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Abstract

The paper establishes explicit representations of the errors and residuals of approximate
solutions of triangular linear systems by Jordan elimination and of general linear algebraic
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding
errors in arithmetic floating-point operations. From these representations strict optimal
componentwise error and residual bounds are derived. Further, stability estimates for the
solutions are discussed. The error bounds for the solutions of triangular linear systems are
compared to the optimal error bounds for the solutions by back substitution and by Gaussian
elimination with back substitution, respectively. The results confirm in a very detailed form
that the errors of the solutions by Jordan elimination and by Gauss-Jordan elimination cannot
be essentially greater than the possible maximal errors of the solutions by back substitution
and by Gaussian elimination, respectively. Finally, the theoretical results are illustrated by
two numerical examples.
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Introduction

The Gauss-Jordan algorithm is ideally suited for vector computers [1]. This justifies the
study of the numerical stability of the algorithm under data perturbations and rounding errors
of floating-point arithmetic. It uses the same direct method of forward analysis as our
rounding error analysis of Gaussian elimination in [2]. Both the solution of general linear
systems by the Gauss-Jordan algorithm and of upper triangular linear system by Jordan
elimination are analyzed[3] The main results of the paper are optimal componentwise error
and residual estimates, bounds for the stability of solutions and residuals, and upper bound for
the errors of the solutions of Jordan elimination and Gauss-Jordan elimination in terms of the
optimal error bounds for back substitution and Gaussian elimination respectively. The results
will prove that the error of the Gauss-Jordan solution cannot be much greater than the
possible maximal error of the solution by Gaussian elimination with back substitution.
However, the residual bounds of the Gauss-Jordan solution can be big if the solution vector
has components with big relative errors.

The first step of the error analysis consists in the derivation of explicit analytical
representations of the errors and residuals of approximate solutions of linear algebraic
systems as functions of the data errors and the rounding errors of the arithmetic floating-
operations. Under standard assumptions on the data errors of the problem and the rounding
errors of the floating-point arithmetic these error and residual representations readily yield
strict componentwise and, save for terms of higher order in the accuracy constant . optimal
error and residual estimates for the solutions of upper triangular linear systems in the

following theorem {The residual of the computed approximate solution vector x of the
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triangular linear system is bounded componentwise, optimally with respect to the error
distributions by ‘U;—Z‘SUT :77DTD +77RTR’[2]

Where U upper triangular linear system, m accuracy constant, 0<mr< 4/(3n), 7np data
accuracy, mr rounding accuracy in application ngr<<np, matrix Z defined in the Jordan

algorithm see [1] for the solution of regular triangular linear systems;
u11X1+ U12X2+...+ UinXn=2;

UX =7 UppXoF...+ UppXn= 25
unnxnzzn

A general linear systems in the following theorem {the residuals of the approximate solutions

x of general linear systems by Gauss-Jordan elimination satisfy the componentwise optimal
estimates ‘ AX— y‘ <m,[4]. Where Y is column vector,n accuracy constant

A basic tool for the formulation of the error and residual bounds are the associated data,
rounding, and total condition numbers &°,o o of the components of the computed

solutions X,

and TP T, of the components of the associated residuals(AX —Yy)j. In
addition, using these condition numbers, the stability constants w. =& /o,°0f the solutions
and v, :TjR /TjD of the residuals are formed which measure the ratio of the contribution to the

total error bound due to the rounding errors in floating-point operations on the one hand and
the data perturbations on the other hand. The size of the possible residuals can be assessed by
means of the residual stability constants y;, for Jordan solutionsx; =0,i =1, 2,...,n, of upper

. . R . .
triangular linear systems the upper bound W, :T—js Pn j= 1,2, ..., nwhewe py" is the
DT - oo
maximal relative rounding condition number of the solution vector, n° rounding aceurauy
[4]

If ping <1.An analagus estimate holds for general linear system.

The magnitudes of the possible maximal errors are measured componentwise, using the
iti D R R 0 1
total condition numbers o;; and ¢, =12 ..., N, bY oy =07 11 + 07 MR, 07 =0} +0;

The term 5P, is the bound for the contribution of the data perturbations to the total
error of the solution, the term &°n,,cm, bound the contributions by eliminations in the lower
and in the upper triangle of the coefficient matrix, respectively establishes the estimate.

O-iI,DjUD +O_i(?j77R < q(GiI,DGUD +O—?,G77R)

+q2pmiG770-il,j77R’[3]

For solutions Yi i iO,)_(iG #0 i =1, 2, .., n, For sufficient small accuracy constant

n =max(np,ng) the constant g is close to 1.

1. The Gauss-Jordan Method

The following error analysis deals with the Gauss- Jordan algorithm for solving linear
systems
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We shall assume that A=(@;, )is nonsingular and that rows and columns of A have

been ordered such that A possesses a triangular factorization. In [5] we have shown how error
and residual estimates are used when pivoting is taken into account.

Let A= (A y) :(aiKl )be the nxn+1 coefficient matrix of the linear system (1). The
Gauss-Jordan algorithm successively eliminates by means of the pivotal equation t the

unknown x; where the vector X= (X; Xe1, ..., Xn) of (1) is obtained simply by
X =Wi/uii, i=1...,n from all other equations i= 1, 2, ...., n, i#, for t=1,..., n. The
coefficients A =(a, )" of the reduced linear systems thus obtained are specified by the
equations

ayt =al, —mu,,i=1..,nKkK

=1..,n+1

..(2)

Using the coefficients uy of the pivot equation t and the row multipliers m;, defined by
utk = a‘:k ) mit =
aitt/utt,i =12,...,n,i #t;
k=1..n+Lu, #0;m, =1,

For t=1, ..., n. In this way,
ayt=0izki=1..,nk=
1..tt=1..n

-.(4)

That is, in the first t columns of the matrix A1 all off- diagonal entries are zero. Hence
the coefficient matrix An:+1 has the form An= (D, w) with an n-by-n diagonal matrix D and
the vector w where
D =diag(U;y,...,Up, ;W = (w;),

n+1

insl =L..,n

o (5)

From the associated reduced linear system
DX=w:u;;X =
w;,i=1,...,n,
...(6)
The solution vector X=(X,..., Xn) of (1) is obtained simply by x,=w, /u;;,i=1,...,n, [6]

The residual of the computed approximate solution vector X of the triangular linear
system is bounded componentwise, optimally with respect to the error distribution by

UX -Z|<n" =noTP +nTF
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If x=0 fori=1, ..,nand p,m<1, the absolute and relative error of the approximate solution
X satisfy componentwise, in first order optimal error estimates holds.

X, — X < il
1-pmn
\ij,\g AN i_q,.. .0 [
\ X; \ 1-pun
(7)

Lemma: The vector of data condition numbers is bounded from below by:
o> 2‘?‘ — o ngsl2]

The rounding condition numbers can be written in the form &% > \Yn\-

Jordan elimination in comparison with back substitution

1.  The behaviour of the errors of approximated solutions of triangular linear systems by
Jordan elimination (J) will now be compared with that of solutions by Gaussian with back
substitution (G) in linear algebra, Jordan elimination brings a matrix to reduced row echelon
form, whereas gaussian elimination takes it only as for as row echelon form. Every matrix has
a reduced row echelon form, and this algorithm is guaranteed to produced it see [6]. It will be
shown that the vectors of data and rounding condition number o? ok of the Jordan solutions

can be bounded from above by the corresponding condition numbers 52 & of the solutions

by back substitution. This result means that the errors of the computed Jordan solutions X j
cannot be essentially bigger than the possible maximal errors of the corresponding computed

solutions Xg by back substitution.
2. when triangular linear systems are solved by back substitution the associated solution and

residual stability constants W, s, y/;  of the solutions Xic are bounded below and above

by
1 n+2—i .
<W,g <————, fori#n ii=
25 e =5 s fori,j=1,...,n
1 ga)jegir”z__] , forj#n
2+ ug  C T 2-(n- g
...(8)

These estimates are obtained from the error and residual bounds in [2]
3. Solving a triangular linear system both by Jordan elimination and by back substitution

gives two approximations X1, X for the searched solution vector x see [7].
These two approximations satisfy the error estimates of residual of the computed approximate
solution vector X of the triangular linear system is bounded componentwise, optimally with
respect to the error distributions by [ux—z|<n" =n,T® +5"TRin first order optimal
estimates, that is,

i X Pirin
X i 1-pmiin
Xig = X; < pi,.Gn
XiG 1_Pm,G77
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fori=1, ..,n, where

1. PnGn =1
Pmdn =1
3. pi, is defined o :‘ﬁ‘ A=1,...,n.
i Xi
4. X,;#0
5' XI,G ¢0

For comparing the error behavior of the two algorithms .We need the following result
Lemma[8] Let the two approximate solutions x i XG have non-vanishing components
and let the maximal relative total condition numbers of these solution be bounded by (pm;+

1
pm,o)n<§

Then the componentwise estimates ‘yj‘ < q[%s|\|%s| < q‘yj‘

are valid using the constant

q :1/[1_ Puin __puG1 ]>1’
1-pnin 1-pGn

andl—p,, j7#01—p,Gn =0

Lemma: Let the two approximate solutions x;,x; have

nonvanishing components and let the maximal relative total
condition numbers of these solutions be bounded by (pmj+ pmc)

11<% then the component wise estimates X, < ofXo|[Xo| < qx,| @r€ valid

Theorem: (under the assumption of above Lemma the estimates
1

1_q2a’i,jpn[1),e77R
provided denominador =0

D
O] <

qaiD,G

ol < E
2

L]
n+1—i
3 5 .) 3 N2 R
l—<—|In+——i|+=(n+1-i
{4( 3 j 2( )q pm,G}nR

when. 77y, is so small that the denominators are positive,[8]

qof; Holdfori=1,...,n

Solution of general linear system by Gauss- Jordan elimination
The solution of general linear systems Ax =Yy by Gauss- Jordan elimination will be

analyzed. In the context of rounding error analysis the algorithm is considered as being
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composed of Gaussian forward elimination and a subsequent solution of the upper triangular
linear system Ux =z by Jordan elimination see [3].
The computed trapezoidal factors L ,u, of Ai= (A, y) or, under data perturbations,

A1 = (A, y) satisfy, according to [2, 1. (13)], the relation LU = A + Fq
....(10)

With an error matrix Fg. Using trapezoidal factorization A;=LU; of the n-by-(n+1)
coefficient matrix, one readily derives from (10) the equation

ALU, + LAU, = AA +F,

..(11)

Since U; x=Ux-z=0

...(12)

ALU, + LAU, = AA + F; Implies the representation AU, X = [_1(AA& +F5)X
..(13)

This result establishes the dependence of the errors Au, of the n-by-(n+1) coefficient

matrix U of the upper triangular linear system, which has to be solved by Jordan elimination,
upon the data errors and the rounding errors in forward elimination, where Fg denotes the
errors matrix of forward elimination in and F; the errors matrix of the solution by Jordan
elimination.

Comparsion of Gauss-Jordan elimination with Gaussian
elimination

The behavior of the error of the solution of general linear system by Gaussian
elimination on the one hand and Gauss-Jordan elimination on the other hand will be compared

with each other. In both cases we assume the same perturbed data A,y.Then for both

methods also computed triangular factors E,Gof Kand computed coefficients U,z of the

upper triangular factor system are the same. The vector of data and rounding condition
numbers of Gaussian elimination are specified by (see [8, 64]).

The solution vector X_j,gof the two method satisfy error estimates of the form

x| < Gl ‘Z:Xi‘< Pill
1-pm”’| X | 1-pm"’

i=1...,n

The following equation shows that the total condition numbers

o —77—'30'i':)j+’7—R6-R i=1..., n,UZmaX(ﬂDanR)'

Mg My T
Of the Gauss — jordan algorithm can be bounded from above by for corresponding total

condition number o;c of Gaussian elimination for sufficiently small accuracy constant n, the
condition number o;j; is, in essence, less than or equal to E(n+1—i) — times o;; because the
2

constant g and the denominator are close to 1.The condition number o; constitute , save for

terms of higher order in n, optimal bounds for the absolute errors Ax, = xT— x;.Hence, the

result say that for sufficiently small n the absolute errors Axi; of the solutions by Gauss-
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Jordan elimination cannot be, in absolute value, essentially grater than g(n +1-i)—times the

possible maximal errors AX; 5 = X; 5 — X;,1,,...,n of the solution by Gaussian elimination.

Numerical example

The results of the paper are now illustrated by simple numerical example. The first
example is the upper triangular linear system
0.826354 x,+0.432175 x,+0.613256 x3+0.614227 x, = 0.722872

0.000547x,+0.814712 x3+0.816328 x, =0.15424
0.915316 x3+0.814275 x4 =0.109844 ...(14)
0.982176 x, =0.602286

Of Peters-Wilkinson [2].Table 1 contains the condition numbers, stability constants and the
solution by Jordan elimination which were computed in high accuracy and then rounded to 6
decimal digits. Table 2 shows the corresponding results of the solution by back substitution.

Since the data condition numbers ,° ;o in essence, depend on the problem only but not
on the algorithm these condition numbers coincide in both algorithms in the first 6 digits. The
residual condition number riFfj =3343 of the Jordan solution and the corresponding residual
stability constant . ; =1699 (see table 1) are much bigger in this example than those of the
solution by back substitution where 7 <1.3 for j=1,..., 4. (see table 2)

In contrast, the relative rounding condition numbers of the solutions and thus the
solution stability constants w; do not differ much for the two algorithms.

2. The second example is a linear system with the 5x5 Hilbert matrix A of Wilkinson [10,
I11, 34] and the right-hand side 1.

50*10!( 1 t
A = | — , y = 111111111
10® (i+k)i,k_l ..... 5 vh=( :
....(15)

The first 6 digit of the solution, the condition numbers and stability constants for Gauss-
Jordan elimination and Gaussian elimination, all computed in high accuracy, are found in
table 3 and table 4.

The matrix A is ill-conditioned so that the relative data and rounding condition numbers

piD,piR are big in value. The relative error of the computed solution may effect up to 6 decimal
digits.

Nevertheless, the maximal residual stability constant Vi —=15.50f Gauss-Jordan elimination is
only about 5.3- times bigger than the maximal residual stability constant y, o = 2.9 of Gaussian

elimination.
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The relative rounding condition numbers piR of the two algorithms are practically equal.

Therefore also the stability constants WI of the two algorithms coincide in the leading decimal
digits.

Conclusion

Error and residual bounds can be computed numerically together with the solutions of
the linear systems. The calculated condition numbers and stability constants of the solutions
by Gauss-Jordan elimination as well as by Gaussian elimination are determined. The
examples show in accordance with the theoretical results that the numerical solutions by the
two methods are of comparable accuracy in spite of the ill-conditioning of the two problems.
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Table(1): condition numbers, stability constants and solution of the Jordan algorithm
for triangular linear system (15).

[ Xi PiD PiR Wi TiD TiR i

1 0.413155 4639 7207 1.55 1.97 3343 1699
2 0.614928 5955 3313 0.56 1.00 3.20 3.19
3 -0.425517 5.13 4.56 0.89 0.99 2.28 2.28
4 0.613216 2.00 1.00 0.50 1.21 0.60 0.50

Table(2): condition numbers, stability constants and solution by back substitution of the
triangular linear system (15).

i }i PiD ,DiR W TiD TiR \Pi
1 0.413155 4639 5531 1.19 1.97 2.54 1.29
2 0.614928 5955 7100 1.19 1.00 1.19 1.19
3 -0.425517 5.13 4.56 0.89 0.99 1.28 1.28
4 0.613216 2.00 1.00 0.50 1.21 0.60 0.50

Table(3): condition numbers, stability constants

algorithm for the linear system Ax=y.

and solution of the “Gauss -Jordan”

[ }i o piR W; 7’ z'iR ¥

1 1.65344 1.07 1.36 1.27 1.29 2.00 15.5
2 -2.31481 8.69 1.11 1.28 5.05 1.61 15.3
3 9.25926 7.33 9.38 1.28 8.90 1.32 14.8
4 -1.38889 6.34 8.13 1.28 7.72 1.12 14.5
5 6.94444 5.59 7.18 1.28 6.82 9.69 14.2

Table(4): condition numbers, stability constants and
of the linear system Ax=y.

solution of “Gaussian elimination”

[ i PP of W P o ¥

1 1.65344 1.07 1.36 1.27 1.29 1.93 1.50
2 -2.31481 8.69 1.11 1.28 1.05 2.63 2.50
3 9.25926 7.33 9.38 1.28 8.90 2.47 2.77
4 -1.38889 6.34 8.13 1.28 7.72 2.21 2.86
5 6.94444 5.59 7.18 1.29 6.82 1.99 2.92
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