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Abstract

Let M be an R-module, where R is commutative ring with unity. In this paper we study
the behavior of strongly hollow and quasi hollow submodule in the class of strongly
comultiplication modules. Beside this we give the relationships between strongly hollow and
quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
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Introduction

Throughout this paper, all rings are commutative rings with identity and all modules are
unital module. In this research we investigate some properties of strongly hollow and quasi
hollow submodules in the class of strongly comultiplication modules, see proposition 2.7,
proposition 2.8.
Next, we introduce the relationships between strongly hollow and quasi hollow modules with
coprime modules, V-coprime modules and bi-hollow modules.
Also, we study the relationships between strongly hollow and quasi hollow submodule with
V-coprime (bi-hollow)-submodules.

1- Some Basic Definitions
1.1 Definition: [1,4.2]

Let 0 # L <M, then L is called a strongly-hollow submodule (briefly, SH-submodule) if
forevery L, L, <M with L<L; + L, implies L<L; or L <L,, we say that an R-module M
is a strongly-hollow module if M is a strongly hollow submodule of itself.

1.2 Remark:
Let0#L <M, Lis a SH-submodule if foreach L;, ..., L,<Mwith L<L;+L,+... +
Ly, implies L<L; or L<L; or ... or LLL,.

1.3 Definition: [1, 4.2]
Let 0 # L <M, then L is called a completely hollow submodule (briefly, CH-submodule)

if for any collection {L;},ca of R-submodules of M with L=} L, , implies L = L;
AeA

for some A€A.
We say that an R-module M is completely hollow (briefly, CH-module) if M is
completely hollow submodule of itself.

1.4 Definition: [2, Definition 1.13]

Let 0 # L <M, then L is called a quasi-hollow submodule (briefly, qH-submodule) if for
eachL;, [, <MwithL<L;+L,, theneither L=L; or L=1L,.
An R-module M is called a quasi-hollow module if M is a quasi-hollow submodule of itself.

1.5 Remark: [2, Remark 1.14]
Let 0 # L <M, L is a quasi-hollow submodule if for each L, ..., L, <M with
L<L;+L,+...+L, theneitherL=L; or L=L, or ...or L=L,.

1.6 Definition: [3]
Let M be an R-module M is called distributive if for each N, K, L <M,
NN(K+L)=(NNnK)+(NnL).

1.7 Definition: [4]
Let M be an R-module and let N < M. N is called a strongly irreducible submodule
(briefly, SI-submodule) if for each K, L <M, N 2 K n L implies either N > K or N o L.

1.8 Definition: [5]
Let M be an R-module and let N < M. N is called an irreducible submodule if for each
K, L <M, N=K n L implies either N=K or N=L.
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2- SH (qH,CH) Submodules and Strongly Comultiplication Modules
We start this section by the following definition.

2.1 Definition: [6, Definition 2.1]

An R-module M is called strongly comultiplication if [ = ann ann [ for every ideal I of R,
R M

and M is comultiplication, where M is comultiplication if for any L < M, there exists an ideal

I<Rsuchthat L= annannL.
M R

Equivalently, M is strongly comultiplication if for every L < M and for every ideal [ <R,

I=annannl and L = annannL.
R M M R

It is clear that every strongly comultiplication is comultiplication, but the converse is not
true as the following examples show:
1. Z4as Z-module is comultiplication, see [2, Example 1.5(3)]. But it is not strongly

comultiplication, since for the ideal I = <6>, I # annann < 6 >, because ann < 6 >=< 2> and
z Z,

ann<2>=<2>=#1I.
z

2. Consider Z-module Z. is comultiplication, see [2, Example 1.5(1)]. But it is not strongly

comultiplication, since if we take I = <2>, then ann<2>=0, and ann0, =Z.So
V4 3% Z 3%
3CD
I[# annannl.
z 7,
3. Z,as Zs-module.
Z,4 is comultiplication ring, but Z; is not strongly comultiplication. Since

<0>#annann < 0 > because ann<0>=7, and annZ, =<2 >#<0>.
Z, Z, Z, Z,

2.2 Remark:

Let R be a ring. Then R is comultiplication if and only if R is strongly comultiplication.
Proof: It is clear.
Now we can give the following examples:

1. Z, as Z,-module is strongly comultiplication ring (comultiplication).
2. R=7Z,[x,y]/<x’,y*> is strongly comultiplication ring. All ideals of R are

<X>,<Y>,<X,y><Xy>. ann<X>=<X>ann <y >=<y >, ann < X,y >=<X-y > and
R R R

ann <X-y>=<X,y>.
R

Recall that a ring R is QF if R self-injective ring and noetherian. Equivalently, if R is
noertherian and every ideal is an annihilator (I = annannl) [7], hence we have:
R R

2.3 Remark:
Every QF-ring is strongly comultiplication (comultiplication) ring.
The following lemmas are needed in our work.

2.4 Lemma:
Let M be an R-module. Let I, I, <R. Then ann(I; + I) = annl; N ann L.
M M M

Proof: It is clear, so is omotted.
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2.5 Lemma:
Let M be a strongly comultiplication R-module, and let L;, L, < M. Then
ann (L, " L,;)= annL; + ann L,.
R R R

Proof:
Let L;, L, <M. Since M is comultiplication, then L; = annI;, L, = ann I, for some I}, I,
M M

<R, hence ann(L; N L;) = ann(ann (I; + I;)) , bylemma 2.4
R R M

=L +1 , since M is strongly comultiplication
= ann(annl;) + ann(annl,)
R M R M
=annl;+ annl,
R R
2.6 Lemma:
Let M be a strongly comultiplication R-module. Let I;, I < R. Then
ann(I; N I;)= annl; + annl,.
M M M

Proof:
Since M is a stronglycomultiplication, so

I[nb=annann (I; nI;)and [} "I, = ann annI; N ann ann I,
R M R M R M

= ann(annl; + annl,)
R M M

Thus ann ann (I} N I;) = ann(annl; + annly). Hence ann (I; N I;) = annl; + annI,.
R M R M M M M M

2.7 Proposition:
Let M be a strongly comultiplication R-module. Then:
(1) Every non-zero proper ideal of R is SH-ideal if and only if every non-zero proper
submodule of M is SI-submodule.
(2) Every non-zero proper ideal of R is qH-ideal if and only if every non-zero proper
submodule of M is irreducible.
Proof:
()= Let<0>#N =M, N> L; nL, where L;, L, <M. Then

annN < ann(L; N Ly)
R R

=annlL; + annL, ,bylemma 2.5.
R R

But ann N is a non-zero proper ideal. So by hypothesis it is SH. Hence annN < annL; or

R R R
ann N < annl,. Then ann annN > ann ann L; or ann annN D ann ann L,. It follows that
R R M R M R M R M R

N ) L1 or N ) Lz.
& Let<0>#1<R,IcI; +1, where I;, I, <R. Then
annl o ann(I; + L)

M M

=annl; N annl, ,bylemma 2.4.
M M

But annI = (0) and annI = M, so by hypothesis, annI is SI. Thus annI > annl; or
M M M

M M

annl o> annl,. Then ann annlI < ann annl; or ann annl < ann ann,. It follows I cI; or
M M R M R M R M R M

Iglz.

(2) a similar proof of part (1), so is omitted.
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2.8 Proposition:

Let M be a strongly comultiplication R-module and let <0># N = M. Then:
(a) ann N is Sl-ideal if and only if N is SH-submodule.

R

(b) ann N is irreducible if and only if N is qH-submodule.
R

Proof:
(a)= LetNcL;+L,whereL;, L, <M. So

annN D ann (L; + L)
R R

=ammlL; N annL,
R R
Since ann N is SI-ideal, annN > annL; or annN > annL,. Then ann ann N ¢ ann ann L,
R R R R R M R M R

or ann annN < ann annL,. Thus Nc L; or N c L.
M R M R

& LetannNoII D where I], I, <R. So
R
ann ann N < ann (I; N )
M R M
=annl; + annl,
M M

Then N < annl; + annl,. Thus N < annl; or N < annl,, since N is a SH-submodule, so

M M M M
annN D ann annl; or annN > ann annl,. Hence annN o I; or annN o I,. Then ann N is
R R M R R M R R R

SI-ideal.
(b) similar proof of part (a).

Now we have several consequences of the previous proposition.

2.9 Corollary:
Let M be a strongly comultiplication R-module and let <0> # I = R, N < M. Then:
(1) Lis a Sl-ideal if and only if annI is a SH-submodule.
M

(2) lLis an irreducible if and only if ann I is gH-submodule.
M

(3) Every non-zero submodule of M is SH-if and only if every non-zero proper ideal of R is
SL

(4) Every non-zero submodule of M is qH if and only if every non-zero proper ideal of R is
irreducible.

Proof:
(1) Since M is strongly comultiplication, I = ann annI. Hence annI# <0>. Put N = annl, so
R M M M
I = annN. Hence [ = ann N is a Sl-ideal if and only if N = ann N is SH, see Proposition 2.7
R R R
part (a).

(2) It follow by Proposition 2.7 part (b) and a similar proof of part (1).
(3) Let <0>#N = M. Then N = ann annN. Put annN = I, then N = ann1, hence I = annN is
M R R M R

Sl-ideal if and only if annI= N is SH-submodule by part (1). Thus we get the result.
M
(4) It follows similarly from part (2).
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2.10 Corollary:
Let R be a comultiplication ring, <0> # [ <R. Then:
(1) I'is SH-ideal if and only if ann I is SI-ideal.
R

(2) I'is gH-ideal if and only if ann I is irreducible.
R
(3) Iis SlI-ideal if and only if ann I is SH-ideal.
R
Proof: It follows directly from Proposition 2.8 and Corollary 2.9.

2.11 Corollary:
Let M be a strongly comultiplication and distributive R-module, let <0> = N < M. Then
the following statements are equivalent:
(1) N is SH-submodule.
(2) N is gH-submodule.

(3) ann N is irreducible ideal.
R

(4) ann N is Sl-ideal.
R

Proof:
(1) & (2) by [2, Proposition 1.16].
(1) & (3) and (1) < (4) by Proposition 2.8.

2.12 Lemma:

Let M be a strongly comultiplication R-module and R is distributive. Then M is
distributive.
Proof:

Since aﬁn (Iinh) = aﬁn I+ aﬁn I, by Lemma 2.6. So by [8, Lemma 3.16], M is

distributive.

2.13 Corollary:
Let M be a strongly comultiplication over distributive ring R, and let <0># N < M. Then
the following statements are equivalent:
(1) N is SH-submodule.
(2) N is gH-submodule.
A3) agnN is irreducible.

(4) ann N is Sl-ideal.

R
Proof: It follows from Lemma 2.12 and Corollary 2.11.
2.14 Proposition:

Let M be a strongly comultiplication R-module. Then R satisfies dcc(acc) on Sl-ideal if
and only if M satisfies acc(dcc) on SH-submodule.

Proof:
= Let N; < N, < ... be an ascending chain of SH-submodules; N; # <0> for eachi1=1,2,... .
So ann N; is Sl-ideal for each i =1,2,... , see Proposition 2.5 part (a). But annN; D ann N, >
R R R
... . S0 by dcc on Sl-ideal of R, there exists n € Z; such that annN;, = ann N, =... . Then
R R
ann ann N, = ann ann N,y =.... Thus we get N, =N+ 1=....
M R M R

< The proof is similarly.
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By a similar proof R satisfies acc on SI-ideals if and only if M satisfies dcc on SH-
submodules.

3- SH(qH) and V-Coprime (Bihollow) Submodules
Recall that an R-module M is called coprime module if ann M = ann% , for every
R R
proper submodule N of M, see [9].

Equivalently, M is coprime if for every non-zero ideal I of R, either IM = <0> or IM =M,
see [10].

A proper submodule K of M is called coprime submodule in M if M/K is a coprime R-
module, see [1, Proposition 3.10].

3.1 Remark:
The concept of coprime module and SH(qH)-module are independent as the following
examples show:

(1) The Z-module Q is coprime module, since for every r € Z, either rQ = <0> or rQ =Q.
But Q is not SH(not qH), see [2, Remark 1.4(3)].

(2) Z4 as Z-module is SH(qH). But Z4 is not coprime Z-module, since 274 = < 2>%#74and
274# <0 >.

Recall that a proper submodule N of an R-module M is called invariant if for each
f € EndgrM, f(N) < N,see [11]. Invariant submodule is called fully invariant submodule by
some authors such as see [10].

In 2005, [12] define coprime submodules and modules as follows:

3.2 Definition:
Let K <M be a fully invariant submodule, K is called a coprime submodule of M if for
any fully invariant submodules L, L' <M with K < (L : L") implies K< L or K < L' where
M

(L M LY=n{f" "Ly, f € EndrM, f (L) = <0>}. M is called coprime module if M coprime

submodule of itself.

3.3 Lemma:
Let L, L' be fully invariant submodules of an R-module M. Then L + L' < (L : L"), see
M

[12, 4.1(ii)].

3.4 Remark:

The concept of coprime submodules (in the sense of J.Abu.), and (in the sence of J.Rios)
are independent as the following examples show:
(1) Consider the Z-module Z, let N = <3>. N is coprime submodule in Z (in the sense of
J.Abu) since Z/N = Z3 which is a coprime Z-module. But N is not coprime submodule (in the
sense of J.Rios), because N = <3> < <4> + <5> = Z. But by previous lemma <4> + <5> c

(<4> :<5>). SoNc (<4> :<5>)and N € <4> N & <5>.
Z Z
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(2) Consider the Z-module Zg. Let N = < 4 >. N is not coprime submodule (in the sense of
J.Abu.), because Zg/ < 4 > = Z4 which is not coprime Z-module. Now N ¢ <2 >+< 0>, and

bylemma3.3, <2>+<0>c(<2>:<0>),so0Nc (<2>:<0>) andNc <2>.
8 28

Similarly, N c<4>+<0>c(<4> : <0>) and Nc <4 >. Thus, forany L, L' < Zg,
Zg

Nc (L : L"), implies Nc L or Nc L' Then N is coprime submodule (in the sense of J.Rios).
M

3.5 Remark:

The concept of coprime module (in the sense of S.Annin,2002) and (in the sense of
J.Rios, 2005) are independent as the following example shows:
The Z-module Z4 is not coprime module (in the sense of S.Annin), see Remark 3.1(2). But Z4
is coprime Z-moduule (in sense of J.Rios) as follows:
Suppose Z4 < (L z L". Since (L z L") is a submodule of Z4, then (L z L") = Z4. But by simple

4 4 4

calculation, we have:

(<0><0>)=<0>,(<0><2>)=<2>(<0>27,)=2,,(Z, <2>)=2,,
(<§>:<6>) =<2 >.Thus if (L : L') = Z4, then either L =74 or L'=Z4; thatis Z4 is
Z

4
coprime Z-module (in the sense of J.Rios).

3.6 Remark:

The concept of coprime module (in sense of J.Rios) and SH(qH)-module are independent
as follows:
The Z-module Q is coprime (in sense of J.Rios) by [12, Remark 4.7(2)]. But Q is not SH(qH)
as Z-module by [2, Remark 1.4(3)].

In 2005, [12] introduced the concept of V-coprime and bi-hollow submodules as follows :

3.7 Definition:

If K, L, L' are fully invariant submodules of M. Then:
(1) K is called V-coprime if K< L + L' implies K c L or K< L.
(2) K is called bi-hollow if K=L + L' implies K=L or K=L"
(3) M is called bi-hollow if M =L + L' implies M =L or M=L"

3.8 Remark:

If K is V-coprime submodule of an R-module M, then K is bi-hollow.
Proof:

Let K=L + L' where L, L' are fully invariant submodules of M. So K < L + L' and since
Kis V-coprime,then Kc L or Kc L'"ButKo>L+L'"Hence K=L or K=L"

3.9 Proposition:

M is bi-hollow R-module if and only if M is V-coprime.
Proof:
= LetM <L+ L' where L, L' are fully invariant submodules of M. So M =L + L', then M
=L or M=L'since M is bi-hollow. Hence M c L or M c L.
< LetM=L+L,thenMcL+L.SoMcL or Mc L' Since M is V-coprime. Hence
M=L or M=L"

299 | Mathematics



2013 ple (1 335 26 Sloxb Sububi] goopal pglall pid pf slxo

Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013

3.10 Proposition:

If K is coprime submodule of an R-module M (in the sense of J.Rios), then K is V-
coprime.
Proof:

Let K < L + L' where L, L' are fully invariant submodules of M. But L + L' < (L M L") by

Lemma 3.3. So K < (L : L") and since K is coprime submodule of M, hence either K < L or
M

K c L". Thus K is V-coprime, hence K is bi-hollow.

3.11 Remark:

The concept of V-coprime (bi-hollow) does not implies SH(qH) modules as the
following examples shows:
The Z-module Q is coprime (in sense J.Rios), then Q is V-coprime (bi-hollow) by previous
Proposition. But Q is not SH (not qH) by [2, Remark 1.4(3)].

3.12 Lemma:

Let M be an R-module. If M is a multiplication (or cyclic or scalar or comultiplication).
Then every submodule of M is fully invariant.
Proof:

It is known if M is a multiplication, then every submodule is fully invariant of M.
If M is cyclic, then M is multiplication, so every submodule is fully invariant. If M is scalar
R-module, then for each /'€ EndgM, there exists r € R such that f(x) = rx for all x € M.
Hence, if N < M, then /' (N) =N < N; that is N is fully invariant.
If M is comultiplication, then every submodule is fully invariant, see [8, Theorem 3.17(a)].

3.13 Corollary:
Let M be a multiplication (or cyclic or scalar or comultiplication), let N be a non-zero
submodule of M. Then
(1) N is V-coprime if and only if N is SH-submodule.
(2) N is bi-hollow if and only if N is gH-submodule.
(3) M is bi-hollow if and only if M is SH-submodule.
Proof:
It follows directly from the previous lemma and definitions of SH(qH) and V-coprime
(bi-hollow) submodules.

3.14 Remark:

The concept of coprime submodule (in sense of J.Abu.) and V-coprime submodule are
independent as the following examples show:
(1) Consider the Z-module Z. Let N = <3> < Z. N is coprime submodule of Z (in sense of
J.Abu) by Remark 3.4(1). But N is not SH. Hence N is not V-coprime by Corollary 3.13.
Since Z is multiplication Z-module.
(2) Consider the Z-module Zg. Let K = < 4>isa V-coprime submodule of Zg as Z-module.
But K is not coprime submodule (in sense of J.Abu), because Zg/K =~ Z4 which is not coprime
module (in sense of S,Annin or Wij.).

Now we investigate the behaviour of SH(qH)-submodule under the Localization.
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3.15 Proposition:

Let N be a submodule of an R-module M, and S is multiplicatively closed subset of R.
Then S~ 'N is SH(qH-submodule) of S~ 'M as S~ 'R-module if and only if N is SH(qH-
submodule) of M. [Provided, S 'Nc S '"W < N < W]
Proof:
= IfS 'NisqH, let N=L, + L, where L;, L, <M. So S 'N =S L, + L,). Then
STIN=S"'L;+S 'L,,s0 S 'N=S"'L; or ST'N=S""L, since S~ 'N is qH. Hence N =
L1 or N= Lz.
< IfNisqH, let S 'N=S 'Li+S 'L, where S 'L, S 'L, <S 'M

=S (L, +Ly).

Then S™'N =S L, + L,) implies N=L; + L,. SoN=L; or N =L, by hypothesis.
ST'N=S""L, or ST'N=S"'L,.
By a similar proof, N is SH iff S~ 'N is SH.
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