The Study of Electric Quadrupole Transition (E2) in 56Ba and 62Sm Nuclei

F.A. Jassim ,Z. A. Dakhil* ,Y.H. Jaber

Department of Physics , College of Education, IbnAl-Haitham, University of Baghdad

* Department of Physics, College of Science, University of Baghdad Received in: 9 May 2011, Accepted in: 16 November 2011

Abstract

Transition strengths $|\mathbf{M}(\mathbf{E}\,2)|^2_{w.u.} \downarrow$ for gamma transition from first excited 2_1^+ states to the ground states that produced by pure electric quadrupole emission in even –even isotopes of ${}_{56}$ Ba and ${}_{62}$ Sm have been studied through half- lives time for 2_1^+ excited states with the intensities of $\gamma_{0.}$ transitions measurements and calculated as a function of neutron number (N). The results thus obtained have shown that; the nuclides with magic neutron number such as ${}_{56}$ Ba¹³⁸ and ${}_{62}$ Sm¹⁴⁴ have minimum value for $|\mathbf{M}(\mathbf{E}\,2)|^2_{w.u.} \downarrow$.

Key Words: electric quadruple transitions strength $[M(E2)]^2$.

Introduction

The WeissKoph single-particle transition probability B(EL,ML) is defined by [1] as the ratio of the single-particle half-life time to the experimental half-life time for gamma transition

Where L is the multipolarities L=1,2,3,..... $L \neq 0$

While the γ -ray transition strength $[M(EL,ML)]^2$ is defined as the ratio of gamma width to gamma width in Weiss Kopf unit (W.u) [2]

 $[M(EL,ML)]^{2}_{W.u} \downarrow = \frac{\Gamma(EL,ML)_{exp}}{\Gamma(EL,ML)_{W.u}} \dots (2)$ Since $\Gamma_{\gamma} T \approx \hbar \dots (3)$ Where; Γ_{γ} is the total width $\Gamma_{\gamma} = \sum \Gamma_{\gamma 1} \dots (4)$ $\Gamma_{\gamma 1}$ is the partial gamma width T is the mean life time of initial level $T = \frac{\tau_{1/2}}{\ln 2} \dots (5)$ $\hbar = \frac{h}{2\pi} = 0.65822 \times 10^{-15} \text{ eV.s}$ h is Plank constant. From eqs. (2, 3 and 4). can be concluded

Ibn A	Ibn Al-Haitham Journal for Pure and Applied Science						يقية	فة و التطب	رم الصرة	الهيثم للعلو	مجلة إبن	
No.	3	Vol.	25	Year	2012	(元) - (2012	السنة	25	المجلد	3	العدد

Specific expression for $B(EL,ML)_{W.u}$ suggested by M.J.Martin [2] is :

If the transition is of mixed multi polarity M1 and E2 ref.[3] then

$$\delta = \pm \sqrt{\frac{\Gamma(E2)}{\Gamma(M1)}} \quad \dots \dots (8)$$

Where δ is the mixing ratio

and $\Gamma_{\gamma} = \Gamma(M1) + \Gamma(E2)$ (9)

For a pure E2 transition , $\delta=0$ and hence

Then the transition strength for electric quadruple transition E2 can be calculated by using eq.(2) in the form :

On the basis of an extreme single particle model the value for the $\Gamma(E2)_{W.u}$ in eV. ref.[4]

$$\Gamma(\text{E2})_{\text{W.u}} = 4.7907 \text{X} \ 10^{-23} \ A^{73} E_{\gamma}^{5} \dots (13)$$

Where E γ in keV. for nuclear of mass <u>No.</u> A and the corresponding reduced transition probability is :

B _{w.u.}(E2) = 0.05940
$$A^{4/3} e^{2} (fm)^{4} \dots (14)$$

The relation between $B(E2) \downarrow =B(E2;2\rightarrow 1)$ and $B(E2) \uparrow =B(E2;1\rightarrow 2)$ as given by ref [2] is:

$$B(E2) \uparrow = \frac{(J_{f+1})}{(J_{i+1})} B(E2) \downarrow \dots \dots (15)$$

Results of Calculations

The electric quadrupole transition strengths $|M(E2)|_{w.u.}^2 \downarrow$ for γ -ray from $2_1^+ \rightarrow 0_1^+$ have been calculated as a function of neutron number (N) using eq. (11) with aid of the experimental data reported in ref. [1] to even –even isotopes for; ${}_{56}Ba$ (122 $\leq A \leq 146$) and ${}_{58}Ce$ (124 $\leq A \leq 148$) which have only one transition for γ is γ_0 with intensity (100%)E2.

The results of calculations are presented in table (1) for ${}_{56}Ba$ nuclides and in table (2) for ${}_{62}Sm$ nuclides. The transition strengths $|M(E2)|^2_{w.u.} \downarrow$ are plotted as a function of neutron number (N) as shown in Fig. (1) and Fig. (2) for ${}_{56}Ba$ and ${}_{62}Sm$ respectively. For the sake of comparison, the $|M(E2)|^2_{w.u.} \downarrow$ values are converted to B (E2) $e^2 b^2 \uparrow$ using eq. (12) and then eq.(15), the present B (E2) $e^2 b^2 \uparrow$ values of γ_0 -transitions in ${}_{56}Ba$ and ${}_{62}Sm$ nuclides are compared with the experimental values as well as with other of various theoretical models. this comparison are presented in tables (3and4) and shown in Figs. (3 and4) respectively.

Discussion

In view of tables (1and2) one can point out that the experimental values of partial gamma width Γ (E2) are larger than that estimated by Weisskopf unit $\Gamma_{w.u.}$ (E2) especially when the nucleon number deviated more and more from the magic neutron number. Since the cooperative effects appear between nucleons. Also, it appears that the single particle shell

Ibn A	l-Haitha	m Journal	for Pure	e and Applie	ed Science		ية	فة و التطبية	م الصر	الهيثم للعلو	مجلة إبن	
No.	3	Vol.	25	Year	2012	Л.)-	2012	السنة (25	المجلد	3	العدد

model is valid particularly near the closed shell, a minimum value for Γ (E2) to $\Gamma_{w.u.}$ (E2) is obtained at magic neutron number so that the calculated $|M(E2)|^2_{w.u.} \downarrow$ which are limited to the even – even nuclides and shown in Fig.(1) and Fig.(2) reproduce the diffraction minimum at the magic neutron number N= 82 which is included in ${}_{56}Ba$ and ${}_{62}Sm$ nuclei.

The discrepancy of the calculated $|M(E2)|^2_{w.u.} \downarrow$ for 196.1 keV $2^+_1 \rightarrow 0^+_1$ transition from 196.1 keV level in ${}^{122}_{56}Ba$ gives an indication that the half life time for 2^+_1 state reported in ref. [1] is inaccurate and that the value of $|M(E2)|^2_{w.u.} \downarrow$ may be ruled out. If the experimental value of B (E2)e² b² \uparrow for 196.1 KeV. $(2^+_1 \rightarrow 0^+_1)$ transition from 196.1 KeV.

level ref.[5] is used to calculate the half- life time for this level (348.0 ± 34.5) Ps. will be obtained instead of the value reported in table (1).

The reduced transition probabilities B(E2) values of γ_0 -transitions for the following nuclides ; $^{140}_{62}$ Sm, $^{142}_{62}$ Sm, and $^{146}_{62}$ Sm listed in table (2) are not presented because the experimental data such as (half life time t_{1/2} for 2⁺ excited states and the intensities of γ_0 -transitions) are not available. The observed location of the diffraction minimum at N=82 are very well reproduced in ${}_{56}$ Ba and ${}_{62}$ Sm nuclei.

Figures(3,4) show the comparison of the present values of B(E2) with those reported in ref.(5) of ; experimental, Global best fit, Single Shell Asymptotic Nilsson Model (SSANM) and Finite –Range Droplet Model(FRDM) values.

The present results together with the other results seem to be a good behavior at all regions of N and close to each other except the SSANM results of ref. [5] are departed by some amount but slightly for Ba nuclides, while the results of FRDM of ref .[5] are deviated for Sm at 80 < N < 84. The observed diffraction minimum is very well reproduced by all models except for FRDM results [5].

Finally the present values together with the Global best fit values are in a good agreement with those of the experimental results so it should be helped in testing the measured electric quadrupole transitions E2 values predicted by different theoretical models.

References

- 1. Fore stone, R.B. and Shirley, V.S. (1999), Table of Isotopes, 8th edition, John Wiley and Sons.
- 2. Martin, M.J. (September 27,1982), Reduced Gamma-Ray Matrix Elements, Transition Probabilities, and Single-Particle Estimates., Oak Ridge National Laboratory, Operated by Union Corporation, Nuclear Division .
- 3. Yazar ,H.R., Uluer I., Unaloglu V., and Yasar S., (2010), The Investigation of Electromagnetic Transition Probabilities of Gadolinium Isotopes with the IBFM-Model ,Chinese Journal of Physics ,<u>48(</u>3):344.
- 4. Brussard, P.J. and Gland emans, P.W.M .,(1977) ,((Shell –Model Applications in Nuclear Spectroscopy)) North-Holland .Publishing Company Amsterdam , New York, oxford .
- 5. Raman, S.; Nestor, C.W. and Tikkanen, J.R. (2001) ,Atomic Data and Nuclear Data. Tables, <u>78</u>: (1).

Ibn Al	l-Haitha	m Journal	for Pure	and Applie	ed Science		قية	فة و التطبي	م الصر	الهيثم للعلو	مجلة إبن	
No.	3	Vol.	25	Year	2012	Л.)-	2012	السنة (25	المجلد	3	العدد

Table (1): Transition strengths $[M(E2)]^2_{W.u.} \downarrow$ of γ_0 - rays from the $2^+_1 \rightarrow 0^+_1$ in ${}_{56}Ba$

nuclides with the partial gamma widths in W.u., total gamma widths ,mean life times for first excited states, with experimental values reported in ref.[1]and used in present work

	Е	xperimental	values Ref. [1	.]	T _(Ps)	$\Gamma_{\text{tot}} \times 10^{-6} (\text{eV})$	Γ _{W.u.} (E2)	[M(E2)] ² _{W.u} .↓
Α	Ν	E _i (keV)	Eγ ₀ (keV)	t _{1/2} (Ps)	I (Ps)	$1_{tot} \times 10^{-1} eV$	× 10 ⁻⁶ (eV)	[WI(E2)] W.u•↓
122	66	196.1	196.1	0.297 (27)	0.42857(39)	1535.828(139620)	0.0084	(18.270±1.6)x10 ⁴
124	68	229.89	229.9	297 (26)	428.571(37518)	1.5358(1344)	0.01902	80.745 ± 7.069
126	70	256.09	256.1	108 (4)	155.844(5772)	4.2235(1564)	0.0333	126.71±4.69
128	72	284	284	100.0(45)	144.3000(64935)	4.5614(2052)	0.05709	79.89±3.60
130	74	357.38	357.41	37(4)	53.3911(57720)	12.3281(13327)	0.18392	67.028±7.246
132	76	464.588	464.55	15.1 (11)	21.7893(15873)	30.2080(22005)	0.6969	43.346±3.158
134	78	604.723	604.72	5.12 (9)	7.38817(12990)	89.0900(15660)	2.6565	33.636±0.589
136	80	818.515	818.514	1.930(15)	2.78499(2160)	236.3424(18368)	12.3097	19.20±0.15
138	82	1435.818	1435.795	0.195 (5)	0.28139(720)	2339.184(59979)	204.972	11.220±0.288
140	84	602.35	602.35	9.7(41)	13.9971(59163)	47.0248(198764)	2.7615	17.029±7.198
142	86	354.597	354.598	66 (4)	95.2381(57720)	6.9112(4188)	0.21338	32.389±1.963
144	88	199.32	199.326	700 (30)	1010.10(4329)	0.6516(279)	0.01137	57.275±2.455
146	90	181.05	181.02	860(30)	1240.98(4329)	0.5303(165)	0.00715	74.030±2.582

Table (2): Transition strengths $[M(E2)]^2_{W,u} \downarrow$ of γ_0 - rays from the $2^+_1 \rightarrow 0^+_1$ in ${}_{62}$ Sm nuclides with the partial gamma widths in W.u., total gamma widths ,mean life times for first excited states, with experimental values reported in ref.[1]and used in present work

		erimental	Exp vales Ref.[1]		T _(Ps)	× 10 ⁻⁶ Г	Γ _{w.u} (E2)×	[M(E2)] ² _{W,u} .↓
А	Ν	E _i (keV)	$E\gamma_0$ (keV)	t _{1/2} (Ps)	I (Ps)	tot (eV.)	10 ⁻⁶ (eV.)	[141(122)] W.u•↓
134	72	163	163	420 (40)	606.06(5772)	1.0860(1034)	0.00378	287.3247 ± 27.3643
136	74	254.91	254.9	88 (9)	126.980(987)	5.18340(53011)	0.036062	143.7366± 14.7002
138	76	346.9	346.9	33(7)	47.619(10101)	13.8224(29320)	0.17163	80.5365 ± 17.0835
144	82	1660.2	1659.8	0.084(3)	0.1216(36)	5410.924(16046)	454.740	11.8646 ± 0.3519
148	86	550.265	550.284	7.7 0 (15)	11.1110(2165)	59.239(1154)	1.89199	31.3103 ± 0.6099
150	88	333.863	333.97	48.4 (11)	69.8410(15873)	9.4240(2141)	0.1583	59.5351 ± 1.3531

Table (3):The calculated reduced transition probabilities B (E2) $e^2b^2 \uparrow$ values are compared with that of experimental, Global best fit and, theoretical predications for ₅₆Ba nuclides.

	A N	(keV) F		B(E2; $2^+_1 \to 0^+_1$) e ² b ²									
A	N	(keV) E_{γ_0}	Experimental	Present work	Theoretical values Ref.[5]								
			values of Ref[5]	values	Global Best fit of	SSANM	FRDM						
118	62	194	-	-	1.72±0.30	1.882	2.448						
120	64	183	-	-	1.82 ± 0.32	1.881	2.254						
122	66	196	$2.81~\pm~0.28$	(3289.63±299.05)	$1.67~\pm~0.29$	1.854	2.06						
124	68	229	2.09 ± 0.10	1.486 ± 0.130	1.41 ± 0.25	1.821	2.031						
126	70	256	1.75±0.09	2.382±0.088	1.25 ±0.22	1.787	1.753						
128	72	284	1.48 0.07	1.533 ± 0.690	1.11 ± 0.19	1.595	1.287						
130	74	357	1.163±0.016	1.313 ± 0.142	0.88 ± 0.15	1.336	0.797						
132	76	464	0.86 ±0.06	0.867 ± 0.063	0.67 ±0.12	1.092	0.555						
134	78	604	0.658 ± 0.007	0.684 ± 0.012	0.51 ±0.09	0.874	0.281						
136	80	818	0.410 ± 0.008	0.400 ± 0.065	0.37 ± 0.06	0.682	< 0.001						
138	82	1435	0.230±0.009	0.238 ± 0.006	0.210±0.037	0.468	< 0.001						
140	84	602	0.45±0.19	0.368± 0.156	0.50 ± 0.09	0.907	< 0.001						
142	86	359	0.699±0.037	0.714 ± 0.021	0.82 ± 0.14	1.256	0.631						
144	88	199	1.05 ±0.0 6	1.286± 0.055	1.47 ± 0.26	1.634	0.989						
146	90	181	1.355±0.048	1.694± 0.059	1.60 ±0.28	1.886	1.584						
148	92	141	-	-	2.03 ± 0.35	2.115	2.467						

(Ibn Al-Haitham Journal for Pure and Applied Science						-	يقية	لة و التطب	م الصرف	الهيثم للعلو	مجلة إبن	•)
	No.	3	Vol.	25	Year	2012	Π.)-	2012	السنة	25	المجلد	3	العدد	

Table (4): The calculated reduced transition probabilities B (E2)e ² b ² †values are	•
compared	

				$B(E2; 2^+_1 \to 0^+_1) e^2 b^2$									
А	Ν	(keV) E_{γ_0}	Experimental	Present work	Theoretical values Ref .[5]								
		10	values of Ref[5]	values	Global Best fit of	SSANM	FRDM						
130	68	122	-	-	3.1 ± 0.6	3.143	4.107						
132	70	131	-	-	2.9 ± 0.5	3.096	3.889						
134	72	163	4.2 ± 0.6	5.863 ± 0.558	2.31 ± 0.40	2.824	3.714						
136	74	254	2.73 ± 0.27	2.991 ± 0.306	1.46 ± 0.26	2.451	2.027						
138	76	346	1.41 ± 0.23	1.710± 0.363	1.06 ± 0.19	2.093	1.253						
140	78	530	-	-	0.69 ± 0.12	1.764	0.606						
142	80	768	-	-	0.47 \pm 0.08	1.467	< 0.001						
144	82	1660	0.262 ± 0.006	0.266 ± 0.008	0.216 ± 0.038	1.122	< 0.001						
146	84	747	-	-	0.48 ± 0.08	1.815	< 0.001						
148	86	550	0.720 ± 0.030	0.729 ± 0.014	0.64 ± 0.11	2.337	1.161						
150	88	333	1.350 ± 0.030	1.412 ± 0.032	1.05 ± 0.18	2.886	2.019						
152	90	121	3.46 ± 0.06	-	2.8 ± 0.5	3.246	3.059						

Fig. (1): The transition strengths $|M(E 2)|^2_{w.u.} \downarrow$ for γ_0 -transition as a function of neutron number (N) in ₅₆Ba nuclides.

Fig. (2): The transition strengths $|M(E2)|^2_{w.u.} \downarrow$ for γ_0 -transition as a function of neutron number (N) in $_{62}$ Sm nuclides.

Fig.(3): Comparison between the B (E2) \uparrow values of the present work for 56Ba nuclides with Global, experimental and other theoretical results

Ibn Al-Haitham Journal for Pure and Applied Science		مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 3 Vol. 25 Year 2012	(刀)	العدد 3 المجلد 25 السنة 2012

Fig. (4): Comparison between the B (E2) ↑ values of the present work for₆₂Sm nuclides with Global , experimental and other theoretical results.

Ibn A	l-Haithai	n Journal	for Pure	and Applie	ed Science	
No	3	Val	25	Voar	2012	ĺ

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية العد 3 1 المجلد 25 السنة 2012

دراسة لانتقالات رباعي القطب الكهربائي ,₅₆Ba في نويدات (E2) في نويدات (E2

فاطمة عبد الأمير جاسم ، زاهدة أحمد دخيل * ، يوسف هاشم جابر قسم الفيزياء ،كلية التربية – أبن الهيثم، جامعة بغداد * قسم الفيزياء، كلية العلوم، جامعة بغداد استلم البحث في : 9 ايار 2011 قبل البحث في: 16تشرين الثاني 2011

الخلاصة

حسبت قوى الانتقال $\left| M(E2) \right|_{w.u.}^2 | W(E2) |_{w.u.}^2 | U(E2) |_{w.u.}^2 | U(E2) |_{w.u.}^2 | U(E2) | U$

الكلمات المفتاحية : قوى الانتقال لرباعي القطب الكهربائي ↓ المفتاحية : قوى الانتقال لرباعي القطب الكهربائي