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Abstract

In this paper we introduce many different Methods of ridge regression to solve
multicollinearity problem in linear regression model. These Methods include two types of
ordinary ridge regression (ORR;), (ORR;) according to the choice of ridge parameter as well
as generalized ridge regression (GRR). These methods were applied on a dataset suffers from
a high degree of multicollinearity, then according to the criterion of mean square error (MSE)
and coefficient of determination (R?) it was found that (GRR) method performs better than the
other two methods.

Keywords : Ordinary ridge regression, Generalized ridge regression, Shrinkage estimators,
Singular value decomposition, Coefficient of determination.
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Introduction

In this paper we deal with the classical linear regression model y =XB+ ¢ ..... (1) wherey
is (nx1) vector of response variable, X is (nxp) matrix,(n > p)of explanatory variables, [ is
(px1) vector of unknown parameters and € is (nx1) vector of unobservable random errors,
where E(g)=0, var(¢)=c’l. Considerable attention is currently being focused on biased
estimation of the regression estimators of a linear regression model .This attention is due to
the inability of classical least squares to provide reasonable point estimates when the matrix
of regression variables is ill-conditioned. Despite possessing the very desirable property of
being minimum variance in the class of linear unbiased estimators under the usual conditions
imposed on the model, the least squares estimators can, nevertheless, have extremely large
variances when the data are multicollinear which is one form of ill-conditioning. Much
research, therefore, on obtaining biased estimators with better overall performance than the
least squares estimator is being conducted. This paper discusses the ridge regression
estimators for use with multicollinear data. In contrast to least squares, these estimators allow
a small amount of bias in order to achieve a major reduction in the variance. A numerical
example is included to illustrate the theoretical relationships.

The Case of Multicollinearity

The problem of multicollinearity occurs when there exists a linear relationship or an
approximate linear relationship among two or more explanatory variables; two types of
multicollinearity may be faced in regression analysis , perfect and near multicollinearity. As
an example of perfect multicollinearity assuming that the three components of a mixture are
studied by including their percentages of the total p;,p,,p; obviously these variables will have
the perfect linear relationship p;+p,+ps =100. During regression calculations, the exact linear
relationship causes a division by zero which in turn causes the calculations to be aborted.
When the relationship is not exact, the division by zero does not occur and the calculations
are not aborted. However the division by a very small quantity still distorts the results. Hence,
one of the first steps in a regression analysis is to determine if a multicoiiinearity is a problem.
Multicollinearity can be thought of as a situation where two or more explanatory variables in
the data set move together. As a consequence it is impossible to use this data set to decide
which of the explanatory variables is producing the observed change in the response variable.
Moreover, multicollinearity can create inaccurate estimates of the regression coefficients. To
deal with multicollinearity we must be able to identify its source. The source impacts the
analysis, the corrections and the interpretation of linear model. The sources of
multicollinearity may be summarized as follows :[1]

1- Data collection. In this case the data have been collected from a narrow subspace of the
explanatory variable. The multicollinearity has been created by the sampling methodology
and doesn’t exist in the population .Obtaining more data on an expanded range would cure
this multicollinearity problem.

2- Physical constraints on the linear model or population. This source will exist no matter
what sampling technique is used. Many manufacturing or service processes have constraints
on explanatory variables (as to their range),either physically, politically, or legally which will
create multicollinearity moreover extreme values or outliers in the X space can cause
multicollinearity.

Some multicollinearity is nearly always present, but the important point is whether the
multicollinearity is serious enough to cause appreciable damage to the regression analysis.
Indicators of multicollinearity include a low determinant of the information matrix X'X, a
very high correlation among two or more explanatory variables, very high correlation among
two or more estimated coefficients a very small (near zero)eigenvalues of the correlation
matrix of the explanatory variables. Moreover the Farrar-Glauber test based on Chi square
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statistic may be used to detect multicollinearity. Accordingly the null hypothesis to be tested
is:

Hy : Xjare orthogonal , j=1,2,....p

Against an alternative

H, :X; are not orthogonal.
The test statistic is

=-[0-1)-=@ptS) P )

Where n is the number of observations, p is the number of explanatory variables, |D| is the
determinant of correlation matrix. Comparing the calculated value of y* with theoretical value
at p(p-1)/2 degrees of freedom and specified level of significant, we reject Hy if the calculated
value is more than the theoretical value which means that the dataset suffers from a
multicollinearity problem, otherwise the null hypothesis Hy can not be rejected.

The Shrinkage Estimators
Applying the singular value decomposition we can decompose an (nxp) matrix into three
matrices as follows:
X=HD"G (3)

Where H is an nxp semi orthogonal matrix satisfying H'H =Ip, D"*is a (pxp) diagonal matrix
of ordered singular values of X
d'"?> &> > dpl/2 >0, Gisa(p xp) orthogonal matrix whose columns represent the
eigenvectors of X'X .
Accordingly, the ordinary least squares estimator of the regression parameter vector § can be
written as:

bors = (XX)'X'Y

=GC

Where C=D"?H'Y isa (px1) vector containing the uncorrelated components of borg [2]
The generalized shrinkage estimators will be denoted by bsy may be defined as: [1]

b 4)
bSH =GAC= ZgJSJCJ
j=1
where g is the j-th column of the matrix G, 6; is the j-th diagonal element of the shrinkage

factors diagonal matrix A, 0 < & < 1, j = 1,2,...,p, ¢j is the j-th element of the uncorrelated
component vector C.

Ordinary Ridge Regression Estimators
One of several methods that have been proposed to remedy multicollinearity problem by

modifying the method of least squares to allow biased estimators of the regression
coefficients, is the ridge regression method. The ridge estimator depends crucially upon an
exogenous parameter, say k called the ridge parameter or the biasing parameter of the
estimator. For any k >0, the corresponding ridge estimator denoted by bgg is defined as:
brro( XX +KD'XY (5)

Where k > 0 is a constant chosen by the statistician on the basis of some intuitively
plausible criteria put forward by Hoerl and Kennard.[3]
It can be shown that the ridge regression estimator given in (5) is a member of the class of
shrinkage estimators as follows:[2]
By using Matrix algebra and singular value decomposition approach of matrix X we get:
brr = (XX +kI)!' XY =[G(D+kI)G'T'GD"* H'Y
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= G(D+kI)'G'GD"* H'Y

= G(D+kI)'D"*H'Y

= G[(D+k)'D] D "*H'Y

=GaCc (6)
Where A=(D+kI)'D. Equivalently, the shrinkage factors &, j-1,....,p of the ridge estimator
have the form

dj

Sj: m , j: 1,2.....,p ............ (7)

where d; is the jth element (eigenvalues) of the diagonal matrix D, and k is the ridge
parameter.

The Generalized Ridge Regression (GRR)

In this section we suggest using the singular value decomposition technique in order to
derive the generalized ridge regression estimator for the first time (as far as we know). Let G
be a (pxp) orthogonal matrix with columns as eigenvectors (g1.g>....g,) of X'X Hence, G’
(X'X)G =G (GDG")G = D = diag(d;,d>.....dp). Then we can rewrite the linear model as:

Y =Xp+ ¢
=HD'")Gp+e=Xa+e ... (8)
Where X =HD", o.=G'B
This model is called canonical linear model or uncorrelated components model. The OLS
estimate for a is given as :
® ors = (X X)'X"Y= (D”"HH D*)'X"'Y
=p'xY 9)
and var (ot g15) = 0° (X*'X* 1=¢’D"

Which is diagonal. This shows the important property of this parameterization since the
elements of agys namely (o4, a3 ... &p)ors are uncorrelated. The ridge estimator for a is
given by:
arr = XX HK) XY = DHKXTY (10)

= (D+K)'X "X ags

= (KDY oo

=Wk oLs = diag (

i

(04 .
di"'ki) OLS

Where K is a diagonal matrix with entries (k;,k;...kp). This estimate is known as generalized
ridge estimate. The mean square error of agg is given by:
MSE(orr) = var(ogrgr) + (bias ogr) (bias ogrr)'
=c° tr(wy Dilwrk) + (wk— 1) aors a'ors (Wi — 1)’

2
= 52 d; N ki2 O oLs)i
(d; + ki)z (d; + ki)2

To obtain the value of k; that minimize MSE (agrgr ) we differentiate equation(11)with respect
to ki and equating the resultant derivative to zero thus

2
OMSE(a g, Y d; Ly dik;0019); _
ok; (d; +1;)’ (d +1;)’

2
(&)

2
A oLs)i

Solving for k; we obtain : ki =
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Since the value of ¢ is usually unknown we use the estimate value 2. Accordingly, when

Ja )
. . ~ (e}
matrix K satisfies k, = ;
A orsyi
N2 A2 A2
. (e) (e) (e}
= diag ( e ; )
Oorsy Yorsye A orsyp

Then the mean square error of generalized ridge regression estimate agg attains the minimum
value. The original form of ridge regression estimator can be converted back from the
canonical form by:

b(GRR) =G OURR) e (12)
All the basic results concerning the ordinary ridge regression estimator can be shown to hold
for this more general formulation.

Choice of Ridge Parameter

The ridge regression estimator does not provide a unique solution to the problem of
multicollinearity, but provide a family of solutions .These solutions depend on the value of k
(the ridge biasing parameter). No explicit optimum value can be found for k. Yet, several
stochastic choices have been proposed for this shrinkage parameter .Some of these choices
may be summarized as follows:[4]

Hoerl and Kennard (1970), suggested a graphical method called ridge trace to select the
value of the ridge parameter k. This plot shows the ridge regression coefficients as a function
of k. When viewing the ridge trace, the analyst picks the value of k for which the
regression coefficients have stabilized. Often, the regression coefficients will vary widely for
small values of k and then stabilize. We have to choose the smallest value of k possible
(which introduces the smallest bias) after which the regression coefficients have seem to
remain constant. Hoerl, Kennard and Baldwin (1975), proposed another method to select a
single k value given as:

Ps?
boLs boLs
Where P is the number of predictor variables, S% is the OLS estimator for 02, bors is the OLS
estimator for the vector of regression coefficients.

Lawless and Wang (1976) have proposed selecting the value of K by using the formula :
~ Ps?
kaw)= bh s X'X boLs
Hoerl and Kennard (1970) suggested the iterative method to estimate the value of K based on
the formula:

kj+1:

R(HKB)Z

pSs?
[bRR(K].)]'[bRR(K]-)]

The first value of k assumed to be zero and hence, [brgrek,)] [brrex,)]=b oLsboLs.
Substituting for ko in the right hand side of (15) we obtain the first adjusted value k; which
will be also substituted in the right hand side of equation (15) to obtain the second adjusted
value k, then continue the iterations until the following inequality have to be satisfied :[5]

ki, —k

kj

Where € is small positive number (close to zero). Hoerl and Kennard proposed the value of €
to be [5]

<e

<g . (16)
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2
AoLs)i

Numerical Example

In this section we apply the procedures discussed earlier employing the data obtained
from Midland Refineries Company to determine the effect of six factors (explanatory
variables X, X, ...X¢) on the productivity of labor (response variable y).The data are given
in table (1). Applying the Farrar-Glaubor test given in equation (2), it was shown that the
calculated y* is 137.456 while the theoretical value at 15 degree of freedom and 0.05 level
of significant is 24.996. Obviously, the calculated value is greater than the theoretical value of
the ¥* which implies that the data suffer from a high degree of multicollinearity. Let us
assume that ORR; represents the ordinary ridge regression estimator with the ridge parameter
obtained by Hoerl-Kennard and Baldwin R(HKB), ORR; represents the ordinary ridge
regression estimator with the ridge parameter obtained by Lawless and Wang R(LW) and GRR
represents the generalized ridge regression estimator. Applying the formulas in equations
(13), (14) and (18) we obtain:
Kukpy = 0.0075410, Kkgwy = 0.027179

k Grryi =[0.121641, 0.0117446, 0.0051056, 0.053459, 0.002102, 0.083658]

The computation results of variance inflation factors (VIF) for each explanatory variable,
the mean square error (MSE) and the coefficient of determination R? for each method are
presented in tables (2), (3) and (4) respectively.

Conclusion

In addition to the Farrar-Glaubor test, the large values of VIF in table (2) is another
indicator that our dataset suffers from a high degree of multicollinearity [6], since the GRR
estimator has smaller MSE and larger R? than other two estimators (ORR;, ORR») as it is
shown in table (3) and (4), we conclude that the GRR is better than ORR; and ORR;
estimators for remedy the multicollinearity problem in our dataset.
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Y Xj X, X3 Xy X5 Xe
3193 7 79 305 230 1580 337
3506 8 80 390 266 1590 358
5203 8 81 415 280 1610 416
3118 9 84 425 330 1640 454
10565 9 85 434 368 1642 465
28245 7 137 692 416 1535 470
34701 35 200 759 440 1894 574
33660 3 833 2475 1222 353 533
45240 4 1153 2480 1285 345 733
51157 4 1285 2745 1141 311 873
65085 4 1353 2854 1087 350 878
62893 4 1331 2895 1082 382 908

Table (2): VIF for all variables
Predictor VIF
X4 25.279
X5 366.798
X3 220.081
X4 89.442
Xs 884.559
X6 92.407

Table(3): MSE for each method

MSE
ORR; 0.074426
ORR; 0.093867
GRR 0.069632
Table(4): R’ for each method
R-Square
ORR; 95.94
ORR, 94.88
GRR 96.2018
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