f_1 and f_2 are $(1,2)^*$ -proper.

Proof: Let (Z, τ, τ') be any bitopological space . Since $f_1 \times f_2$ is $(1,2)^*$ -proper , then $f_1 \times f_2 \times I_Z : (X_1 \times X_2 \times Z, \rho_1, \rho_2) \rightarrow (Y_1 \times Y_2 \times Z, \rho_3, \rho_4)$ is $(1,2)^*$ -closed , where ρ_i , i = 1,2,3,4 be the product topology on $X_1 \times X_2 \times Z$ and $Y_1 \times Y_2 \times Z$ respectively . To prove that $f_2 \times I_Z : (X_2 \times Z, \eta_1, \eta_2) \rightarrow (Y_2 \times Z, \eta_3, \eta_4)$ is $(1,2)^*$ -closed , where η_i , i = 1,2,3,4 be the product topology on $X_2 \times Z$ and $Y_2 \times Z$ respectively . Let F be any $\eta_1\eta_2$ -closed set in $X_2 \times Z$ and $G = (f_2 \times I_Z)(F)$. To prove that G is $\eta_3\eta_4$ -closed in $Y_2 \times Z$. Since $X_1 \neq \phi$, then $X_1 \times F$ is $\rho_1\rho_2$ -closed in $X_1 \times X_2 \times Z$. Since $f_1 \times f_2 \times I_Z$ is $(1,2)^*$ -closed, then $(f_1 \times f_2 \times I_Z)(X_1 \times F) = f_1(X_1) \times G$ is $\rho_3\rho_4$ -closed in $Y_1 \times Y_2 \times Z$ $\Rightarrow \rho_3\rho_4 cl(f_1(X_1) \times G) = f_1(X_1) \times G \Rightarrow \eta_3\eta_4 cl(G) = G \Rightarrow G = (f_2 \times I_Z)(F)$ is $\eta_3\eta_4$ -closed in $Y_2 \times Z$. Therefore $f_2 \times I_Z$ is $(1,2)^*$ -closed. Thus f_2 is a $(1,2)^*$ -proper function. By the same way we can prove that f_1 is $(1,2)^*$ -proper .

Lemma(3.19): Let (X, τ_1, τ_2) be any bitopological space such that the constant function $f : (X, \tau_1, \tau_2) \rightarrow P = \{w\}$ is $(1,2)^*$ -proper .Then X is a $(1,2)^*$ -compact space, where w is any point which does not belong to X.

Proof: Let ξ be a filter on X and let $X' = X \bigcup \{w\}$. Then $\xi' = \{M \bigcup \{w\} : M \in \xi\}$ is a filter on X'. This filter with ϕ form a topology on X' say τ . Hence (X', τ, τ) is a bitopological space

associated with ξ . Let $\Delta \subseteq X \times X'$ such that $\Delta = \{(x,x) \colon x \in X\}$ and let $\rho_1 \rho_2 cl(\Delta) = F$ be the

 $\rho_1\rho_2$ -closure of Δ in $(X \times X', \rho_1, \rho_2)$, where ρ_i , i = 1, 2 be the product topology on $X \times X'$.

Since $f:(X,\tau_1,\tau_2)\to P$ is (1,2)*-proper , then $f\times I_{X'}:X\times X'\to P\times X'$ is (1,2)*-closed . But

 $P\times X'\cong X'$ so $pr_2:X\times X'\to X'$ is (1,2)*-closed . Hence $pr_2(F)$ is $\tau\tau\text{-closed}$ in X' . Since

 $\begin{array}{ll} (x,x)\in\Delta \ \, \text{for each } x\in X \ \, \Rightarrow \ \, x=\text{pr}_2(x,x)\in\text{pr}_2(\Delta) \ \, \text{for each } x\in X \ \, \Rightarrow \ \, X\subseteq\text{pr}_2(F) \\ \Rightarrow \end{array}$

 $\tau\tau cl(X) \subseteq \tau\tau cl(pr_2(F)) = pr_2(F)$. Since $w \in \tau\tau cl(X) \Rightarrow w \in pr_2(F) \Rightarrow \exists x \in X$ such that

 $(x,w)\in \rho_1\rho_2 cl(\Delta)=F$.By the definition of the bitopology of $\,X\times X'$, this means that for each

Vol. 26 (2) 2013

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

 $(1,2)^*$ -neighborhood V of x in X and each $M \in \xi$, we have $(V \times M) \cap \Delta \neq \phi \implies V \cap M \neq \phi$

Hence x is a $(1,2)^*$ -cluster point of the filter ξ . Thus X is a $(1,2)^*$ -compact space.

Theorem(3.20): Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ -continuous function. Then the following statements are equivalent:-

i) f is (1,2)*-proper.

ii) f is $(1,2)^*$ -closed and f⁻¹(y) is $(1,2)^*$ -compact for each $y \in Y$.

iii) If ξ is a filter on X and if $y \in Y$ is a $(1,2)^*$ -cluster point of $f(\xi)$, then there is a $(1,2)^*$ -cluster point x of ξ such that f(x) = y.

Proof: $(i \rightarrow ii)$.

If f is (1,2)*-proper ,then by (3.3) f is (1,2)*-closed . To prove that $f^{-1}(y)$ is (1,2)*-compact

for each $y\in Y$. Since f is (1,2)*-proper , then by (3.8) $f_{\{y\}}:f^{-1}(y)\to \{y\}$ is (1,2)*-proper for

each $y \in Y$. By lemma (3.19), we get $f^{-1}(y)$ is $(1,2)^*$ -compact for each $y \in Y$.

 $(ii \rightarrow i)$.

To prove that $h = f \times I_Z : (X \times Z, \rho_1, \rho_2) \rightarrow (Y \times Z, \rho_3, \rho_4)$ is $(1,2)^*$ -closed for every

bitopological space (Z, $\tau,\tau')$, where ρ_i , i = 1,2,3,4 be the product topology on $X\times Z$ and $Y\times Z$

respectively . Let C be any $\rho_1\rho_2$ -closed in $X\times Z$. To prove that h(C)=D is $\rho_3\rho_4$ - closed

in
$$Y \times Z$$
. Let $(y,s) \in D^{c} \implies h^{-1}(y,s) \in h^{-1}(D^{c}) \implies (f \times I_{Z})^{-1}(y,s) \in h^{-1}(D^{c})$
 \Rightarrow
 $(f^{-1} \times I_{Z}^{-1})(y,s) \in h^{-1}(D^{c}) \implies f^{-1}(y) \times \{s\} \subseteq C^{c}$, where C^{c} is $\rho_{1}\rho_{2}$ -open in $X \times Z$
 \Rightarrow
 $\exists \tau_{1}\tau_{2}$ -open set U in X and $\tau\tau'$ -open set V in Z such that $f^{-1}(y) \times \{s\} \subseteq U \times V \subseteq C^{c}$
 \Rightarrow
 $f^{-1}(y) \subseteq U$ and $\{s\} \subseteq V$. Since f and I_{Z} are $(1,2)^{*}$ -closed, then by $(2.3) \exists \sigma_{1}\sigma_{2}$ -open set U'

in Y and $\tau\tau'$ -open set V' in Z such that $\{y\} \subseteq U', \{s\} \subseteq V', f^{-1}(U') \subseteq U$ and $I_Z^{-1}(V') \subseteq V$ \Rightarrow

$(y,s) \in U' \times V' \subseteq D^c \implies D^c$ is $\rho_3 \rho_4$ -open $\implies D$ is $\rho_3 \rho_4$ -closed in $Y \times Z$. Hence

$$\begin{split} &f\times I_Z: (X\times Z,\rho_1,\rho_2)\to (Y\times Z,\rho_3,\rho_4) \text{ is } (1,2)^*\text{-closed }. \text{ Thus } f: (X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2) \\ &\text{ is } (1,2)^*\text{-proper }. \end{split}$$

(ii \rightarrow iii). Let ξ be a filter on X and $y \in Y$ be a (1,2)*-cluster point of $f(\xi)$

⇒ $y \in \bigcap \{\sigma_1 \sigma_2 cl(f(F)) : F \in \xi\}$. Since f is (1,2)*-closed and (1,2)*-continuous , then by [1,8]

 $\sigma_1 \sigma_2 cl(f(F)) = f(\tau_1 \tau_2 cl(F)) \text{ for every } F \in \xi \implies y \in f(\tau_1 \tau_2 cl(F)) \text{ for every } F \in \xi \implies y \in f(\tau_1 \tau_2 cl(F)) \text{ for every } F \in \xi$

 $f^{-1}(y) \cap \tau_1 \tau_2 cl(F) \neq \phi$ for every $F \in \xi$. Let $\xi_0 = \{f^{-1}(y) \cap \tau_1 \tau_2 cl(F) : F \in \xi\} \Longrightarrow \xi_0$ is a filter

base on f⁻¹(y) whose elements are $\tau_{1f^{-1}(y)}\tau_{2f^{-1}(y)}$ -closed subsets of

$$(f^{-1}(y), \tau_{1f^{-1}(y)}, \tau_{2f^{-1}(y)}).$$

Since $f^{-1}(y)$ is (1,2)*-compact, then by (1.14) there exist $x \in f^{-1}(y)$ such that

$$\begin{split} &x\in \bigcap\{f^{-1}(y)\cap\tau_1\tau_2cl(F)\colon F\in\xi\} \, \Rightarrow \, \exists \ x\in f^{-1}(y) \text{ such that } x\in\tau_1\tau_2cl(F) \text{ for every } F\in\xi\\ &\Rightarrow \xi\overset{(i,2)^*}{\propto} x \text{ and } f(x)=y\,. \end{split}$$

 $(iii \rightarrow ii)$.

Let A be a non-empty $\tau_1\tau_2$ -closed subset of X and let $\xi\,$ be the filter of subsets of X which

contains $A \Rightarrow A$ is the set of (1,2)*-cluster points of ξ . Let B be the set of (1,2)*-cluster

points of $f(\xi)$ on $Y \implies B$ is $\sigma_1 \sigma_2$ -closed set in Y and $f(A) \subseteq B$. To prove that $B \subseteq f(A)$

let $y \in B \implies f(\xi) \stackrel{(1,2)^*}{\propto} y$ by (iii), $\exists x \in X$ such that $\xi \stackrel{(1,2)^*}{\propto} x$ and f(x) = y. But A is the set of

all (1,2)*-cluster points of ξ , then $x\in A$ and $f(x)=y \Rightarrow y\in f(A)\Rightarrow B\subseteq f(A)\Rightarrow B=f(A)$

 $\Rightarrow f \text{ is } (1,2)^*\text{-closed}$. Now , to prove that $f^{-1}(y)$ is $(1,2)^*\text{-compact}$ for each $\ y\in Y$. Let

 $y \in Y$, then either $f^{-1}(y) = \phi$ or $f^{-1}(y) \neq \phi$. If $f^{-1}(y) = \phi \Rightarrow f^{-1}(y)$ is $(1,2)^*$ -compact. If $f^{-1}(y) \neq \phi$, then let ξ be a filter on $f^{-1}(y) \Rightarrow f(\xi)$ be a filter generated by f on $\{y\}$, but $\{y\}$

is (1,2)*-compact and $y\in\{y\}$, then $f(\xi) \stackrel{_{(1,2)^*}}{\propto} y$ in $\{y\} \subseteq Y$. This implies that $f(\xi) \stackrel{_{(1,2)^*}}{\propto} y$ in

Y . By (iii) $\exists x \in X$ such that $\xi \overset{(1,2)^*}{\propto} x$ and $f(x) = y \implies x \in f^{-1}(y)$ and $f^{-1}(y)$ is $(1,2)^*$ -compact for each $y \in Y$.

Corollary(3.21): A bitopological space (X, τ_1, τ_2) is $(1,2)^*$ -compact if and only if the constant

function $f: (X, \tau_1, \tau_2) \rightarrow P = \{w\}$ is $(1,2)^*$ -proper .

Proof: It is Obvious .

Theorem(3.22): If (X, τ_1, τ_2) is any $(1,2)^*$ -compact space and (Y, σ_1, σ_2) is any bitopological

المجلد 26 (العدد 2) عام 2013

space, then the projection $pr_2: (X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a (1,2)*-proper function.

Proof: Since (X, τ_1, τ_2) is a $(1,2)^*$ -compact space, then by (3.21) f : $(X, \tau_1, \tau_2) \rightarrow P$ is $(1,2)^*$ -

Proper . Since $I_Y : (Y, \sigma_1, \sigma_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -proper , then by (3.17) $f \times I_Y : X \times Y \to P \times Y \cong Y$ is $(1,2)^*$ -proper . But $pr_2 = f \times I_Y$. Thus $pr_2 : (X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2) \to (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -proper function .

Definition(3.23): A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ from a bitopological space (X, τ_1, τ_2) into

a bitopological space (Y,σ_1,σ_2) is called (1,2)*-compact if the inverse image of every (1,2)*-

compact set in Y is a (1,2)*-compact set in X.

Theorem(3.24): Every $(1,2)^*$ -proper function is a $(1,2)^*$ -compact function.

Proof: Let $f : (X, \tau, \tau') \to (Y, \sigma, \sigma')$ be a $(1,2)^*$ -proper function and K be a $(1,2)^*$ -compact

subset of Y, then by (3.8), $f_K : (f^{-1}(K), \tau_{f^{-1}(k)}, \tau'_{f^{-1}(k)}) \to (K, \sigma_K, \sigma'_K)$ is (1,2)*-proper. Since $K \to P$ is (1,2)*-proper (by (3.21)) it follows from (3.12), no.(i) that the composition $f^{-1}(K) \xrightarrow{f_K} K \to P$ is (1,2)*-proper. Hence by (3.21), $f^{-1}(K)$ is (1,2)*-compact set in X.

Remark(3.25): The converse of (3.24) may not be true in general .Consider the following example:

Example: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{b, c\}\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and

 σ_2 = { ,Y, { b } } . The sets in { ,X, { a }, { b, c } } are $\tau_1 \tau_2$ -closed sets in X and the sets in

 $\{\phi,Y,\{b,c\},\{a,c\},\{c\}\} \text{ are } \sigma_1\sigma_2\text{ - closed sets in } Y$. Let $\ f:(X,\tau_1,\tau_2)\to(Y,\sigma_1,\sigma_2)$ be a function

which is defined by : f(a) = a , f(b) = b and $f(c) = c \implies f$ is a $(1,2)^*$ -compact function, but it

is not $(1,2)^*$ -proper function, since f is not $(1,2)^*$ -closed function.

Theorem(3.26): Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be two $(1,2)^*$ -

continuous functions . Then:-

i) If f and g are $(1,2)^*$ -compact, then $g \circ f$ is $(1,2)^*$ -compact.

ii) If $g \circ f$ is $(1,2)^*$ -compact and f is onto, then g is $(1,2)^*$ -compact.

iii) If $g \circ f$ is $(1,2)^*$ -compact and g is one-to-one, then f is $(1,2)^*$ -compact.

Proof: The proof is similar of theorem (3.12).

Definition(3.27): A subset F of be a bitopological space (X, τ_1, τ_2) is said to be $(1,2)^*$ -compactly

closed if $F \cap K$ is (1,2)*-compact for each (1,2)*-compact set K in X .

Remark(3.28): Every $\tau_1 \tau_2$ -closed subset of a bitopological space (X, τ_1, τ_2) is $(1,2)^*$ -compactly

closed . But the converse is not true in general . Consider the following example:-

Example: Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\} \text{ and } \tau_2 = \{\phi, X\}$. The sets in $\{X, \phi, \{b, c\}\}$ are $\tau_1 \tau_2$ -closed.

Thus {a} is (1,2)*-compactly closed in X , but it is not $\tau_1 \tau_2$ -closed .

Definition(3.29): A $(1,2)^*$ -T₂-space (X, τ_1, τ_2) is called a $(1,2)^*$ -K-space if every $(1,2)^*$ -compactly

closed subset of X is $\tau_1 \tau_2$ -closed.

Theorem(3.30): Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a (1,2)*-continuous function such that Y is a

 $(1,2)^*$ -K-space . Then f is a $(1,2)^*$ -proper function if and only if f is a $(1,2)^*$ -compact function .

Proof: \Rightarrow By (3.24) every (1,2)*-proper function is a (1,2)*-compact function .

Conversely , since f is a $(1,2)^*$ -compact function and $\{y\}$ is a $(1,2)^*$ -compact set in Y , then by

(3.23) , f $^{-1}(y)$ is (1,2)*-compact in X for each $\,y\in Y$. Now , to prove that f is (1,2)*-closed . Let $\,F$

be any $\tau_1\tau_2$ -closed set in X , to prove that f(F) is a $\sigma_1\sigma_2$ -closed set in Y . Suppose that K is a

(1,2)*-compact set in Y , then $f^{-1}(K)$ is a (1,2)*-compact set in X . Since $F \cap f^{-1}(K)$ is a (1,2)*-

compact set in X and f is (1,2)*-continuous, then by [5] $f(F \cap f^{-1}(K))$ is a (1,2)*-compact set in Y.

Since $f(F \cap f^{-1}(K)) = f(F) \cap K$, then by (3.27) f(F) is a (1,2)*-compactly closed set in Y. But Y

is a (1,2)*-K-space , then by (3.29) f(F) is a $\sigma_1\sigma_2$ -closed set in Y . Therefore by (3.20) f is a

 $(1,2)^*$ -proper function.

References

- 1. Kelly, J. C. (1963) Bitopological spaces, proc. London Math. Soc., 13 (3), 71-89.
- 2. Lellis Thivagar, M.; Ravi, O. and Ekici, E. (2008) On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3, 181-189.
- **3.** Ravi, O. ; Jeyashri, S.; Pious Missier, S. and Nagendran, R. (2010) (1,2)*-semi-normal spaces and some bitopological functions (to appear).
- **4.** Ravi, O. and Lellis Thivagar, M. (2004) On stronger forms of (1,2)*- quotient mappings in bitopological spaces, Internat J. Math. Game Theory and Algebra, 14(6), 481-492. Datta,

إلمجلد 26 (العدد 2) عام 2013

Vol. 26 (2) 2013

- 5. M. C. (1972) Projective bitopological spaces, J. Austral. Math. Soc., 13, 327–334.
- 6. Willard, S. (1970) General Topology, Addison-Wesley Inc., Mass.
- **7.** Lellis Thivagar, M. ; Ravi, O. ; Joseph Israle, M. and Kayathri, K.(2009) decompositions of (1,2)*-rg-continuous maps in bitopological spaces (to appear in Antarctica J. Math.).
- **8.** Antony, J.; Ravi, O.; Pandi, A. and Santhana, C.M.(2011) On (1,2)*-s-normal spaces and pre-(1,2)*-gs-closed functions , International Journal of Algorithms ,Computing and mathematics, 4 (1) ,29-42 .
- **9.** Ravi, O.; Pious Missier, S. and Salai Parkunan, T. (2011) On (1,2)*-semi-generalized-star Homeomorphisms,International Journal of Computer Science and Emerging Technologies , 2 (2) ,312-318 .

حول الدوال السديدة -*(1,2) في الفضاءات التبولوجية الثنائية

صبيحة إبراهيم محمود

قسم الرياضيات / كلية العلوم / الجامعة المستنصرية

الخلاصة

في هذا البحث قدمنا نوعا جديدا من الدوال في الفضاءات التبولوجية الثنائية أسميناها بالدوال السديدة -*(1,2 proper functions)) . كذلك درسنا الخواص الأساسية والمكافئات للدوال السديدة -*(1,2) . احد أهم لتعارف المكافئة لهذه الدوال أعطى باستخدام النقاط العنقودية-*(1,2) للمرشحات (cluster points of). filters فضلا عن ذلك عرفنا و درسنا الدوال التامة-*(1,2) (perfect functions-*(1,2)) و الدوال المتراصة-*(1.2) compact functions)-*((1,2)) في الفضاءات التبولوجية الثنائية. كذلك در سنا العلاقة بين الدوال السديدة-*(1,2) وكل من الدوال المغلقة-*(1,2) (closed functions-*(1,2)) والدوال التامة-*(1,2) والدوال المتراصة-*(1,2) على التوالي مع أعطاء مثال للاتجاه غير الصحيح.

الكلمات المفتاحية: الدوال السديدة -*(1,2)، الدوال التامة-*(1,2)، الدوال المتر اصة-*(1,2)، النقاط العنقودية-*(1,2) ، فضاءات- T2 - * (1,2) ، المجموعات المغلقة رصا- * (1,2) ، فضاءات - K - (1,2) .