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Abstract

In this paper we prove a theorem about the existence and uniqueness common fixed
point for two uncommenting self-mappings which defined on orbitally complete G-metric
space. Where we use a general contraction condition.
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Introduction and preliminaries

A number of authors have defined contractive type mappings on a usual complete
metric space X which are generalizations of the well known Banach’s contraction principle
[1:pp. 175-206], and which have the property that each such mapping has a unique fixed
point . The fixed point can always be found by using Picard iteration (i.e. iterative
sequence[Zidler: pp.15-30 ] ), beginning with some initial choice xoe X. And then many
authors have extended, generalized and improved Banach’s contraction principle in different
ways some these ways are depending on commuting mappings, compatible mappings, weakly
commuting mappings, ... ets (such as, see [3,4,5,6] ).

Recently, Branciari ! introduced a generalization of metric space and proved a
general version of Banach’s contraction principle. And then ,P.Das'®), P.Das and L.Dey ',
S.Mordi " and Akram, Zafar and Siddiquil'"! prove other results about the existence of
fixed points and common fixed points for mappings defined on complete G-metric space.

Throughout this paper R is denoted by non-negative real numbers and N is positive
integer numbers. Now we begin with the following definition.

Definition 1. 1"): Let X be a nonempty set. Suppose that the mapping p: X x X —R" such
that for all x , y € X and for all distinct points z ,v € X\ {x, y}, satisfies:

l.p(x,y)=0ifand only if x =y,

2.p(x,y)=p (¥, %),

3.p(x,¥)<p(x,2)tp(zV)tp (v, y), (rectangular property),

Then the ordered pair (X, p) is called a generalized metric space (or shortly G-metric space.).

Note that, any metric space is G-metric space but the converse is not true, for examples,
Examplel.2: Let X={a,b,c,d,}. Define p :X x X -R by
p(ab)= p (ba)=3,p (b,c)= p(c.b)=p (a,0)=p (c,a)=1,
p (a,d)=p (d,a)=p (b,d)=p (d,b)=p (c,d)=p (d,c)=4.
It is easily to show that (X, p ) is G-metric space and it is not metric space ,since
p(a,b) = p (ac)tp (c.b)
3 0= 1 +1

Examplel.3: Consider X=R , 1 :X x X >R and p(x,y)= (x-y)* ,
Clearly p is not G-metric space and so is not metric space since, for x=2, y=0, z=1
and w=1/2.We have
n(2,0)>pn 2,1+ pn(1,1/2) +u (1/2 ,0)
Examplel.4: Let p: R 2 —R " be a mapping such that
p(,y)=max{u (x,2), u (z,w), p (W,y)},
whereas in example above, then p is G-metric space. Therefore, G-metric space is a proper
extension of a metric space.
Also, one can generate many G-metric spaces by usual sense, such as:
Example 1.5: If p(x,y) G-metric space
p1 (XY= p(x,y) / (1+ p(x,y)) also G-metric space.
Remark1.6 ”): the G-metric space is continues function on X x X.
Remark1.7 ') As in the usual metric space settings, a G-metric space is a topological space
with respect to the basis given by
B={B(x,r): x €X, re R"},where B(x,r)={y €X: p (x,y) <r} is open ball
centered by x and with radius r.
Definition1.9™""): Let (X, p ) be a G-metric space. A sequence {x,} in X is said to to be a
Cauchy sequence if for any € > 0 there exists n in N such that for all m, n € N and m, n > n,,
one has p(Xp,Xn+m)<€.
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The space (X,p ) is called complete if every Cauchy sequence in X is convergent.
Definition1.10: Let T be a self mapping on X. Let xo€ X. A sequence {T"x} in X is said to be
an orbit of x by T and denoted by O(x, n)= {x,Tx,T’x,...,T"x} , for alln € N. Also, O (x, )
={X,TX,T2X,. L

Definition 1.11%%: Let T be mapping on a G-metric space (X, p ) into itself. (X, p ) is said to
be T-orbitally complete if and only if every Cauchy sequence in O (x, «) converges in X, for
some X € X.

Now we introduced the following concept

Definition 1.12: Let T;S be two self mappings on a G-metric space X. X is called ST-orbitally
complete if for xoeX the sequence {xo,Tx0,STx,TSTX,,....} converges to a point in X.

or the sequence {x,} converges to a point in X where

Xo€X, Xont1=TXon, X2nt2=SXan+1 .. (D
For all neN U {0}.
Definition1.13: A point x in X is a common fixed point of two self-mappings on G-metric
space X if Tx = Sx =x.
Definitionl.14: Let T and S be self mappings on G-metric space X. T and S are commuting
mappings if there exists a point x in X suchthat Tx=Sxand TSx=S T x..

Main results
Let @ be a family of functions such that ¢ € ® mean that ¢ :R'—>R" is continuous
from the right, non-decreasing and satisfy the condition
o(t) <t for t> 0 and ¢(0)=0.
It is easy to have the following lemma

Lemma2.1: If @y, ¢2 € @, then there is some @3 € ® such that max{ ¢(t), @a(t)}
< @3 (t) forallt>0.
Proof: we can see @3 as @1+ @.
Lemma 2.1/ Let ¢ € @, then ¢ "(t) — 0 as n —+oo for every t >0.
Proposition2.3: Let (X,p) be a G-metric space. Let S,T : X —X be mappings. If for each x,y
in X and T and S satisfy the condition:
p(STx,TSy)< max {¢:(1/2[p(x,Sy)+ p(y,Tx)]), ¢2(p(x,TX)), @3(p(¥,Sy)), Pa(p(x,y))} for all x,y
€ X, where ¢; € ® (1=1,2,3,4) .2
Then the sequence {x,} defined by (1) is a Cauchy sequence.
Proof: Let xoe X and {x,} be a sequence as in (1).The proof includes two steps:
Step 1: to show that limy—. p(Xn,Xn+1)=0, let X1, xo€ {x,} and M = max { p(X¢,X1), p(X1,X2) }.
Since all ¢ ; are non-decreasing functions by (2),
p(Xz,X3):p(STXo,TSX1)
< max{Q1(1/2[p(x0,Sx1)+p(x1,TX0)]),P2(p(X0,TX0)),3(p(X1,5X1)),Pa(p(X0,X1)) }

< max {¢1(M), p2(M),p3(M),p4(M)}
<o (M) ... (3)
where ¢ € ®. Therefore, we have

p(X3,X4)= p(STxl,TSXz)
< max {@1(1/2[p(x1,5x2)+p(x2, Tx1)]),2(p(x1,TX1)),03(p(X2,5%2)),0a(p(X1,X2)) }
< max{ ¢i(M), p2(¢ (M)), p3(M),ps(M)}< ¢ (M), (@)
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Using (2),(3) and (4),we get

p(X4,X5)=p(STX2,TSX3)
< max{Q1(1/2[p(x3,Sx2)+p(x2,Tx3)]),02(p(X2, TX2),93(P(X3,5X3),Pa(p(X2,X3) }
< mzax{ P1(0 (M), 92(9 (M), @3(9 (M), @a(9 (M))}
<o (M) (5)
Again from (2),(4) and (5), we get

p(x5,X6)=p(STx3,TSx4)
< max{Q1(1/2[p(x3,Sx4)* p(x4,Tx3)]), P2( p(X3,TX3)), @3( p(X4,5%4)),
P4(p(x3,X4)) }
< max{ pi(@ (M), (¢ (M), 93(9 (M)), 94(¢ (M)} < ¢ *(M), (6)

In general, by induction, we get

P(XasXans1)< ™M)

for n > 2, where [n/2] stands for the greatest integer not exceeding n/2. Since ¢ € @, by
lemma2.2 it follows that ¢ "(M) — 0 as n — +oo for every M >0. Thus, we obtain

P(Xp,Xp+1)—0 as n —oo, ..(7D

Step2: Suppose that proposition is not true. Then there exists an € > 0 such that for each i€ N,
there exist positive integers n;, m;, with 1 < nj<m;, satisfying

€ < p(XniXmi)
< P(Xni,Xmi+1)
P(Xni,Xmi-1)< € fori=1,2,.. .. (8)
Set,
&= P(XnisXmi+1)
pPi= p(Xi,Xi+1)fOI‘ 1= 1,2,... yoe (9)

Then we have

e<g
= P(Xni,Xmiﬂ)
< p(XnirXmi-1)F P(Xmi-1,Xmi) T P(Xmi,Xmi-1)
< &+Prmic1+pmi » 1= 1,2,... . (10)

Taking the limit as i—+o0, we get lim g = €. On the other hand, by (2),
& = P(Xni Xmi)
< P(Xni,Xni+1)+ p(Xni+1,Xni+2) + p(xni+2 ,Xmi+2)+ p(Xmi+2,Xmi+1) + P(Xmiﬂ,Xmi)
:pni+pni+1+ p(Xni+2 ,Xmi+2)+pmi+1+pmi 5 i: 1727--- (1 1)

We will now analyze the term p(Xpi+2 ,Xmi+2)

P(Xni+2 »Xmi+2)= P(STXni, TSXmi)
< max {Q1(1/2[p(Xni,SXmi)+ P(Xmi> TXni)]), P2( P(Xnis TXni)), @3( P(XmirSXmi))s
@4( p(XnirXmi))}
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< max {@1(1/2[p(XniXmi+ 1)+ P(XmisXni+1)]),P2(P(XnisXni+1)),P3(P(KimisXmit1))
@4( p(XnirXmi)) }
< max{@(1/2[& *+ (& HPni-1TPni)])s @2(Pni)> @3(Pmi), Pa(€)}
< @ (& Pni-tt Pmit Pui)= @ (ki) - (12)
where K; = & +ppi-1+ pPmit Pai -

Substituting (11) into (10), taking the limit as i—+oc0, and using the right continuity of ¢, we
get

€ = limj_,0&; < limyi,¢+ O(ki)= @ () <k, ... (13)
which is a contradiction. limy,_,. p(Xp,Xm) = 0. Thus {x,} is a Cauchy sequence.
Now we prove our results:

Theorem 2.4:Let (X, p) be a G-metric space. Let S and T be self mappings on X satisfying (2)
of proposition 2.3 If S or T is continuous and X is ST-orbitally complete, then S and T have
a unique common fixed point.

Proof: Let x¢ € X and define {x,} as in (1). Then, by proposition 2.3, it follows that {x,} is a
Cauchy sequence. Since X is a ST-orbitally complete G-metric space, {X,} is convergent to a
limit u in X. Suppose that S is continuous. Then

u= lil’l’ln_,oo Xon+2 = limn_,oonmH =S limn_,wx2n+1= Su. . (14)
This implies that u is a fixed point of S. From (2), we get p(u,Su) = 0 and

p(u,Tu)= p(u,TSu)
< p(u,x2n+1)+ p(Xon+1,X2n+2) P(STX20, TSU)
< p(U,X2n+1)TP(X2n+1,X2n+2)+ max{@1(1/2[p(xan,Su)+p(u,Tx20)]),
P2(p(X20, TX20)),03( P(U,SW)),P4( p(X2n,1))} .. (15)

when n—oo , we get p(u,Tu)= 0. Thus, we have u = Su = Tu. Therefore, u is the common
fixed point of S and T. The proof for T continuous is similar.

We will now show that u is unique. Suppose that v is also a common fixed point of S and
T. Then, from (2),

p(u,v)= p(STu,TSv)
< max {Q1(1/2[p(u,Sv)+ p(v,Tu)]), @2 p(u,Tw)), @3(p(v,Sv)), G4 p(u, V)
= ¢:1(122[p(u,v)+ p(v,w)]), @2 p(u,w)), @3( p(V,V)), @a( p(u, v))§
< o(p(u,v)).
... (16)
We write p(u,v)< ¢ (p(u,v)), which implies that p(u,v)=0, that is, u=v.
Therefore, the common fixed point of S and T is unique=

Corollary 2.5: Let (X, p) be a ST-orbitally complete G-metric space. Let S and T be self
mappings on X satisfying for all x,y € X.

p(STx,TSy)< a max {1/2[p(x,Sy)+p(y,Tx)],p(x,Tx),p(y,Sy).p(x,y)} for all x,yEX,
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The sequence {x,} is defined by (1). If S or T is continuous, then S and T have a unique
common fixed point.

Proof. The proof follows by taking ¢i(t) = at with0 < a<1 (1=1,2,3,4) in
Theorem?2.4+

As special case of corollary2.5 we have theorem3.1 in [9], theorem 2.1 in [7] and
theorem?2.1 in[10]. Now we will prove the following corollary using another condition instead
of continuity in Theorem 2.4.

Corollary 2.6 : Let (X, p) be a ST-orbitally complete G-metric space. Let S and T be self
mappings on X satisfying (2) of proposition2.3, and, for each u € X with u # Su or u # Tu, let

inf {p(x,u)+ p(x, Sx)+ p(y,Ty): x,y € X } > 0.
Then S and T have a unique common fixed point.
Proof: Let x¢g € X and {x,} defined by (1). From proposition2.3, {x,} is a Cauchy sequence.
Since X is a ST-orbitally complete G-metric space, there exists u € X such that {x,}
converges to u. Then we have

P(X2n+1,X2m+2)=P(TSX20-1,STX2m)
< max{Qi(1/2[p(X2n-1,SX2m)TP(X2m, T2n-1)1),@2(P(X20-1,X2n)),
O3(P(X2m,X2m+1)),P4( P(X2n-1,X2m)) }
< max {@1(1/2[p(X2n-1,X2m+1)+ P(X2m, X 20)]),P2( P(X2n-1,X2n)),
P3(P(X2m,X2om+1)),P4( P(X2n-1,X2m))} -

Thus, we obtain lim,—. p(X2n+1,u) = 0. Assume that u # Su or u # Tu.
Then, by hypothesis, we have

0 < inf {p(x,u)+ p(x, Sx)*+ p(y,Ty): x,y € X }

= inf {p(Xon+1, W)+ P(Xon+1,9Xon+1)TP(Xon+2, TX2n2): N € N }
= 1nf {p(Xon+1, W)+ P(Xon+1,X2n+2)F P(Xon+2, Xont3): N E N |
=0.

This is a contradiction. Therefore, we have u = Su = Tu.On the other hand, we can prove
the existence of a unique common fixed point of S and T by a method similar to that of
Theorem 2.4.

We can prove the following corollary taking T= I ,the identity mapping, in Theorem 2.4 .
Corollary 2.7:Let (X, p) be a ST-orbitally complete G-metric space. Let S and T be self
mappings on X satisfying

p(Sx,Sy)=< max {1 (1/2[p(x,Sy)+ p(y,x)]), @3(p(y.Sy)), @4(p(x,y))} forall x,y € X,
where @; € © (1=1,3,4).
If S is a continuous, then S has a unique fixed point.

We can prove the following corollary taking T=1 ,the identity mapping, in Corollary 2.5 .
Corollary 2.8: Let (X, p) be a ST-orbitally complete G-metric space. Let S be self mapping on
X satisfying

p(Sx,Sy)< a max {1/2[p(x,Sy)+p(y,x)],p(y,Sy).p(x,y)} for all x,y€X,
for all x,y € X. The sequence {x,} is defined by x¢ € X, Xp+1 =S X, . If S 1s continuous, then S
has a unique fixed point.

We can prove the following corollary taking T= I ,the identity mapping, in Corollary 2.6.
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Corollary 2.9 : Let (X, p) be a ST-orbitally complete G-metric space. Let S be self mapping
on X satisfying (2) of proposition 2.3, and, for each u € X with u # Su , let

inf {p(x,u)+ p(x, Sx):x,y€ X} >0.
Then S have a unique fixed point.
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