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Abstract

The aim of this paper is to present a method for solving high order ordinary differential
equations with two point's boundary condition, we propose semi-analytic technique using
two-point oscillatory interpolation to construct polynomial solution. The original problem is
concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives
at the end points of an interval [0, 1] .

Also, many examples are presented to demonstrate the applicability, accuracy and efficiency
of the method by comparing with conventional methods.
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Introduction

In the study of nonlinear phenomena in physics, engineering and other sciences, many
mathematical models lead to two-point BVP's associated with non-linear high order ordinary
differential equations . In recent decades, many works have been devoted to the analysis of
these problems and many different techniques have been used or developed in order to deal
with two main questions: existence and uniqueness of solutions [1],[2] and computation of
solutions.

In this paper, we use two-point oscillatory interpolation, essentially this is a generalization of
interpolation using Taylor polynomials. The idea is to approximate a function y by a
polynomial P in which values of y and any number of its derivatives at given points are fitted
by the corresponding function values and derivatives of P .

We are particularly concerned with fitting function values and derivatives at the two
end points of a finite interval, say [0,1] where a useful and succinct way of writing oscillatory
interplant P2n+1 of degree 2n + 1 was given for example by Phillips [3] as :

Pnri®=> (y'Oq @+ y Mg/ ax} L 1)

Jj=0

()

n+l

nJ (n + S]
g’ () =(x"/jHa-x" =\ xs =Qi(x) /]! » (2)
so that (1) with (2) satisfies :
() @)
y @=L @, vy =", j=0,1,200m.
implying that P2n+1 agrees with the appropriately truncated Taylor series for y about x =0

and x = 1. We observe that (1) can be written directly in terms of the Taylor coefficients &

and D about x =0 and x = 1 respectively, as :

n

2

P+ =7 {5 Qi +D' D Qiax} > )

Suggested Solution of Two-Point High Order BVP's for ODE
A general form of nth - order ordinary BVP's is :-

y®) = (%, ¥, y(1), y2), y3), @), ... ,y@-1)) , 0<x<1  , (4)

subject to the boundary conditions :
y(i)(0)=Ai, y(j)1)=Bj ,i=0,1,...,k-1,j=0,1,...,n-k-1, (53)

Or

y(2i )(0)=Ai , y(2i)(1)=Bi ,i=0,1,...,(n-2)/2,if nis even , (5b)
The simple idea of semi - analytic method is using a two - point polynomial interpolation to
replace y in problems (4)and (5) by a P2n+1 which enables any unknown derivatives of y to
be computed, the first step therefore is to construct the P2n+1,to do this we need evaluate
Taylor coefficients of y aboutx =0:

()
. . j)
y(/)(O) =P2n+1 o , y(J)(l) =P2jn+l a, _] =0,1,2,...,n.
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Implying that P2n+1 agrees with the appropriately truncated Taylor series for y about x =0
and x = 1. We observe that (1) can be written directly in terms of the Taylor coefficients &i

and D about x =0 and x = 1 respectively, as :

n

P+ = 7 (G Q@+ D' % Q ax) , 3

Suggested Solution of Two-Point High OrderBVP's for ODE
A general form of nth - order ordinary BVP's is :-

ym(x) =£(x,y, y1), y(2), y(3), y4), ... ,ym-1)) , 0=x=1 , (4
subject to the boundary conditions :

y(i)(0)=Ai, y(j)1)=Bj ,i=0,1,...,k-1,j=0,1,...,n-k-1, (52)

Or

y(2i )(0)=Ai , y(2i)(1)=Bi ,i=0,1,...,(n-2)/2,if nis even , (5b)
The simple idea of semi - analytic method is using a two - point polynomial interpolation to
replace y in problems (4)and (5) by a P2n+1 which enables any unknown derivatives of y to
be computed, the first step therefore is to construct the P2n+1,to do this we need evaluate
Taylor coefficients of y aboutx =0 :

y_ =0 Gixi > STy /i . (62)
Then insert the series form (6a) into (4) and equate the coefficients of powers of x to
obtain &n . Also, evaluate Taylor coefficients of y about x =1: y = :::0 b;(x— )i
2 b=y it , (6b)

Then insert the series form (6b) into (4) and equate coefficients of powers of ( x-1) , to obtain
by, ,then derive equation (4) with respect to x and iterate the above process to obtain &n+1
and Pn+1 ,now iterate the above process many times to obtain@n+2, bpsa then @n+3, bpsa
and so on, that is ,we can get &i and b; ,foralli>n.

Now, to evaluate@i bi, for i <n, we get half number of these unknown coefficients from
given boundary condition ,then use all these s and § to construct P2n+1 of the form :

P2n+1 (x) Za‘:u {a: Q0+ (1) , (7a)

Where

nJ [n+sj
Q/(x) /i =(x"/in(1x"" 5=\ Jxs , (7b)
we see that (7a) have n unknown coefficients .
Now, to evaluate the remainder coefficients integrate equation (4) on [0 , X] n - times to
obtain :

y(n-1)(x)~(n-1) ‘%n- 1=f 0 f(s,y,y',y"s..y(n-1) ) ds ,(81)
yn-2)x)- M =2 a,_; — (n—1)! an—1x=j0 (1-5)f(s,y,y",y",...,y(n-1))ds , (82)

y(%)- o 8X | (n-2) 1¥n-2%5.0/(n-2) (n-1) ! Fr1*n-1/(n-1) o f(s,y,y.¥",....y(n-1)ds,(8n)
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wheres defined in (6a).

useP2n+1as a replacement of y,y',y",...,y(n-1) in (8) and putting x=1 in all above
integration,then wehave system of n equations with n unknown coefficients which can be
solved using the MATLABpackage, version 7.9, to get the unknown coefficients, thus insert it
into(7),thus (7) represent the solution of (4) .

Now, we introducemanyexamples of higher order TPBVP's for ODE to illustrate
suggested method , a semi - analytic method will be tested by discussing three non - linear
BVP's of 9th—order, 10th — order, and 12th—order respectively. Accuracy and efficiency of the
suggested method is established through comparison with homotopy perturbation method
(HPM)[4] .

Example 1
Consider the following linear ninth-order BVP's :
yO) =-9ex +y(x) , 0<x<1,
subject to the BC :
y@i(©0)=1-1),i=0,1,...,4,
yi)(1)=-ie , i=0,1,2,3.
The exact solution for this problem is:y(x) = (1— x)ex.
Now, we solve this equation using semi-analytic method from equations (2) and (3) we
have :
P27 =0.002485613x27 — 0.033505860x26 + 0.208738965x25 — 0.795864547x24 +
2.072175246x23 —3.89122197x22 + 5.422696100x21 — 5.679126548x20 + 4.470612805x19
—2.613188832x18 + 1.102724758x17 — 0.318212417x16+0.056301206x15 —

0.004614519x14 —0.000000002x13 —0.000000023x12 — 0.000000251x11 — 0.00000248x10 —

0.000022046x9 — 0.000173611x8 —0.001190476x7 — 0.006944444x6 — 0.033333333x5 —

0.125x4 — 0.333333333x3 — 0.5x2 + 1.

For more details ,table (1) gives the results for different nodes in the domain, for n = 13, i.e.
P27 anderrors obtained by comparing it with the exact solution. Higher accuracy can be
obtained by evaluating higher n. Table (2) gives a comparison between the P27 and
Homotopy perturbation method (HPM) given in[4] to illustrate the accuracy of suggested
method. Also, figure (1) gives the accuracy of the suggested method .
We close our analysis by discussing a 12th-order BVP's.

Example 2
Consider the following nonlinear tenth-order BVP's :
y(A0)(x) =e-x y2(x) , 0 <x <1,
subject to the BC: y(2i) (0) =1,i=0,1,2,3,4 and y(2i) (1) =e, =0, 1,2,3,4
The exact solution for this problem is y(x) =ex .

Now, we solve this equation using semi-analytic method from equations (2) and (3) we have :
P29 =-0.011117887x29+ 0.161312269x28 —1.088112264x27+ 4.523212156x26 —
12.946818468x25 + 26.996204463x24 — 42.295420191x23 + 50.587892556x22 —
46.425913997x21 + 32.539784329x20 —-17.150630564x19+6.593586235x18 —
1.748504966x17+0.286398369x16 — 0.021872038x15 + 1x10-11 x14 + 2x10-11 x13 + 2x10-
10 x12 + 0.000000025x11+ 0.000000276x10 + 0.000002756x9+ 0.000024802 x8 +
0.000198413x7 + 0.001388889x6 + 0.008333333x5 +0.041666667x4+ 0.166666667x3
+0.5x2 +x +1
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For more details ,table(3) gives the results for different nodes in the domain, for n = 14,
1.e. P29 anderrors obtained by comparing it with the exact solution. Higher accuracy can be
obtained by evaluating higher n. Table (4) give a comparison between the P29 and Homotopy
perturbation method (HPM) given in[4] to illustrate the accuracy of suggested method. Also,
figure (2) gives the accuracy of the suggested method .

We close our analysis by discussing a 12th-order BVP's.

Example 3
Consider the nonlinear 12th-order nonlinear BVP's.
yI2)(X) =2 ex y2(x) +y3(0) , 0<x<1,
subject to the BC: y(2i)(0) =1, y(2i)(1) = e-1, 1= 0,1,2,3,4,5,
with exact solution is : y = e-x.

Now, we solve this equation using semi-analytic method from equations (2) and (3) we have :
P29 = - 0.077122663x29 + 1.117564781x28 — 7.528039942x27 + 31.247141987x26 -
89.295134116x25 + 185.869480290x24 — 290.649995930x23 + 346.909553666x22 —
317.637729257x21 + 222.066553374x20 — 116.713964807x19 + 44.7295364639x18 —
11.81947533530183x17 + 1.928212142x16 — 0.146580649x15 + 0.000000000012x14 —
0.0000000002x13 + 0.000000002x12 — 0.000000025x11 + 0.000000276x10 —
0.000002756x9 + 0.000024802x8-0.000198413x7+0.001388889x6—
0.008333333x5+0.041666667x4—0.166666667x3+0.5x2—1.0x+ 1.0

For more details ,table(5) gives the results for different nodes in the domain, for n = 14,
i.e. P29 anderrors obtained by comparing it with the exact solution. Higher accuracy can be
obtained by evaluating higher n. Table (6) gives a comparison between the P29 and homotopy
perturbation method (HPM) given in[4] to illustrate the accuracy of suggested method. Also,
fig (3) gives the accuracy of the suggested method .
Conditioning of BVP's

In particular ,BVP's for which a small change to the ODE or boundary conditions
results in a small change to the solution must be considered, a BVP's that has this property is
said to be well-conditioned.[5] Otherwise, the BVP's is said to be ill-conditioned. To be
useful in applications, a BVP's should be well posed. This means that given the input to the
problem there exists a unique solution, which depends continuously on the input. Consider the
following nth-order BVP's
Y = (X, (), ¥' (), ..., yO-DE) ) L x€[0,1] (9a)
With
BC: y(i)(0) = Ai, y(j)(1) =Bj, i=0,1,....k-1, j=0,1...., n-k-1, 9b)
For a well-posed problem we now make the following assumptions:
1. Equation (9) has an approximate solution P eCn[0, 1], with this solution and p >0, we
associate the spheres :
Sp(P(x)) := {y €lRn: [ P(x) —y(x) [<p }

2. ( x, P(x), P'(x), ..., P(n-1)(x) ) is continuously differentiable with respect to P, and of /
OPis continuous .

This property is important due to the error associated with approximate solutions to
BVP's, depending on the semi-analytic technique, approximate solution ¥ to the linear nth-
order BVP's (9) may exactly satisfy the perturbed ODE :

Y(m) = u(x) §(0-1) +...+ d@F+ qe) ¥ +1(x) ; 0<x<1 ;  (10a)
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where r : R — Rm , and the linear BC :

BOy(0) + B1 y(1)=p + ; (10b)
where B+ =6 ,06 eRm and {,B, 6} are constants. If ¥ is a reasonably good approximate
solution to (9), then || 1(x) || and || c || are small. However, this may not imply that ¥ is close
to the exact solution y. A measure of conditioning for linear BVP's that relates both || 1(x) ||
and || c || to the error in the approximate solution can be determined. The following discussion
can be extended to nonlinear BVP's by considering the variational problem on small sub
domains of the nonlinear BVP's [6].
Letting : e(x) =¥ (x) - y(x)| ;then subtracting the original BVP's (9) from the perturbed
BVP's (10) results in :

e(n)(x) = y(m)(x)-0 y(m)(x) (11a)
e(n)(x)= u(x) e(n-1)(x) +...+d(x) e'(x)+ (x) ex) +r(x); 0<x<1; (11b)
with BC: BOe(0)+Ble(l)=0 ;0 (11¢) However, the form of
the solution can be further simplified by letting : 0x)=Y(x) Q-1 ; where Y is the

fundamental solution and Q is defined in (7b) . Then the general solution can be written as :
1

e(x)=0(x)c+ 0 G(x, t) r(t) dt . 12)
where G(x, t) is Green's function [7], taking norms of both sides of (12) and using the Cauchy
- Schwartz inequality [7] results in :

|e@||o<kl| o |o+K2[|rx) | . (13)

1

sup
where k1=|YX)Q-1]jo ; and k2 =o=x=1° |G(x,¢t) |codt,
In (13), the Loo norm, sometimes called a maximum norm, is used due to the common use of
this norm in numerical BVP's software. For any vector v € RN, the Lo norm is defined as :

|| \% || 00 = 1121% | vi |:The measure of conditioning is called the conditioning constant k, and
it is given by
k = max(kl, k2); (14)
When the conditioning constant is of moderate size,then the BVP's is said to be well-
conditioned.
Referring again to (13), the constant k thus provides an upper bound for the norm of
the error associated with the perturbed solution,
|| e(x) ||oo <k ["G ||oo + || r(x) ||oo] . a5)

It is important to note that the conditioning constant only depends on the original BVP's and
not the perturbed BVP's. As a result, the conditioning constant provides a good measure of
conditioning that is independent of any numerical technique that may cause such
perturbations. The well-conditioned nature of a BVP's and the local uniqueness of its desired
solution are assumed in order to solve numerically the problem .
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Table(1): The result of the method for P27 of example 1

X Exact Solution Osculatory Errors
y(x) Interpolation P27 ly(x) - P27|

0 | 1.000000000000000 1.000000000000000 0.000000000000000
0.1 | 0.994653826268083 0.994653826268080 2.55351E-15
0.2 | 0.977122206528136 0.977122206528065 7.10543E-14
0.3 | 0.944901165303202 0.944901165299981 3.22098E-12
0.4 | 0.895094818584762 0.895094818553623 3.11386E-11
0.5 | 0.824360635350064 0.824360635249051 1.01013E-10
0.6 | 0.728847520156204 0.728847520003405 1.52799E-10
0.7 | 0.604125812241143 0.604125812102035 1.39108E-10
0.8 | 0.445108185698494 0.445108185603449 9.50442E-11
0.9 | 0.245960311115695 0.245960311068211 4.74832E-11

1 10.000000000000000 0.000000000000000 0.000000000000000

S.S.E =6.533167667712323E-020

Table(2 ):a comparison between P27 and HPM method for Example 1.

X Exact Solution HPM Errors Errors
y(x) y1(x) ly(x) -y1(x)| ly(x) - P27

0 1.000000000000000 1.0000000000 0.000000 0.000000000000000
0.1 | 0.994653826268083 0.9946538264 3.6E-9 2.55351E-15
0.2 | 0.977122206528136 0.9771222066 3.4E-9 7.10543E-14
0.3 ] 0.944901165303202 0.9449011654 4.6E-9 3.22098E-12
0.4 | 0.895094818584762 0.8950948186 1.4E-9 3.11386E-11
0.5 ] 0.824360635350064 0.8243606355 4.5E-9 1.01013E-10
0.6 | 0.728847520156204 0.7288475206 -6.E-6 1.52799E-10
0.7 ] 0.604125812241143 0.6041258131 -3.1E-9 1.39108E-10
0.8 | 0.445108185698494 0.4451081876 -2.4E-9 9.50442E-11
0.9 | 0.245960311115695 0.2459603145 -4.5E-9 4.74832E-11

1 0.000000000000000 0.0000000000 0.000000 0.000000000000000
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Table (3): The result of the method for P29 of example 2

Exact solution Osculatory Errors

¥ y(x) interpolation P29 ly(x) —P29)|

0 1.000000000000000 1.000000000000000 0.000000000000000
0.1 | 1.105170918075648 1.105170918075648 0.000000000000000
0.2 | 1.221402758160170 1.221402758160129 4.04121E-14
0.3 | 1.349858807576003 1.349858807572658 3.34510E-12
0.4 | 1.491824697641270 1.491824697601597 3.96738E-11
0.5 | 1.648721270700128 1.648721270550529 1.49599E-10
0.6 | 1.822118800390509 1.822118800118783 2.71776E-10
0.7 | 2.013752707470477 2.013752707133349 3.37128E-10
0.8 | 2.225540928492468 2.225540928114606 3.77862E-10
0.9 | 2.459603111156950 2.459603110725136 4.31814E-10

1 2.718281828459046 2.718281828459046 0.000000000000000

S.S.E = 8.396449182677434E-019

Table (4):a comparison between P29 and HPM method for Example 2

Exact solution HPM Errors Errors

) y(%) viw | y@-y1el | Iy -P29)

0 |1.000000000000000 | 1.000000000 | 0.000000000 | 0.000000000000000
0.1 ] 1.105170918075648 | 1.10517233 -1.41E-6__ 1 0.000000000000000
0.2 | 1.221402758160170 | 1.221405446 | -2.69E-6 4.04121E-14
0.3 | 1.349858807576003 | 1.349862509 | -3.70E-6 3.34510E-12
0.4 | 1.491824697641270 | 1.49182905 -4.35E-6 3.96738E-11
0.5 ] 1.648721270700128 | 1.648725849 | -4.58E-6 1.49599E-10
0.6 | 1.822118800390509 | 1.822123158 | -4.36E-6 2.71776E-10
0.7 | 2.013752707470477 | 2.013756415 | -3.71E-6 3.37128E-10
0.8 | 2.225540928492468 | 2.225543623 | -2.69E-6 3.77862E-10
0.9 | 2.459603111156950 | 2.459604528 | -1.42E-6 4.31814E-10

1 ]2.718281828459046 | 2.7182830 2.00E-9 0.000000000000000

Table (5): The result of the method for P29 of example 3
X Exact solution Oscillatory Errors
y(x) interpolationP29 ly(x) —P29 |

0 | 1.000000000000000 1.000000000000000 0.000000000000000
0.1 | 0.904837418035960 0.904837418035958 1.22125E-15
0.2 | 0.818730753077982 0.818730753077706 2.75446E-13
0.3 | 0.740818220681718 0.740818220660028 2.16899E-11
0.4 | 0.670320046035639 0.670320045785891 2.49749E-10
0.5 | 0.606530659712633 0.606530658818836 8.93798E-10
0.6 | 0.548811636094027 0.548811634621416 1.47261E-9
0.7 | 0.496585303791409 0.496585302234367 1.55704E-9
0.8 | 0.449328964117222 0.449328962716291 1.40093E-9
0.9 | 0.406569659740599 0.406569658858897 8.81702E-10

1 | 0.367879441171442 0.367879441171442 0.000000000000000

S.S.E =1.738398767933298E-017
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Table (6):A comparison between P29 and HPM method for Example3

X Exact solution HPM Errors Errors
y(x) yl(x) ly(x) - y1(x)| ly(x) —P29 |

0 1.000000000000000 1.000000000 0.00000 0.000000000000000
0.1 0.904837418035960 0.904837579 -1.61E-7 1.22125E-15
0.2 0.818730753077982 0.818731060 -3.07E-7 2.75446E-13
0.3 0.740818220681718 0.740818643 -4.22E-7 2.16899E-11
0.4 0.670320046035639 0.670320543 -4.97E-7 2.49749E-10
0.5 0.606530659712633 0.606531182 -5.22E-7 8.93798E-10
0.6 0.548811636094027 0.548812133 -4.97E-7 1.47261E-9
0.7 0.496585303791409 0.496585726 -4.22E-7 1.55704E-9
0.8 0.449328964117222 0.44932971 -3.07E-7 1.40093E-9
0.9 0.406569659740599 0.406569821 -1.61E-7 8.81702E-10

1 0.367879441171442 0.367879441 2.00E-10 0.000000000000000

y-axis

The solution at n=13

L L L
0.3 0.4 0.5
x-axis

Fig.(1): Comparison between the exact and semi-analytic solution P27 of examplel
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Fig.( 2): Comparison between the exact and semi-analytic solution P29 of example 2
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The solution at n=14
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Fig.( 3):Comparison between the exact and semi-analytic solution P29 of example3
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