Preparation Of Ferrocene Derivatives Of Niobium IV

A.W.M. Abdulla

Department of Chemistry, College of Education - Ibn Al. Haetham, University of Baghdad

Received in: 26 August 2012 Accepted in: 20 November 2012

Abstract

This study included the preparation of the dihalogens -1,3 metalla-2[3] ferrocenophanes like Cp2NbS2Fc,(tBuCp)2NbS2Fc,Cp2NbSe2Fc and (tBuCp)2NbSe2Fe where (Fc=ferrocence) These complexes has been prepared from the reaction of (R)₂ NbCl₂ with FCLiM₂, where(R=Cp,tBuCp) (M = S,Se) under refluxing in toluene, the reaction was carried under Argon atmosphere.

These complexes were characterized by elemental microanalysis, Masse spectra scopy, nuclear magnetic resonance (¹HNMR) and melting points.

Key words: Ferrocene, Niobium, Selenium, Sulfur, Inert Atmosphere Organometalic complexes

Introduction
The early studies consist the reaction of the compounds as follows
2MeCpli +NbCl4 (MeCp)2 NbCl2 [1] And products like (MeCp)2NbOCl, (iPrCp)2 NbOCl. CpNbCl4 etc, by other side ferrocene has
And products like (MeCp)2NbOCl, (iPrCp)2 NbOCl. CpNbCl4 etc, by other side ferrocene has
much derivatives with transition metals like Zr,Ti,Hf,Co,Mn and many others [2]
To understand the Niobium compounds properties we must know something about it physical
properties like density mpc bpc covalent diameter as follows 8.57 2470 4927 0.134
In base temperature Niobium becomes super conductor, Niobium halogene derivatives as
Niobium tetra chloride which react with ferrocene to produce the complexes of our work.
Ferrocene has two iso energetic [3] conformations eclipsed and staggered [3][4].
but the x-ray and electron diffraction indicate an eclipsed conformation, the rotation barrier
about the iron- Cp ring axis is very weak (2-5kcal.mole), thus the rotation about that axes
is, so in fluid solution we find only one 1,1 disubstituted isomer [5,6], because the free
rotation makes all position on the first ring equivalent to the second ring
The ferrocene molecular orbital diagram shows various metal ring interactions,
(Cp Fe) λ (Cp Fe) and (Cp Fe) so the reaction of dichaleogene with
(Ti,Zr,Hf) underegoes all the important reactions of the early works [7,8].
But reaction between niobium derivatives and ferrocene derivative are not found, so our
work focus to prepare new complexes of ferrocene Niobium derivatives.
Th. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Results and dissuasion

To obtain th	ese complexes we	follow the procedure	bellow
(RCp)2NbC	12 + Fc(MH)2		(RCp)2NbM2Fc
Cp2NbCl2 +	- Fc(MH)2		Cp2NbM2Fc
R = +Bu	Fc = Ferrocen		
Cp = C5H5	M = S,Se		

NMR Study

In $CdCl_3$ we get a clear signals which assist groups of massive For the ferrocene between two to four ,there is a variety of chemical displacement without any change of the morphology of the NMR spectrum [10] , the comparison between the spectrums of (S) and (Se) complexes leads to the fact that there is a displacement toward the faible field of the forrocenic massives [11] of (S) complexes than that of(Se) . The effect of the free electron pair [12] of (S) or (Se) toward the other (H) atom of C5H5 ring neighbor at the proton , we constat that the ring torsion is due to the steric [13,14]

Experiments

All the complexes performed under Inert gas preparation of

- A. **Cp2NbS2Fc**:-To a solution of FcS2 Li Tmeda (0.7)gm(1.8)m mol in (20) ml of toluene /THF (2/1), a solution of Cp2NbCl2 (0.5) gm (1.7) m mol in (20)ml of toluene was added, the mixture was refluxed for (30) minutes with stringing an orange crystal obtained (0.55)gm yield (60%) mp 260 dec
- B. Cp2NbSe2Fc:-To a solution of FcSeH2 A (0.42)gm (1.2)ml in (30ml) of (n) toluene a solution of Cp2NBCl2 (0.34)gm (1.18)m mol in (20) ml of toluene was added, the maximum was refluxed for (2) hours with stirring, an orange crystals obtained (0.42)gm (61%) yield mp mp260 C
- C. **(tBuCp)2NbS2Fc:** To a solution of (0.4) gm (01.1)m mol of (tBuCp)2NbCl2 and (0.3) gm (1.1) m mol of FcS2H2 was added then 0.56 ml of Net3 in 50 ml of toluene, the mixture was stirred at 70 C for 3 hour , the product was isolated by chromatography , after recrystallization in hexane, we obtained red crystals (0.3)gm 18yeild F 260
- D. (tB4Cp)2NbSe2Fc:-To a solution of (0.5)gm (1.2)m mol of (tB4Cp)2NbCl2 and (0.4)gm (1.1)m mol of FcSeH2 In 50 ml toluene/THF (2/I)then 0.65 ml of Net3 was added the mixture stirred at 88 C for 3 hours, the product was isolated by chromatography after rercystalisation in hexane weobtained orange crystals f 260 C 56% yield 50% (0.5)gm (0.7) m mol

Instruments:

mpc by electro thermal digital mp apparatus TLC: glass plats coated with merckgelC.F.250 silica gel NMR Joel fx(100) of Fourier trans former Chromatography kiesel gel type 3300 (70 ev at 200C) Analysis CNRS France

Reference

- 1- Davison, A. and smart, C. (1979) metalchem,174-322 "symmetrically distributed ferrocenes IV.the preparation and spectral studies of some (3) ferrocenophanes" J.Organ,174:321-334
- 2- Osborne, G.; G.A.R.E(1981) Holand Org. metal chem. 205-395 "synthetic and structural studies on some [3] ferro cerophanes.205issue(3):
- 3- Osborne,G. (1984) Organometal chem.29-226 "synthetic and structural studies on some 1,3di Seiena –[3] ferrocenophanes of carbon, silicon and tin ".
- 4- Wilkinson, G.(1975) J. Organometalchem 100-273 "the Iron sandwich ".

No. 3 Vol. 25 Year

2012

السنة (2012

25

المجذ

نعدد

- 5- Gautheron and Taninturier ,G. (1984) .J.Organometal 34-262 "conformation de metalla diselena ferrocenophanes".
- 6- Hiller, S.A.; Tremaine, J.F. (1959) Di cyelopenta dienyl iron wiley, newyork
- 7- Abdulwahid, A. (1985) Synthesis et Etude physic chimique de complexes metallocenique (7).
- 8- Sato ,M. and Yoshi 'T. (1974) Organometal chem..67-399 "selenium and fellurim derivatives of di -π-cyclo penta dienyl –titanium (IV) and Zirconium (IV)
- 9- Francis A. Carey. (2006) 6th ed, Mc Graw –Hill, Newyork Organic chemistry P557.
- 10-Ray, P.O. Rrewster (2007) Organ metallic compounds
- 11-Cardorell and François (2008) Natural handbook Springer, London, Newyork.
- 12-Crabitree, R.H. (2005) –the Organometallic chemistry of the Transition metals ,Wiley ,Newyork 3rd edd.
- 13- Yamamoto, A. (mgo) Organotransition metal chemistry, Wiley, Newyork
- 14-Elshenbroich, Ch.; Salzer, A. (2006) Organometallics, VCH, Weinheim, 4th ed.

Table(1): ¹HNMR spectral data for ligands and complexe (chemical shift) δ in p.p.m

Complex	Ср	C_5H_5
Cp ₂ NbS ₂ fc	5.9(5)	5.2(1) 4.5(1) 4.0(2)
Cp ₂ NbSe ₂ fc	5.92(5)	4.94(1) 4.38(1) 4.31(1) 4.1(1)
Complex	tBu	$Cp + C_5H_4$
(tBuCp)2NbSe2fe	1.15(9)	576(2) 5.6(1) 5.3 (1) 5.4 (1) 4(1)
	6.42(1)	.5
(tBaCp)2NbSe2fe	1.13(9)	4.98(1) 4.1(1) 4.0(1)
	5.62(1)	3
	5.01(1)	33

Table (2): physical properties

Table (2): physical properties						
Compound	mp	color	weight of Nb chloride	weight of Fc M2Li	Yield	
Cp2 NbSe2Fc	260>	Orange	0.52gm	0.74	60%	
Cp2NbSe2Fc	260>	Orange	0.42gm	0.42	61%	
(tBuCp)2Cp2NbSe2Fc	260>	Red	0.7gm	0.54	48%	
(tBuCp)2Cp2NbSe2Fc	260>	Orange	0.37gm	0.41gm	50%	

Table (3): masse spectral data for the complexes

Table (3). masse spectral data for the complexes				
Cp2NbSe2Fc	470(m ⁺) 450(C ₂ H4FeS ⁺)			
	253(m ⁺) (CpNbSCp) ⁺			
Cp2NbSe2Fc	566(m+) 314 (C10H8Fe Se) ⁺			
	222(CpH10Nb) ⁺ 184 (C10H8Fe) ⁺			
(tB4Cp)2NbSe2Fc	582 (m+)561(m-tB4Cp) ⁺			
(tBuCp)2NbSe2Fc	(678(m+),266(C10H8FeSe)			

25

Ton Al-Haithain Journal for Fure and Applied Scien

Vol.

No.

العدد

Table (4): Analytical and physical data for ligands and complexes

Year

2012

Table (4). Analytical and physical data for figures and complexes					
Cp2NbSe2Fc	C2OH18FeFe2Nb	Calc C43% 4.29 Nb 17			
		found C 42.55% H3.01Nb 16.8			
(tBuCp2) NbSe2Fc	C ₂ OH34FeSe ₂ Nb	Calc C 49.18% H5.94			
		found C 49.76 % H4.91			
(tBuCp)2Nb Se2Fc	C ₂ OH ₁₈ FeS ₂ Nb	Calc C 50% H3.8 Nb 1.97			
		found C 50.8 H3.9 Nb=19.72			

Table (5): The solubility of prepared complexes

Cp2NbS2Fc	water	СНЗОН	C2H5OH	toluene	THF	hexane	ether
Cp2NbS2Fc	÷	+	+	÷	+	-	-
(tBuCp)2NbS2Fc	÷	+	+	÷	+	-	-
(tBuCp)2NbSe2Fe	-	· 38)	+ 49.00/2	÷	+	-	-
(tBuCp)2NbSe2Fe	-	÷	+	÷	+	÷	-

Soluble (+) Insoluble (-) Sparingly (-)

Chemicals used in this work and their suppliers

NO material	Company	Purity %
1-Ferrocene	Merck	99
2- TMEDA	B.D.H	99
3- bUli	B.D.H	99
4-Cp2NbCl2	Riedel-Ochean	99
5-Toluene	Fluka	99
6- THF	Fluka	99
7- (tBuCp)2NbCl2	Merck	99
8-Hexane	Merck	99
9- Sulfur	B.D.H	99
10- Selenium	B.D.H Education For Pure	99
Fc (ScH)2	Merck	99

لبيقية المستعلق

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

 $No. \begin{bmatrix} 3 \end{bmatrix} Vol.$

l. 25

Year

2012

السنة (2012

25

المحلد

مدد

تحضير مشتقات الفيروسين للنيوبيوم IV

عبد الواحد محجوب عبد الله قسم الكيمياء، كلية التربية - ابن الهيثم ،جامعة بغداد استلم البحث في :20 تشرين الثاني2012

الخلاصة

تضمن البحث تحضير معقدات ثنائي كلورو 1و 32 فيروسينوفان مثل (Rp2NbS2Fc,(tBuCp)2 NbS2Fc , Cp2NbSeFc(tBuCp)2NbSe2Fc (Fc فيروسين Cp2NbS2Fc,(tBuCp)2 NbS2Fc , Cp2NbSeFc(tBuCp)2NbSe2Fc (Fc وسين لعنصري تم الحصول على هذه المعقدات من مفاعلة معقدات كلوريدات النيوبيوم مع معقد ثنائي ليثيوم الفيروسين لعنصري الكبريت والسليكون وباستخدام التصعيد بوجود التولوين كوسطاً للتفاعل مع اضافة ثنائي مثيل اثيل ثنائي امين (TMEDA) وتحت جو من غاز خامل هو الاركون شُخِصت هذه المعقدات باستخدام التحليل الدقيق للعناصر (CHN) وطيف الرنين النووي المغناطيسي (H) وطيف الكتلة مع درجة الانصهار الكلمات المفتاحية : فيروسين ، نيوبيوم ، سلينيوم ، كبريت ، غاز خامل ، معقدات عضوية معدنية

