< Ibn Al-Haitham Journal for Pure and Applied Science

No. | 3 ] Vol. (25] Year ( 2012

Rt 5 4 o) p gl gl (ol Mla )
2012 ]m\(25] Alaall ( 3 ] sl

Minimizing total Completion Time and
Maximum late Work Simultaneously

T. S. Abdul-Razaqg and F. Sh. Fandi

Department of Mathematics, College of Science , Al_Mustansiriya
University

Department of Mathematics, College of Education, for Pure

Sciences, Al-Anbar university
Received in: 1 April 2012 Accepted in: 22 April 2012

Abstract

In this paper, the problem of scheduling jobs on one machine for a variety multicriteria
are considered to minimize total completion time and maximum late work. A set of n
independent jobs has to be scheduled on a single machine that is continuously available from
time zero onwards and that can handle no more than one job at a time. Job i,(i=1,...,n)
requires processing during a given positive uninterrupted time p;, and its due date d;.

For the bicriteria problems, some algorithms are proposed to find efficient (Pareto)
solutions for simultaneous case. Also for the multicriteria problem we proposed general
algorithms which gives efficient solutions within the efficient range.

Keyword:- schedule, multicriteria, single machine, bicriteria.

Introduction

The problem of scheduling a set N={1,.....,n} of n jobs on a single machine to minimize
a variety of multicriteria may be stated as follows. Each job i, (i=1,....,n) is to be processed on
a single machine which can handle only one job at a time. Associ- -ated with job i its
processing time p; and its due date d;. All jobs are available for processing at time zero. A
schedule o=(1,...,n) specifies for each job when it is executed while observing the machine
availability constraints and the schedule produce a completion time c¢;=Xp; for each job i,

In this paper, for the first time. We use the late work object in multicriteria scheduling
problem. Given a schedule o, the late work vi(c) for job i,(i=1,...,n) which is amount of
processing performed on job i after its due date d;, is easy compute. We abbreviate vi(c) to v;
for each job i, hence we have:
¢9) If v;=0, then job i isearly with ¢; < d.

(2) If 0<v;<pj thenjobiis partially early.
(3) If vi=pj thenjobi islate with ¢; > d; + pi.
This means that the late work for job i is given by

0 if & < d;, i=1,..n
Vi: C-i—lj.i if di:‘:':’i'::di-'_pi-' I=1,...._.ﬂ
pi EF EiEdi"-E}i, E:].,...,ﬂ

Notation and Basic Concepts:
The following notation will be used in this paper:
n = number of jobs.
= processing time of job i.
di = due date of job i.
completion time of job i.
>ci= the total completion times.
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vi= the late work penalty for job i.

Vmax= Max {vi}, the maximum late work.

L; = lateness of job i, Lj= ¢ - d;.

T; = tardiness of job i, T;i= Max {¢; - d; ,0}.

Lmax = Max{L;}, maximum lateness of all job in a schedule.

Tmax= Max{Ti}, maximum tardiness of all job in a schedule.

The cost f; for each job i, (i=1,...,n) usually takes on the variable c¢i. Common optimality
criteria are usually in the form Xf; and = Max{f;}.

Theorem(1)(Jackson 1955)[1]. The 1// Tmax problem is minimized by sequencing the

jobs according to the earliest-due- date (EDD) rule, that is, in order of non-decreasing

di. m

Theorem (2)(Smith 1956)[2]. The 1//Z c; problem is minimized by sequencing the

jobs according to the shortest —processing-time (SPT) rule ,that is, in order of non-decreasing
pi. m

Theorem(3)(Lawler 1973)[3].The 1//fmax problem, fmax is minimized as follows:

while there are unassigned jobs, assign the job that has minimum cost when scheduled

in the last unassigned position in that position.m

Definition(1)[4]: A feasible schedule for a problem 1//Lex(f,g) is a schedule in which the
primary criterion f is satisfied.

Definition(2)[4]: An optimal schedule for 1//Lex(f,g) is a feasible schedule that minimizes
the secondary criterion g.

Definition(3): A feasible schedule o™ is Pareto optimal, or non-dominated(efficient), with
respect to the performance criteria f and g if there is no feasible schedule & such that both f(r)
<f(c") and g(n)<g(c’), where at least one of the inequalities is strict.

Definition(4)[5]: The function F(f,g) is said to be non-decreasing in both argument, if for any
pair of outcome value (x,y) of the functions f and g, we have F(x,y) < F( x+A,
y+B) for each pair of non-negative value A and B.

Theorem (4)[6]: If the composite objective function F(f,g) is non-decreasing in both
argument, then there exists a Pareto optimal schedule that minimize F.

Definition(5)[7]: The term optimize” in a multi-objective decision making problem refers to
a solution around which there is no way of improving any objective without worsening at
least one other objective.

Definition (6)[8]: A point X = (X3, . . ., Xk) IS Pareto optimal within a given set S, if S does
not contain any other point  y=(y1, . .., Yx) with y; <x; for i =1, ..., k. Correspondingly,
a schedule o corresponds to a Pareto optimal point if there is no feasible schedule m with

f (M) < fE_ (o) fork=1, ..., K, where at least one of the inequalities is strict; in this case,

we say that ¢ is not dominated.

Definition(7)[8]:hierarchical minimization: The performance criteria fy, . . . ,fx are indexed in
order of decreasing importance. First, f; is minimized. Next, f, is minimized subject to the
constraint that the schedule has minimal f; value. If necessary, f3 is minimized subject to the
constraint that the values for f; and f; are equal to the values determined in the previous step.
Theorem(5)[9]: Consider the composite objective function F with F(n )= F(fi(n),...,fk(n)),
where F is non- decreasing in all performance criteria fi. There is a Pareto optimal schedule
with respect to fy,...,fx that minimizes the function F.

fmax 1S Regular Measure :

Now, we will consider the bicriteria that concerns the hierarchical and simultaneous
minimization of bicriteria regular cost function for jobs i, which means that fi(c;) does not
decrease when c; increased. Hoogeveen and Van de Valde [10] proved that 1//F(Xci,fmax)
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problem is solved in polynomial time, Van Wassenhove and Gelders [11] solved
1//F(XZci, Tmax) problem, Emmons [12] presented the hierarchical problem 1//Lex(fmax,>Ci),
where f*=Min{fn.x} denotes the optimal solution value of the 1// fyax problem, which is
solved in O(n%) time by Lawler algorithm[3]. Let fuax= Vinax in our study, since criterion Vmax
is a particular case of the function frax .

Now, consider the following two problems:
1//Lex(Zci, Vmax) problem, and 1//Lex(Vmax, 2Ci ) problem.

The 1//Lex(Xc¢;,Vimax) problem (P1):
This problem can be written as:

Min Vnax

s.t
Coi) 2 Poti)
Co(i) = Co(i-1) T Psii)

0 if c_,\<d /. i=1,...,n
o) e(i) o
vc(i){cc(i)-dc(i) .|f dG(i)<cG(i)<di+pG(i), |.:1 ..... n}

pc(i) if dG(i)+pG(i)§cG(i), i=1,..,n

Ps(i) 2 V(i)

V(i) 2 0

>¥ci=A, where A= XCi(SPT).

It is clear that the SPT rule is feasible for problem(P1). Also the SPT rule is optimal for

problem(P1) if there exist a tie (jobs with equal processing times) then order these jobs so that
Vmax 1S minimum.
The 1//LexX(Vmax, X¢i) problem(P2):

This problem can be written as:

Min 2Ci
s.t
Co(i) = Po(i) i=1,...,n.
Co(i) = Cs(i-1) + Poi(i) I=2,....Nn.
0 if cc(i)sd0 i i=1,..,n
v0(|)= G(|) dc(.) if dc(i)<cc(I <d|+p6 i=1,..,n
pc(l) if dG(i)+pG(|)§CG(|) i=1,...n
Ps(i) 2 Vs i=1,....n.
Vs(i) 2 0 i1=1,...,n.

Vimax= A, where A= Vax(Lawler).
Algorithm(1) for finding an optimal value for problem(P2):
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Step(0): Compute Vmax by using (Lawler algorithm) and set 6= (o).
Step(1): Put A= Vmax(Lawler), N={1,...,n}, K=n, t=Cpax= Zpi .
Step(2): Calculate v;, ¥i€ N as follows:

0 if cigdi, i=1,...,n
Vi =93¢ -di if di<°i <di+pi, i=l,..,n

p; if di +P; gci , i=1,....n
Step(3): Find a job j* €N, such that
1.Vj*§ A.

2. P> i, ¥j*, 1 EN gnd Vi< A

Then assign job j* in position K of ¢ =(c(K), 6).

Step(4): Set t=t-pjx, N=N-{j*}, K=K-1, if K >1 go to step(2), otherwise go to
step(5).

Step(5): Calculate Xcs() for the sequence jobs ¢ =(c(1),...,6(n)).

Step(6): Stop.

Proposition(1):
Algorithm(1) gives an optimal solution of 1/LeX(Vmax, 2ci) problem.

Proof:

Since the problem 1//Lex(Vmax, Zci) can be written as:
Min Xc¢;j

St

Vi < Vinax (Lawler) i=1,...,n

First notice that at each decision point the set of schedulable jobs is inspected (i.e. these
jobs that can be scheduled without violating the maximum late work (Vmax(Lawler))(which is
obtained by Lawler algorithm)), any job j* that is chosen in step (3) of algorithm(1) to be
scheduled last. Second, if there exists a tie (more than one schedulable job i) then we choose
the job j* with largest pj« to be schedule last which minimizes Zc; also. Hence, any schedule
constructed by algorithm(1) is optimal.m

Algorithm(1) is a general algorithm can be used for solving problems of the following

forms:
(1) 1//Lex(fmax, Z:Ci)a Where fmax E{Lmax, Tmax, Vmax, V::: .
(2) 1//Lex(fmax, E'Ci.:)’ Whel’e fmax E{Lmax, Tmax, Vmax, V;g_x}'

The 1//Lex(V¥ .., Tmax) problem(P3):

This problem can be written as:
Min T max
s.t
Vo . =A, where A= V7_.(Lawler).
Algorithm(2) for finding an optimal value for problem(P3):
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Step(0): Compute Vo ..=min{max{w;vi}}, by using (Lawler algorithm).
Step(1): Put A=V7...(Lawler), N={1,...,n}, K=n, t=Cax=Xpi and set 6= ().
Step(2): Calculate wiv;, ¥ie N as follows:

0 if cisdi, i=1,..,n
WiVi=q W; (ci —di) if di<ci <di+pi, i=l,..,n

Wip; if di+pi sci, i=l,..., n
Step(3):Find a job j*€N, such that
1. wjvp< A.
2. dJ*Z di , 1'?rj*,i EN and WiVi < A.
Then assign job j* in position K of ¢ =(c(K), ).
Step(4): Set t=t-pj=, N =N-{j*}, K=K-1, if K >1 go to step(2), otherwise go to
step(5).
Step(5): Calculate Tmax(o) for the sequence jobs o =(o(1),...,6(n)).
Step(6): Stop.

Example(1): Consider the problem 1//Lex(V . Tmax) With the following data:

i 1 |2 [3 4
D 3 |1 |2 |4
d; 4 |6 |1 |2
Wi 2 |3 |2 |5

By applying Lawler's algorithm (Step(0)) we get a schedule 6=(4,1,3,2) with V,.=10 and

Put A=10.

i 1 [ 2 E |4 )
10 6 @ 4 20 2

9 |E| * 4 20 1

6 * * E 20 3

4 * * * 4

Hence, we get optimal schedule 6 = (4,3,1,2) with V)., =10 and Tmax=5.

7. Minimizing Total Completion Time and Maximum late work.

In this section we will try to find all efficient (Pareto optimal) solutions for 1//F(Zc;,
Vimax) problem which is denoted by problem(P4).

7.1 The L//F(Vmax, Xc¢i) problem(P4):

The 1//F(Zci, Vmax) problem can be written as:
Min X¢;j
S.t.
Vimax < A, where A € [Vmax(Lawler) , Vimax(SPT)].

It is clear that the 1/F(Zci, Vimax) problem originates from 1// Xc; problem and 1//Vmax
problem, both problems are solvable in O(n log n) time. In order to find the set of Pareto
optimal points, we solve the problem of minimizing Xc; subject t0  Vyax< A, where A
corresponds to the Vmax value of a Pareto optimal point.
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Algorithm(3) for finding a set of all efficient solutions for problem(P4):
Step(0): Put A= Xp;, N={1,...,n}, K=n, t=Cax=2pi and set ¢ = (¢).
Step(1): Calculate v;, ¥ie N as follows:

0 if ¢ édi, i=1,...,n
Vi =93¢ —di if di<°i <di+pi' i=1,..,n

p; if di+pi Sci, i=1,..,n
Step(2): Find a job j*& N, such that
l.Vj*S A.

2.pp>pi, V5 1EN gnd Vi< A, if p= pi choose the job with  smallest vj-.
Then assign job j*in position K of ¢ =(c(K), 6).

If no job with vj=<A go to step(5).

Step(3): Set t=t-pjx, N =N-{j*}, K=K-1, if K >1 go to step(1), otherwise go to
step(4).

Step(4): Compute Vmax(o) for the sequence jobs 6 =(o(1) ,..., o(n)) and A=
Vimax -1, set t=Cpmax, N={1,...,n}, K=n, 6= (9), go to step(1).

Step(5): Stop.

Computational results for algorithm(3) for problem(P4):
8.1Test Problems:

Algorithm(3) was tested by coding it in matlab 7.9.0(R2009b) and implemented on Intel
Core (TM) i3 CPU M380 @ 2.53 GHZ, with RAM 4.00 GB personal computer. Test
problems were generated as follows: for each job j, an integer processing time p; was
generated from the uniform distribution [1,10]. Also, for each job j, an integer due date is
generated from the distribution[p;,Zpi]. Results for 10,15, 30 and 50 job problems are given in
Table (1) Because of page limitations, only five examples are given for each problem size.
Table(1) should be read as follows:

NEP =the actual number of efficient points for the problem at hand. Remember that the
procedure finds all these points.

MNEP = maximum possible number of efficient points for the problem at hand. Since an
efficient point could exist for each value of the maximum late work between V(SPT*) and
V(Lawler), this maximum possible number equals Vinax(SPT*) = Vimax(Lawler) +1.

From our computational results we conclude that:

(a) The number of efficient points is usually small.

Therefore, the decision maker should be able to make his choice.

(b) We can find all efficient points. This allows for a justified choice of a sequence that takes
both objective functions into account and that is not dominated by any other sequence. Very
attractive efficient points are found for all the test problems. In most cases we discovered
efficient point that were surprisingly close to the optimum value for both objectives.

Remark 1:
If we replace the criterion Vyax in problem(P4) by the criterion Frnax
E{Lmax, Tmax Vmaw Tmaxt then the efficient Algorithm(3) above can be used for their

solutions. Also for the 1/F(Zci, Tmax) problem, which is solved by Vanwassenhove and
Gelder [11]. This means that algorithm(3) is a general one and simple that can solve problems
of form 1//F(Z¢i, fmax)-

Analysis of the Three Criteria.
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First, we present the main multicriteria scheduling results that have appeared in the
literature. Hoogeveen[8] solves the problem 1//F(fmax, 9max) and the problem 1/F(fmax, Qmax,
hmax). He presented a polynomial algorithm for both problems and he showed that these can
be used if precedence constraints exist between the jobs or if all penalty functions are non-
decreasing in the job completion times. Hoogeveen[13] solves the general problem
UIF(EL ..., £2_), k finite integer number and each one of these penalty functions is
assumed to be non-decreasing in the job completion time.

There are two methods for dealing with conflicting criteria, the first one is hierarchical
minimization of the performance criteria f;, f,,..., fi, which are indexed in order of decreasing

importance. The second method is simultaneous minimization. The criteria are aggregated
into a single composite objective function F(f,, f,,..., fi), which minimized.

In our study we are looking for algorithms, that can be used for solving multicriteria
scheduling problem, which is to find the efficient solutions or at least approximation to it.
Hence we search for feasible solutions yielding the best compromise among objectives that
constitutes a so called efficient solutions set.

The 1//F(Z ¢;, Tmax, Vmax) Problem(P5):
In this section, we will try to find efficient (Pareto optimal) solutions for  1//F(Zci , T max,

Vmax)-
This problem can be defined as:

X N
Min T ax

Vma.x
s.t.
Ci = pi i1=1,...,n
Ci=C¢-nt Pi i=2,...,n > P(5)
Vi< pi i=1,...,n.
Vi<T; 1=1,...,n.
Ti> ¢ - dj i=1,...,n.
Ti>0 1= Y. J

It is clear that this problem is difficult to solve, we will present later local search
algorithm to find near optimal solution. This problem has the following special cases.

(1) The 1/Lex(Z ¢;, Tmax, Vmax) problem.
(2) The 1/Lex(Z €;, Vinax, Tmax) problem.
(3) The 1/LexX(Tmax, & €; ,Vmax) problem.
(4) The 1//LeX(T max, Vimax, & ;) problem.
(5) The 1//LeX(Vimax, & €; ,Tmax) problem.
(6) The 1/Lex(Vimax, Tmax & ;) problem.

Algorithm(4) for finding efficient solutions for problem (P5):
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Step(0): Put A= X p;, N={1,.....,n}, K=n, t=Cax= X p;, and 6= (9).
Step(1): Calculate T;, vi, ¥i€ N as follows:
Ti= Max {c; - di, 0}and vi=min{T;, pi}.
Step(2): Find a job j*& N ,such that
Tp<A and pj~ > pi, ¥j*, IEN gng Ti< A, if p=p; choose the job with smallest Tj- and if
T»=Ti choose the job with smallest vj~. Then assign job j* in position K of ¢ =(c(K), 0 ), If
no job with Tj=<A go to step(5).
Step(3): Set t=t-pj«, N =N-{j*}, K=K-1, if K >1 go to step(1), otherwise go to step(4).
Step(4): Compute Zcgiy, Tmax(0) and Vimax(o) for the sequence jobs o=(c(1),...,6(n)),
and set A= Tmax(0)-1, set t=Cax, N={1,.....,n}, K=n, 6= (), go to step(1).
Step(5): Put A=Vmax(c)-1, N={1,...,n}, K=n, t=Crax= X p;, and 6= (9).
Step(6): Calculate v;, ¥ie N as follows:

0 if ¢ sdi, i=1,..,n
Vi =3¢ —di if di<ci <di+pi, i=1,..,.n
P if di+pi soi, i=1,..,n

Step(7): Find a job j*€N, such that

V<A and pj=> pi , ¥j*, IE N gnd Vi< A, if p=p;i choose the job with smallest vj«. Then
assign job j* in position K of ¢ =(c(K), ¢ ). If no job with vj=<A go to step(10).

Step(8): Set t=t-pj«, N=N-{j*}, K=K-1, if K>1 go to step(6), otherwise go to step(9)

Step(9): Calculate Zcs() , Tmax(0) and Vmax(o) for the sequence jobs 6=(c(1),...,6(n)), go to
step().

Step(10): Stop.

The 1//F( ZwiCi, Tmax, Vmax) problem(P6):

In this section, we will try to find efficient (Pareto optimal) solutions for 1//F(XwiCi, Tmax,
Vmax) problem.

This problem can be defined as:

Ewici \
Min § To
vn'.la_x
s.t.
Ci = pi i=1,....n
Ci = C(i-n)* Pi i=2,...,n. > P(G)
Vi< pi i=1,...,n.
Vi<T; i=1,...,n.
Ti>c¢j- di i=1,...,n.
Ti=0 i=1,...,n.

Algorithm(5) for finding efficient solutior{for problem(P6):
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Step(0): Put A= X p;, N={1,.....,n}, K=n, t=Cmax= X p;, and 6= (9).

Step(1): Calculate T, vi, ¥ie N as follows:

Ti= Max {c; - di, 0} and vi=min{T;, pi}.

Step(2): Find a job j*& N, such that

T<A and pj/wj= > pilwi, ¥j*, 1€ N gng Ti < A, if pp/wjx = pi/w; choose the job with smallest
T and if Tp=T; choose the job with smallest vj=. Then assign job j* in position K of ¢ =
(o(K), o). If no job with Tj*<A go to step(5).

Step(3): Set t=t-pj«, N =N-{j*}, K=K-1, if K >1 go to step(1), otherwise go to step(4).

Step(4): Compute Zwe(i)Co(i), Tmax(0) and Vmax(c) for the sequence jobs 6 =(a(1),..., o(n)),

and set A= Tax(0) -1, set t=Cpax= Z p;, N={1,.....,n}, K=n, 6= (¢) and go to step(1).

Step(5): Put A=Vmax(0)-1, N={1,...,n}, K=n, t=Cyax, and o= ().

Step(6): Calculate v;, Wi N as follows:

0 if c, <d,, i=1,..,n
v,=<¢,-d, if d,<c <d;+p;, i=1..,n
P; if d+p;<c, i=1,..,n

Step(7): Find a job j*€N, such that

Vi< A and pj/wWj > pilwi , ¥j*1E N gnd Vi < A, if pp/wj= = pi/w; choose the job with smallest
Vj«. Then assign job j* in position K of ¢ =(c(K), 6 ). If no job with vj«<A go to step(10).
Step(8): Set t=t-pjx, N=N-{j*}, K=K-1, if K>1 go to step(6), otherwise go to step(9).

Step(9): Calculate Xws(iCo(i), Tmax(0) and Vmax(c) for the sequence jobs 6 =(c(1),...,6(n)), go
to step(5).

Step(10): Stop.
Example(2):Consider the problem 1//F(EZwiCi, T max, Vmax) With the following data:

i 1 2 [3 (4 s
D 10 3 |9 |1 |4
d; 20 14 |25 |29 |16
W, 4 1 |8 |5 |2
pil Wi | 5/2 3 |8 |15 |2

Hence, efficient sequences for the three-criterion problem(P6) of minimizing Zwici, Tmax and
Vmax-
SEQUENCES EW|C| Tmax Vmax

SWPT=(4,3,5,1,2) | 236 13 4

(4,35.2,1) 238 7 7

(45,1,2,3) 309 4 3

(4,5,2,1,3) 311 2 2

(5,2,1,3,4) 426 1 1
Conclusions

In this paper, the problems of scheduling jobs on one machine for a variety of multicriteria
are considered.
We proposed algorithms, which give all efficient solutions within the efficient range for the
problems 1//F(Zf;, fmax), 1//F(Zfi, fmax » Omax), Where Xfi= Xc; and frnax, OmaxE {Lmax,

Tmax, Vmax}-
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Table(1): Computational results

Problem | Problem | NEP | MNEP | Efficient Points
Size Number

(273, 8), (262, 9)

(208, 8), (189, 10)

10 (290, 7), (227, 8), (211, 9), (202, 10)

(194, 10)

(353, 7), (317, 8), (293, 10)

(388, 8), (354, 9), (337, 10)

(657, 9), (571, 10)

15 (752, 7), (613, 9), (511, 10)

(599, 9), (501, 10)

(618, 8), (474, 9)

(2737, 7), (2418, 8), (2283, 9), (2206, 10)

(1833, 9), (1755, 10)

30 (2275, 7), (2165, 8), (1861, 9), (1749, 10)

(2599, 5), (2499, 6), (2384, 7), (2283, 8), (2226, 9), (2214, 10)

(1982,10)

(6192, 6), (5869, 7), (5477, 8), (5110, 9), (4863, 10)

(6223, 9), (5518)

50 (5945, 7), (5794, 8), (5437, 9), (5228, 10)

(5715, 4), (5276, 5), (5105, 6), (4810, 7), (4652, 8), (4641, 9)
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NIOIRARINOIRFROIRINIPENNIEAERINWEAERLIAINDN

(5432, 10), (6607, 9)
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