Degree of Monotone Approximation in $L_{p,\alpha}$ **Spaces**

S. K. Jassim and I. Z. Shamkhi

Department of Mathematics, College of Science – Al-Mustansiriya University

Received in: 18 February 2011 Accepted in: 18 March 2012

Abstract

The aim of this paper is to study the best approximation of unbounded functions in the weighted spaces $L_{p,\alpha}$, $p \ge 1$, $\alpha > 0$.

Key Words: Weighted space, unbounded functions, monotone approximation

Introduction

With a great potential for applications to a wide variety of problems, approximation theory represents on old field of mathematical research. In the fifties a new breath over it has been brought by a systematic study of the linear methods of approximation which are given by sequences of linear operators .These methods became a firmly entrenched part of approximation theory. The problem of function connected with different polynomials was examined in many paper like[1] and [2]. In this paper we studied the degree of approximation of unbound functions by using piecewise monotone polynomials in the weighted spaces $L_{p,\alpha}$.

Definitions and notations

Let f be any function such that $|f(x)| \le Me^{\alpha x}$, $\alpha > 0$, $M \in R$, $x \in [a,b]$ we denote by $L_{p,\alpha}$, the spaces of all functions such that

$$\left\| f \right\|_{p,\alpha} = \left[\int_{b}^{a} \left| f(x) e^{-\alpha x} \right|^{p} dx \right]^{\frac{1}{p}} < \infty \quad , 1 \le p < \infty$$
...(2.1)
See [7].

we approximated f by a piecewise polynomial of degree at most N.

Definition 1

Let

$$\begin{split} &\mathbf{S}_n(\mathbf{x}_1,\mathbf{x}_2,....,\mathbf{x}_k) = \{\,\mathbf{s} \in C^{n-1}[\mathbf{a},\mathbf{b}]\,; \mathbf{s} \in \Pi_n(\mathbf{x}_{i-1},\mathbf{x}_i)\,, i=1,2,...k+1\} \text{ where} \Pi_n(\mathbf{x}_{i-1},\mathbf{x}_i) = (x_0,x_1)(x_1,x_2)...(x_k,x_{k-1})\,, \\ &\{\mathbf{x}_1\,,\,\mathbf{x}_2\,,\,....,\,\mathbf{x}_k\,\} \ \text{ is a space of spline with simple knots } (\mathbf{x}_1\,,\,\mathbf{x}_2\,,\,....,\,\mathbf{x}_k\,)\,, \ \text{ consider } \\ &\mathbf{a} = \mathbf{x}_0 < \mathbf{x}_1 <\,\mathbf{x}_k < \mathbf{x}_{k+1} = \mathbf{b} \ \text{ apartition } \ \text{ on interval } [\mathbf{a},\mathbf{b}] \ \text{ .for } \mathbf{k} = 1,2,... \text{ let } \\ &S_k = S_n(\mathbf{x}_1^k,\mathbf{x}_2^k\,,...,\mathbf{x}_k^k\,) \ \text{ , for some k knot such that end points} \\ &[\text{bounded}],\,\mathbf{a} = \mathbf{x}_0^k \ \text{ and } \mathbf{b} = \mathbf{x}_{k+1}^k \text{ for each k}\,. \ \text{ The } \ \text{mesh is denoted by } \\ &m_k = \underset{i=0,1,...,k}{Max}\left(\mathbf{x}_{i+1}^k - \mathbf{x}_i^k\right) \ \text{ denote } y_S\,, S = 1,2,....,n \ \text{ the collection } \ \text{ of all set } \end{split}$$

No.

3

Vol.

25 | Year

2012

2012

السنة

;)|

3

العدد

 $Y = \{y_s\}, \ 0 < y_s < ... < 1, \ \text{ and } \ \Delta^{\text{\tiny (1)}}(Y) \text{ be the collection of all functions}$ $f, f' \in L_{p,\alpha}[0,1]$ which change monotonicity at the points of y_s .

Set

$$\prod (x) = \prod_{i=1}^{s} (x - yi)$$

...(2.2)

The differentiable function in $L_{p,\alpha}[0,1]$ is in $\Delta^{\scriptscriptstyle (1)}(Y)$ If $f'(x)\Pi(x) \ge 0$, $x \in [0,1]$, [4].

Definition 2: [7]

The degree of monotone approximation by polynomials $P_{_{\scriptscriptstyle I}}$ of degree not exceeding n will be denoted by

$$E_{n}^{(1)}\left(f,Y\right)_{p,\alpha}=\inf_{p_{n}\in\Delta^{(1)}(Y)\cap L_{p,\alpha}}\left\|f-p_{n}\right\|_{p,\alpha}$$

...(2.3)

For
$$p = \infty$$
 then $E_n^{(1)}(f, Y)_{\infty,\alpha} = \inf \|f(x) - p_n\|_{\infty,\alpha}$, $x \in [0,1]$

Let

$$\varphi(x) = \sqrt{x(1-x)},$$

...(2.4)

The spaces $L_{_{p,\alpha,\phi}}^{r}$, $r \in \mathbb{N}$ are the spaces of all functions such that

$$\left[\int_{0}^{1}\left|(x)f^{-r}(x)e^{-\alpha x}\right|^{p}dx\right]^{\frac{1}{p}}<\infty$$

...(2.5)

where
$$f^{(r)} = (f(x)e^{-\alpha x})^{(r)}$$
 and $\lim_{x \to \frac{1}{2}} \varphi^r(x)f^r(x) = 0$.

Definition 3: [3]

For $k \ge 1$ the Ditizian – Totik modules of smoothness is defined by

$$\omega_{k,r}^{\varphi}\left(f^{(r)},t\right)_{p} = \sup \left\|\varphi_{kh}^{r}\left(x\right)\Delta_{h\varphi(x)}^{k}f^{(r)}\left(x\right)\right\|_{p}, t \ge 0$$

And

$$\omega_{k,r}^{\varphi}\left(f^{(r)},t\right)_{p,\alpha} = \sup \left\|\varphi_{kh}^{r}\left(x\right)\Delta_{h\varphi(x)}^{k}f^{(r)}\left(x\right)\right\|_{p,\alpha}, t \ge 0$$
 [7]

...(2.6)

Where k th symmetric difference is defined by

$$\Delta_{h\varphi(x)}^{k}g\left(x\right) = \sum_{j=0}^{k} \left(-1\right)^{k+j} \begin{bmatrix} k \\ j \end{bmatrix} \quad g\left(x - \frac{\left(k-j\right)h\varphi(x)}{2}\right)$$
 is

...(2.7)

and the supermum is taken over all $x, x \mp \frac{k}{2} h \varphi(x) \in (0,1)$.

Note that for $f \in L_{p,\alpha}[0,1]$ then $\omega_{k,0}^{\varphi}(f,t)_{p,\alpha} = \omega_k^{\varphi}(f,t)_{p,\alpha}$.

No.

3

Vol.

25

Year

2012

السنة

المج

عدد ا

Definition 4: [6]

At the points
$$x_0, x_1, ..., x_n$$
 are defined by $[x_0, x_1, ..., x_n; f] = \sum_{j=0}^{n} \frac{f(x_j)}{\prod_{\substack{i=0\\i\neq j}} (x_j - x_i)}$

Then $[Z_0, Z_1; g]$ stands for the first divided difference of function g at the knots Z_0 and Z_1 , and $[Z_0, Z_1, Z_2; g]$ denotes the second divided difference at the knots Z_0, Z_1 and Z_2 .

The Main Result:

In [5] Leviatan and Shevchuk proved that For every $f \in \Delta^{(1)}(Y) \cap C_{\omega}^{r}$ then:

$$E_n^{(1)}(f,Y) \le \frac{c}{n^r} \omega_{k,r}^{\varphi} \left(f^{(r)}, \frac{1}{n}\right)$$

...(3.1)

where c is a constant independent of n and f.

Also they showed that

Theorem 1: [5]

If $f \in C_{\sigma}^{r} \cap \Delta^{(r)}(Y)$ with r > 2, then

$$E_n^{(1)}(f,Y) \leq \frac{c(k,r,Y)}{n^r} \quad \omega_{k,r}^{\varphi}(f^{(r)},\frac{1}{n}), \quad n \geq k+r$$

...(3.2)

Where C_{φ}^{r} , $r \in N$ is the space of functions f, $f^{(r)} \in C^{r}(0,1)$ for which $\lim_{x \to \frac{1}{2}} \varphi^{r}(x) f^{(r)}(x) = 0$ and $C_{\varphi}^{0} = C[0,1]$.

Now we prove the following theorem when $r \le 2$ by c(s) denote the different constants which are constants depend only on s, while N(Y) the constants which depend on Y.

Theorem 2: [7]

If
$$f \in L^1_{p,\alpha,\omega} \cap \Delta^{(1)}(Y)$$
 then

$$E_n^{(1)}\left(f,Y\right)_{p,\alpha} \leq \frac{c}{n} \omega_{2,1}^{\varphi}\left(f',\frac{1}{n}\right)_{p,\alpha}, \qquad \qquad \text{n} \qquad \geq \qquad \qquad \text{N(Y)}$$

...(3.3)

An immediate consequence of this theorem is that:

Corollary 1: [7]

If
$$f \in L^2_{p,\alpha,\varphi} \cap \Delta^{(1)}(Y)$$
, then

$$E_n^{(1)}(f,Y)_{p,\alpha} \leq \frac{c}{n^2} \omega_{1,2}^{\varphi}\left(f',\frac{1}{n}\right)_{p,\alpha}, \qquad n \geq N(Y)$$
...(3.4)

No.

3

25

Vol.

Year

2012

2012

السنة

25

المجلد

العدد

Remark:

It should be noted that in the case r=1, k=2 and r=2, k=1 the estimates of form (3.3) and (3.4) in the case $C_r^1 \cap \Delta^{(1)}(Y)$.

Corollary 2: [7]

For each $y_s \in Y$, there is a function $f \in \Delta^{(1)}(Y)$ with $E_n(f)_{p,\alpha} \leq \frac{1}{n^2}$, $n \geq 3$

$$E_n^{(1)}(f,Y) \leq \frac{c}{n^2}$$
, n \geq N(Y)

...(3.5) where $E_n(f)_{p,\alpha}$ is the degree of unconstrained approximation.

Now, let
$$I = [0,1]$$
 and put $xj = \frac{1}{n} \left[1 - \cos \frac{j \prod}{n} \right], j = 0,1,...,n.$

We denote by S_n the set of continuous piecewise polynomials in $L_{p,\alpha}[0,1]$.

We put $I_0 = [0, x_0]$ and $I_n = [x_{n-1}, x_n]$

Let $L_1(x) = f'(x_1) + (x - x_1)[x_1, 2x_1, f']$ be the linear polynomials which interpolates f' at x_1 and $2x_1$. We set

$$L_n(x) = f'(x_{n-1}) + (x - x_{n-1}) [x_{n-1} - (1 - x_{n-1}), x_{n-1}; f']$$

Lemma 1: [4, lemma 2]

If $f \in L^1_{p,\varphi} \cap \Delta^{(1)}(Y)$ then there is a continuous piecewise polynomials $\tilde{S}_n \in S_n$ such that

$$\begin{aligned} & \left\| f - \tilde{S}_n \right\|_p \le \frac{c}{n} \ \omega_{2,1}^{\varphi} \left[f', \frac{1}{n} \right]_p \\ & \Pi(x) \tilde{S}_n'(x) \ge 0 \quad , x \in \left[x_1, x_{n-1} \right] \\ & \tilde{S}_n'(x) = L_n(x) \quad , \quad x \in I_n \\ & \dots (3.6) \end{aligned}$$

Lemma 2

If $f \in L^1_{p,\alpha,\varphi} \cap \Delta^{(1)}(Y)$ then there is a continuous piecewise polynomials $\tilde{S}_n \in S_n$ such that

Vol

2

Year

سنة 2012

$$\begin{aligned} & \left\| f - \tilde{S}_{n} \right\|_{p,\alpha} \leq \frac{c}{n} \ \omega_{2,1}^{\varphi} (f', \frac{1}{n})_{p,\alpha} \\ & \Pi(x) \, \tilde{S}_{n}' \geq 0 \quad , \quad x \in [x_{1}, x_{n-1}] \\ & \tilde{S}_{n}'(x) = L_{n}(x) \quad , \quad x \in I_{n} \\ & \dots (3.7) \end{aligned}$$

Proof of Lemma 2

$$\begin{aligned} \left\| f - \tilde{S}_{n} \right\|_{p,\alpha} &= \left(\int_{0}^{1} \left| \left| f - \tilde{S}_{n} \left| e^{-\alpha x} \right|^{p} dx \right| \right)^{1/p} = \left[\int_{0}^{1} \left| f e^{-\alpha x} - \tilde{S}_{n} e^{-\alpha x} \right|^{p} dx \right]^{1/p} \\ &= \left(\int_{0}^{1} \left| g(x) - \tilde{G}_{n}(x) \right|^{p} dx \right)^{1/p} \\ &= \left\| g(x) - \tilde{G}_{n}(x) \right\|_{p} \end{aligned}$$

such that $g(x) = f(x) e^{-\alpha x}$ and $\tilde{G}_n(x) = \tilde{S}_n e^{-\alpha x}$ where $g(x) \in L^1_{p,\alpha}(Y)$ and $\tilde{G}_n(x)$ is the continuous piecewise polynomial in S_n . Then by lemma 1

$$\begin{split} \left\| f - \tilde{S}_{n} \right\|_{p,\alpha} &= \left\| g - \tilde{G}_{n} \right\|_{p} \leq \frac{c}{n} \ \omega_{2,1}^{\varphi} \left(g', \frac{1}{n} \right)_{p} \\ &= \frac{c}{n} \ \omega_{2,1}^{\varphi} \left(f', \frac{1}{n} \right)_{p,\alpha} \end{split}$$
 Therefore
$$\left\| f - \tilde{S}_{n} \right\|_{p,\alpha} \leq \frac{c}{n} \ \omega_{2,1}^{\varphi} \left(f', \frac{1}{n} \right)_{p,\alpha} .$$

Proof of Theorem (2)

We first take n sufficiently large so that f monotone in I_1 and I_n . Then in view of lemma 2 at most what we have to correct the behavior of \tilde{S}_n on I_1 and I_n while keeping it close to the original function.

A spline polynomial \tilde{S}_n satisfying.

$$\begin{split} &S_n(x) = \tilde{S}_n(x) \quad, x \in [x_1, x_{n-1}] \\ &\Pi(0) \, \tilde{S}_n(0) \geq 0 \\ &\Pi(1) \, \tilde{S}_n(1) \geq 0 \\ &\left\| S_n' - \tilde{S}_n' \, \right\|_{Lp, \alpha(I_1 \cup I_n)} \leq c_n \, \, \omega_{2,1}^{\varphi}(f', \frac{1}{n})_{p, \alpha} \\ &\dots (4.1) \\ &\text{Indeed Since} \left| I_1 \right|, \left| I_n \right| \leq \frac{c}{n^2} \text{ then} \end{split}$$

No. | 3 | Vol. | 25 | Year | 2012 | 2012 | 25 | 2012 | 25 |

$$\left\| S'_{n} - \tilde{S}'_{n} \right\|_{L_{p},\alpha(I_{1} \cup I_{n})} \leq \left[\int_{I_{1} \cup I_{n}} \left(\int_{I_{1} \cup I_{n}} \left| S'_{n}(t) - \tilde{S}'_{n}(t) \right| e^{-\alpha x} dt \right)^{p} dx \right]^{\frac{1}{p}}$$

$$= \left[\int_{I_{1} \cup I_{n}} \left(\int_{I_{1} \cup I_{n}} \left| g - G \right| dt \right)^{p} dx \right]^{\frac{1}{p}}$$

...(4.2)

Then by holder's inequality we have

$$\begin{split} \left\| S_{n}' - \tilde{S}_{n}' \right\|_{Lp,\alpha(I_{1} \cup I_{n})} & \leq \left[\frac{1}{n^{2}} \right]^{\frac{1}{q}} \left[\int_{(I_{1} \cup I_{n})} \left\| g - G \right\|_{Lp(I_{1} \cup I_{n})}^{p} dx \right]^{\frac{1}{p}} \\ & \leq \left[\frac{1}{n^{2}} \right]^{\frac{1}{q} + \frac{1}{p}} \left\| g - G \right\|_{Lp(I_{1} \cup I_{n})}^{p} \\ & = \left[\frac{1}{n^{2}} \right]^{\frac{1}{q} + \frac{1}{p}} \left\| S_{n}' - \tilde{S}_{n}' \right\|_{Lp,\alpha(I_{1} \cup I_{n})}^{p} \\ & \leq \frac{1}{n^{2}} \left\| S_{n}' - \tilde{S}_{n}' \right\|_{Lp,\alpha(I_{1} \cup I_{n})}^{p} \end{split}$$

From (4.1) and (4.2) we get

$$\|S_{n} - \tilde{S}_{n}\|_{p,\alpha} \leq \frac{c}{n^{2}} n \ \omega_{2,1}^{\varphi} (f', \frac{1}{n})_{p,\alpha}$$

$$= \frac{c}{n} \ \omega_{2,1}^{\varphi} (f', \frac{1}{n})_{p,\alpha}$$

Which combined with (3.6) and (4.3) implies.

$$\begin{split} E_{n}^{(1)}(f,Y)_{p,\alpha} &= \left\| f - S_{n} \right\|_{p,\alpha} \leq \left\| f - \tilde{S}_{n} \right\|_{p,\alpha} + \left\| S_{n} - \tilde{S}_{n} \right\|_{p,\alpha} \\ &\leq \left\| f - \tilde{S}_{n} \right\|_{p,\alpha} + \left\| S_{n} - \tilde{S}_{n} \right\|_{Lp,\alpha(L_{1} \cup L_{2})} + \left\| S_{n} - \tilde{S}_{n} \right\|_{Lp,\alpha[x_{1},x_{n-1}]} \\ &\leq \frac{c}{n} \ \omega_{2,1}^{\varphi}(f',\frac{1}{n})_{p,\alpha} + 0 + \frac{c}{n} \ \omega_{2,1}^{\varphi}(f',\frac{1}{n})_{p,\alpha} \\ &= \frac{c}{n} \ \omega_{2,1}^{\varphi}(f',\frac{1}{n})_{p,\alpha} \end{split}$$

References

- 1. Rempulska, L. and Skorupka, (2004), On Strong Approximation of Function by Certain Operators, Math. J. Okayama, Univ., 46, 153-161.
- 2. Miller, H. and Orhan, C., (2001), On AlMost Convergent Subsequences and Statistically Convergent Subsequences, Acta Math. Hungar, <u>93</u>, 135-151.
- 3. Ditizian, Z. and Totik, V., (1987), Moduli of Smoothness, Springer Series in computational mathematics, Springer Verlage, New york.

Ibn Al-Haitham Journal for Pure and Applied Science	مجلة إبن الهيثم للعلوم الصرفة و التطبيقية				
No. 3 Vol. 25 Year 2012	2012	25 السنة	المجلد	3	العدد

- 4. Leviatan D. and Shevchuk, I.A., (1998), Nearly Comonotone Approximation, J Approx. Theory, 53-81.
- 5. Leviatan, D. and Shevchuk, I.A., (1999), Some positive Results and Couterexamples in Comonotone Approximation II, J. Approx. Theorey, 195-206.
- 6. R.k. Beston and D. leviatan (1993): "on comonotone approximation " . Canada. Math .Bull , $\underline{26}$,220-224.
- 7. Husain, L.A., (2010), Unbounded Function Approximation in some $L_{p,\alpha}$ Spaces, M.Sc Thesis, Mustansirya University, Department of Mathematics, College of Science.

Vol.

No.

25

Year

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

2012

المجلد 25 السنة

العدد

$L_{p,\alpha}$ التقريب الرتيب في الفضاء

صاحب كحيط جاسم ، إسراء زايد شمخي قسم الرياضيات - كلية العلوم - الجامعة المستنصرية استلم البحث في: 18 شباط 2011 قبل البحث في: 18 اذار 2012

2012

الخلاصة

الغرض من هذا البحث هو دراسة درجة أفضل تقريب للدوال الغير مقيدة في فضاء الوزن $L_{p,\alpha}$, $(1 \le p \le \infty)$, $\alpha > 0$

الكلمات المفتاحية: فضاء الوزن، الدوال غير المقيدة، التقريب الرتيب.