Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(7)

Adil M. Ahmad Aamal SH. Al-Mukhtar Mahmood S. Faiyadh

Dept. of Mathematics/College of Education for Pure Science (Ibn AL-Haitham) University of Baghdad

Received in : 27 May 2001 , Accepted in : 11 July 2001

Abstract

The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)-arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs.

All of these arcs are incomplete.

The number of distinct (12,3)-arcs are six, two of them are complete.

There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete.

There exists one complete (15,3)-arc.

Key words : Arcs, Projective plane, Galois field

المجلد 26 (العدد 1) عام 2013

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Introduction

A projective plane PG(2,P) over GF(P), P is a prime number consists of $1 + P + P^2$ points and $1 + P + P^2$ lines, 1 + P points on every line and 1 + P lines through every point. Any point of the plane has the form of a triple (x₀,x₁,x₂), where x₀,x₁,x₂ are elements in GF(P) with the exception of a triple consisting of three zero elements. Two triples (x₀,x₁,x₂), (y₀,y₁,y₂) represent the same point if there exists λ in GF(P) \ {0} such that (y₀,y₁,y₂) = λ (x₀,x₁,x₂).

Similarly, any line of the plane has the form of a triple $[x_0,x_1,x_2]$, where x_0,x_1,x_2 are in GF(P) with the exception of a triple consisting three zero elemens. Two triples $[x_0,x_1,x_2]$, $[y_0,y_1,y_2]$ represent the same line if there exists λ in GF(P) \ {0} such that $[y_0,y_1,y_2] = \lambda$ $[x_0,x_1,x_2]$.

A point $P(x_0,x_1,x_2)$ is incident with the line $[y_0,y_1,y_2]$ iff:

$$x_0 y_0 + x_1 y_1 + x_2 y_2 = 0$$

Definition 1: [1,2]

A (k,3)-arc in PG(2,P) is a set of k points no four of them are collinear.

Definition 2: [1,2]

A (k,3)-arc is complete if it is not contained in a (k + 1,3)-arc.

Definition 3: [3]

The i-secant of a (k,3)-arc is a line intersects the arc in exactly i points, for a (k,3)-arc, each line of PG(2,P) is a 3-secant, 2-secant, 1-secant, or 0-secant.

A 3-secant is called a trisecant.

A (k,3)-arc is complete if every point of PG(2,P) lies on some trisecant of the arc.

Let r_i be the number of the i-secants of a (k,3)-arc in the plane which are r_3 , r_2 , r_1 , r_0 .

Definition 4: [1,2]:

A point N not on a (k,3)-arc has index i, denoted by N_i , if there are exactly i-trisecants of the arc through N.

Let $C_i = |N_i|$ be the number of the points N_i .

Thus, a (k,3)-arc is complete iff $C_0 = 0$.

Lemma 1: [4]

Let r_i be the total number of the i-secants of a (k,n)-arc in PG(2,P), then the following equations are hold:

$$\sum_{i=0}^{n} r_i = q^2 + q + 1$$
$$\sum_{i=1}^{n} ir_i = k(q+1)$$
$$\sum_{i=2}^{n} i(i-1)r_i = k(k-1)$$

Definition 5: [4]

Let r_i be the total number of i-secants of a (k,n)-arc in PG(2,P), then the type of a (k,n)-arc w.r.t. its lines is denoted by (r_n,r_{n-1},\ldots,r_0) .

Lemma 2: [4]

Let (k_1,n) -arc be of type $(r_n,r_{n-1},...,r_0)$ and a (k_2,n) -arc be of type $(t_n,t_{n-1},...,t_0)$, then (k_1,n) and (k_2,n) have the same type iff $r_i = t_i$ for all i.

Definition 6: [2]

Two arcs are projectively equivalent under type of lines iff they have the same type. **Definition 7: [5]**

المجلد 26 (العدد 1) عام 2013

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Vol. 26 (1) 2013

Let Q_1 , Q_2 be two points in PG(2,P) which are not on a (k,n)-arc and let $K_1 = K \cup \{Q_1\}$, $K_2 = K \cup \{Q_2\}$, then Q_1, Q_2 are in the same set iff (k_1, n) and (k_2, n) are projectively equivalent under type of lines.

Lemma 3: [5]

Let Q_1, Q_2 be two points in PG(2,P) which are not on a (k,n)-arc, then

(i) Q_1, Q_2 are in the same set if they have the same type.

(ii) Q_1, Q_2 are in the different sets if they have the different types.'

Let P_i and ℓ_i , i = 1, 2, ..., 57 be the points and lines of PG(2,7), respectively. Let i stands for the points P_i , all the points and the lines of PG(2,7) are given in the table.

Definition 8: [2]

A projectively of (k,3)-arc is a non-singular (3×3) matrix which keeps the k-points of the arc point wise or globally invariant.

The Construction of the Projectively Distinct (5,3)-arcs in PG(2,7):

Let A = $\{1,2,9,17\}$ be a set of reference points in PG(2,7) no three of them are collinear. The distinct (5,3)-arcs can be constructed by adding to A in each time a point from the remaining 53 points of the plane. By definition 6, there are only two projectively distinct (5,3)-arcs, which are:

 $B_1 = \{1, 2, 9, 17, 3\}$ and $B_2 = \{1, 2, 9, 17, 4\}$.

The set of projectivities fixing a (k,3)-arc B forms the group G(B).

The group $G(B_1)$ has eight projectivities:

	1	0	0		6	0	0		0	1	0		0	6	0		0	0	6	
$T_1 =$	0	1	0	, T ₂ =	0	6	0	, T ₃ =	1	0	0	, T ₄ =	6	0	0	, T ₅ =	1	1	1	,
	0	0	1		1	1	1		0	0	1		1	1	1		6	0	0	

		0			1	1	1		1	1	1]	
$T_{6} =$	1	1	1	, T ₇ =	0	0	6	, T ₈ =	0	0	6	
	0	6	0		6	0	0		0	6	0	

So $G(B_1) \cong D_4$, while $G(B_2)$ has four projectivities:

$T_1 = I$, $T_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	6	0	0		6	0	0		1	0	0
$T_1 = I$, $T_2 = 0$	0	6	0	, T ₃ =	2	1	0	, T ₄ =	5	6	0
	1	1	1		0	0	1		1	1	1

 $G(B_2) \cong Z_2 \times Z_2$.

The Classification and Construction of (6,3)-Arcs:

There are 42 points of index zero for B_1 . Then $G(B_1)$ partitions these points into 9 orbits. So, we have nine (6,3)-arc to be constructed by adding one point from each of these nine orbits to B₁.

We have 47 points of index zero for B_2 . $G(B_2)$ partitions these points into 15 orbits. So we have 15 (6,3)-arcs to be constructed by adding one point from each of these orbits to B_2 . By definition 6, we have four (6,3)-arcs which are projectivity distinct :

 $C_1 = \{1, 2, 9, 17, 3, 10\}, C_2 = \{1, 2, 9, 17, 3, 11\}, C_3 = \{1, 2, 9, 17, 3, 26\}, C_4 = \{1, 2, 9, 17, 4, 28\}.$ $G(C_1) \cong S_4$, $G(C_2) \cong Z_3$, $G(C_3) \cong Z_2$, $G(C_4) \cong I$.

261 | Mathematics

The Classification and Construction of (7,3)-Arcs:

The groups $G(C_1)$, $G(C_2)$, $G(C_3)$ and $G(C_4)$ partition the points of index zero for C_1 , C_2 , C_3 and C_4 into 4, 12, 24, 46 orbits, respectively. By definition 6, we have only six (7,3)-arcs which are projectively distinct. These are:

 $D_1 = \{1,2,9,17,3,10,16\}, D_2 = \{1,2,9,17,3,11,16\}, D_3 = \{1,2,9,17,3,11,20\},$

 $D_4 = \{1,2,9,17,3,11,26\}, D_5 = \{1,2,9,17,3,26,32\}, D_6 = \{1,2,9,17,4,28,50\}.$

The groups $G(D_2)$, $G(D_3)$, $G(D_4)$ and $G(D_6)$ are isomorphic to the identity group, $G(D_1) \cong S_4$ and $G(D_5) \cong Z_3$.

We have six distinct (7,3)-arcs, each one of them is incomplete.

The Classification and Construction of (8,3)-Arcs:

The groups $G(D_1)$, $G(D_2)$, ..., $G(D_6)$ partition the points of index zero for D_1 , D_2 , ..., D_6 into 2, 25, 30, 33, 20, 45 orbits, respectively. By definition 6, we have only six (8,3)-arcs which are projectively distinct:

 $E_1 = \{1, 2, 9, 17, 3, 10, 16, 26\}, E_2 = \{1, 2, 9, 17, 3, 10, 16, 27\}, E_3 = \{1, 2, 9, 17, 3, 11, 16, 26\},\$

 $E_4 = \{1, 2, 9, 17, 3, 11, 26, 20\}, E_5 = \{1, 2, 9, 17, 3, 26, 32, 22\}, E_6 = \{1, 2, 9, 17, 4, 28, 50, 31\}.$

The groups G(E₃), G(E₄), G(E₅) and G(E₆) are isomorphic to the identity group, $G(E_1) \cong Z_2$ and $G(E_2) \cong Z_3$, we have six distinct (8,3)-arcs, each one of them is incomplete.

The Classification and Construction of (9,3)-Arcs:

The groups $G(E_1)$, $G(E_2)$, ..., $G(E_6)$ partition the points of index zero for E_1 , E_2 , ..., E_6 into 8, 7, 24, 29, 34, 39 orbits, respectively. By definition 6, we have only seven (9,3)-arcs which are projectively distinct, these are:

 $\begin{array}{l} F_1 = \{1,2,9,17,3,10,16,26,29\}, \ F_2 = \{1,2,9,17,3,10,16,26,27\}, \ F_3 = \{1,2,9,17,3,10,16,27,28\}, \\ F_4 = \{1,2,9,17,3,10,16,27,39\}, \ F_5 = \{1,2,9,17,3,11,26,20,47\}, \ F_6 = \{1,2,9,17,4,28,50,31,12\}, \\ F_7 = \{1,2,9,17,4,28,50,31,42\} \end{array}$

The groups G(F₃), G(F₄), G(F₅), G(F₆) and G(E₇) are isomorphic to the identity group, $G(F_1) \cong Z_3$ and $G(F_2) \cong Z_2$.

The Classification and Construction of (10,3)-Arcs:

The groups $G(F_1)$, $G(F_2)$, ..., $G(F_7)$ partition the points of index zero for F_1 , F_2 , ..., F_7 into 5, 13, 8, 18, 26, 30, 33 orbits, respectively. By definition 6, we have only six (10,3)-arcs which are projectively distinct, these arcs are:

 $H_1 = \{1, 2, 9, 17, 3, 10, 16, 26, 29, 32\}, H_2 = \{1, 2, 9, 17, 3, 10, 16, 26, 27, 32\},$

 $H_3 = \{1, 2, 9, 17, 3, 10, 16, 26, 29, 39\}, H_4 = \{1, 2, 9, 17, 3, 10, 16, 27, 28, 39\},\$

 $H_5 = \{1, 2, 9, 17, 4, 28, 31, 50, 12, 42\}, H_6 = \{1, 2, 9, 17, 4, 28, 31, 50, 12, 42\}.$

The groups $G(H_1)$, $G(H_2)$, $G(H_3)$, $G(H_4)$, $G(H_5)$ and $G(E_6)$ are isomorphic to the identity group. We have only six distinct (10,3)-arcs, each one of them is in complete.

The Classification and Construction of (11,3)-Arcs:

The groups $G(H_1)$, ..., $G(H_6)$ partition the points of index zero for H_1 , ..., H_6 into 5, 8, 11, 14, 20, 22 orbits. By definition 6, we have only six (11,3)-arcs which are projectively distinct, these arcs are:

$$\begin{split} &I_1 = \{1,2,9,17,3,10,16,26,29,32,36\}, \ &I_2 = \{1,2,9,17,3,10,16,26,27,32,36\}, \\ &I_3 = \{1,2,9,17,3,10,16,26,27,32,39\}, \ &I_4 = \{1,2,9,17,3,10,27,28,39,36\}, \\ &I_5 = \{1,2,9,17,3,10,16,27,28,39,54\}, \ &I_6 = \{1,2,9,17,4,28,31,50,12,42,25\}. \end{split}$$

The groups $G(I_i)$, i = 1, 2, ..., 6 are isomorphic to the identity group.

The Classification and Construction of (12,3)-Arcs:

262 | Mathematics

المجلد 26 (العدد 1) عام 2013

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

The groups $G(I_1), \ldots, G(I_6)$ partition the points of index zero for I_1, \ldots, I_6 into 2, 4, 4, 10, 10, 16 orbits, respectively. By definition 6, we have only six (12,3)-arcs which are projectively distinct. These arcs are:

 $L_1 = \{1, 2, 9, 17, 3, 10, 16, 26, 29, 32, 36, 54\}, L_2 = \{1, 2, 9, 17, 3, 10, 16, 26, 29, 32, 36, 46\},$

 $L_3 = \{1,2,9,17,3,10,16,26,27,32,36,46\}, L_4 = \{1,2,9,17,3,10,16,27,28,39,36,43\},$

 $L_5 = \{1,2,9,17,3,10,16,27,28,39,36,46\}, L_6 = \{1,2,9,17,4,28,31,50,12,42,25,55\}.$

The groups $G(L_i)$, i = 1, 2, ..., 6 are isomorphic to the identity group. We have six distinct arcs, two of them are complete and the others are incomplete.

The Classification and Construction of (13,3)-Arcs:

The groups $G(L_1)$, ..., $G(L_6)$ partition the points of index zero for L_1 , ..., L_6 into 1, 4, 5, 4, 5, 15 orbits, respectrively. By definition 6, we have only four (13,3)-arcs which are projectively distinct:

 $M_1 = \{1,2,9,17,3,10,16,26,27,32,36,46,43\}, M_2 = \{1,2,9,17,3,10,16,27,28,39,36,43,34\}, M_3 = \{1,2,9,17,3,10,16,27,28,39,36,46,43\}, M_4 = \{1,2,9,17,4,28,31,50,12,42,25,55,18\}.$

The groups $G(M_1)$, $G(M_2)$ and $G(M_4)$ are isomorphic to the identity group, $G(M_3) \cong Z_2$. M_1 and M_2 are complete arcs, while M_3 and M_4 are incomplete arcs.

The Classification and Construction of (14,3)-Arcs:

The groups $G(M_3)$ and $G(M_4)$ partition the points of index zero for M_3 and M_4 into 1 and 2 orbits, respectively. So there exist three (14,3)-arcs to be constructed. By definition 6, we have only one (14,3)-arcs which is incomplete:

 $N = \{1, 2, 9, 17, 3, 10, 16, 27, 28, 39, 36, 46, 43, 54\}.$

G(N) is isomprphic to the identity group.

The Classification and Construction of (15,3)-Arcs:

The point 55 is the only point of index zero for N.

We construct (15,3)-arc by adding the point 55 to N, then:

Q = {1,2,9,17,3,10,16,27,28,39,36,46,43,54,55}

is a complete (15,3)-arc. G(Q) is isomorphic to the identity group.

References

1. Faiyad, M.S. (2000) Classification and construction of (k,3)Arcs on Projective Plane Over Galois Field GF(7), M.Sc. Thesis, University of Baghdad, Iraq.

2. Kareem, F.F. (2000) Classification and Construction of (k,3)-arcs in PG(2,9), M.Sc. Thesis, University of Baghdad, Iraq.

3. Kwaam, A.A. (1999) Classification and Construction of (k,3)-arcs in PG(2,11), M.Sc. Thesis, University of Baghdad, Iraq.

4. Hirschfeld, J. W. P. (1979) Projective Geometries Over Finite Fields, Second Edition, Oxford University Press.

5. Abood, H.M. (1997) Classification of (k,4)-Arc in PG(2,3), for $k \ge 4$, J.Basrah Research, Vol.13, Part 1.

مجلةإبن|هيثم للعلوم الصرفةو التطبيقية

Vol. 26 (1) 2013

	-		I al	ole 1 :	Point	s and l			(2, 7)		
i		P_i					ℓ_i				
1	1	0	0	2	9	16	23	30	37	44	51
2	0	1	0	1	9	10	11	12	13	14	15
3	1	1	0	8	9	22	28	34	40	46	52
4	2	1	0	5	9	19	29	32	42	45	55
5	3	1	Õ	4	9	18	27	36	38	47	56
6	4	1	0	7	9	21	26	31	43	48	53
7	5	1	0	6	9	20	24	35	39	50	54
8	6	1	0	3	9	17	25	33	41	49	57
9	0	0	1	1	2	3	4	5	6	49 7	8
10	1	0	1	2	15	22	29	36	43	50	57
11	2	0	1	2	12	19	26	33	40	47	54
12	3	0	1	2	11	18	25	32	39	46	53
13	4	0	1	2	14	21	28	35	42	49	56
14	5	0	1	2	13	20	27	34	41	48	55
15	6	0	1	2	10	17	24	31	38	45	52
16	0	1	1	1	51	52	53	54	55	56	57
17	1	1	1	8	15	21	27	33	39	45	51
18	2	1	1	5	12	22	25	35	38	48	51
19	3	1	1	4	11	20	29	31	40	49	51
20	4	1	1	7	14	19	24	36	41	46	51
21	5	1	1	6	13	17	28	32	43	47	51
22	6	1	1	3	10	18	26	34	42	50	51
23	0	2	1	1	30	31	32	33	34	35	36
24	1	2	1	7	15	20	25	30	42	47	52
25	2	2	1	8	12	18	24	30	43	49	55
26	3	2	1	6	11	22	26	30	41	45	56
20	4	2	1	5	14	17	20	30	40	50	53
28	5	2	1	3	13	21	29	30	38	46	54
20	6	2	1	4	10	19			39		57
							28	30		48	
30	0	3	1	1	23	24	25	26	27	28	29
31	1	3	1	6	15	19	23	34	38	49	53
32	2	3	1	4	12	21	23	32	41	50	52
33	3	3	1	8	11	17	23	36	42	48	54
34	4	3	1	3	14	22	23	31	39	47	55
35	5	3	1	7	13	18	23	35	40	45	57
36	6	3	1	5	10	20	23	33	43	46	56
37	0	4	1	1	44	45	46	47	48	49	50
38	1	4	1	5	15	18	28	31	41	44	54
39	2	4	1	7	12	17	29	34	39	44	56
40	3	4	1	3	11	19	27	35	43	44	52
41	4	4	1	8	14	20	26	32	38	44	57
42	5	4	1	4	13	22	24	33	42	44	52
43	6	4	1	6	10	21	25	36	40	44	55
44	0	5	1	1	37	38	39	40	41	42	43
45	1	5	1	4	15	17	26	35	37	46	55
46	2	5	1	3	12	20	28	36	37	40	53
40	2	5	1	5	11	20	20	30	37	45	55
48	4	5	1	6	14	18	29	33	37	48	52
49	5	5	1	8	13	19	25	31	37	50	56
50	6	5	1	7	10	22	27	32	37	49	54
51	0	6	1	1	16	17	18	19	20	21	22
52	1	6	1	3	15	16	24	32	40	48	56
53	2	6	1	6	12	16	27	31	42	46	57
54	3	6	1	7	11	16	28	33	38	50	55
55	4	6	1	4	14	16	25	34	43	45	54
56	5	6	1	5	13	16	26	36	39	49	52
57	6	6	1	8	10	16	29	35	41	47	53
L					•	•	•		•	•	•

Table 1 : Points and Lines of PG(2,7)

تصنيف وبناء الاقواس (k,3) في مستوي إسقاطي حول حقل كالوا (GF(7

THIPAS

عادل محمود أحمد آمال شهاب المختار محمود سالم فياض قسم علوم الرياضيات / كلية التربية للعلوم الصرفة (إبن الهيثم) / جامعة بغداد

استلم البحث في :27 أيار 2001 ، قبل البحث في: 11 تموز 2001

الخلاصة

الغرض من هذا البحث هو لدراسة تصنيف وبناء الاقواس (k,3) في المستوي الاسقاطي (G(2,7) . لقد وجدنا قوسين - (5,3)، اربعة اقواس – (6,3)، ستة أقواس – (7,3)، ستة أقواس – (8,3) سبعة أقواس – (9,3)، ستة أقواس – (10,3)، وستة أقواس – (11,3)، كل هذه الاقواس تكون غير كاملة. عدد الاقواس المختلفة – (12,3) تكون ستة، اثنان منها تكون كاملة. توجد أربعة أقواس – (13,3) اثنان منها كاملة وقوس واحد – (14,3) غير كامل. يوجد قوس واحد – (15,3) يكون كاملاً.

الكلمات المفتاحية : أقواس ، مستوي اسقاطي ، حقل كالوا

