C Ibn Al-Haitham Journal for Pure and Applied Science

No. [ 2 ] Vol. [25] Year [ 2012

Tl 948l o lall gl ) e )
[ 2012]u;[25] Aaall [ 2]44.4\

Study to the Main Effects on the Auger de-excitation
Transition

F.H. Al-Asadi
Department of Physics, College of Science, University of Thi-Qar
Received in: 20 September 2011, Accepted in: 7 December 2011

Abstract

An Eigen-state expansion method is applied to the transition of the Auger de-excitation
charge transfer (AD) process in the interaction between clean Cu,Al and Na surfaces and
excited incident gases H and He .We use this method to describe the effective surfaces
electronic structure. It's shown that the AD efficiency is deeply influenced by the presence of
the energy band for the surfaces and the potential energy stored within the excited incident
atom, thus for long interaction time we use a slowly atom's about 1KeV to scatter from metals
surfaces where the electron couldn't probe the metal band structure and Z, the surface -
projectile distance. Also we drive a new formula for AD interaction Matrix element.
Keywords: Auger De-excitation (AD), Scattering, lon Surface interaction.

Introduction

Charge exchange phenomena of ions (atoms) in front of a metal surface are of considerable
interest in fundamental research as well as in technological applications. The basic processes
for electron transfer in the scattering of thermal and hyperthermal beams were established
some decades ago[1-3] and comprise resonant one- electron tunneling and two-electron Auger
processes .when a slowly moving projectile incident on a metal surface of sufficiently small
work function @ the possible processes for Auger charge transition are shown in fig.(1)[4].
Neutralization of scattered ions is well-known to be an important effect which enhances the
surface sensitivity of the technique but leads to low scattered ion yields. The main mechanism
of charge exchange with the target material (usually metallic) has been generally agreed to be
Auger neutralization

(AN) fig.1 (b), involving direct transfer of a surface valance electron into He® ion core
hold ground state. With the excess energy being given, as kinetic energy, to other valence
electron of the surface. An alternative process of charge exchange is resonance neutralization
(RN) fig.1 (a) in which a metal surface valance electron tunnels across into an unoccupied
state of the ion at essentially the same binding energy in a one-electron process. This
mechanism is believed to be important, for example, in charge exchange with incident alkali
metal ions whose ground state empty levels lie energetically close to the Fermi level [5-7].

Some important resurgence of interest in the theory of surface charge exchange processes ,
the one-electron resonant mechanism, demonstrate a special case of "gquasi-resonant” charge
exchange with a deeper lying occupied state of the solid as in fig.1(d)[8,9].

Auger De-excitation Background
The Auger de-excitation process[10] is shown in fig.1(c). Where, an excited atom is de-
excited with simultaneous ejection of an electron from the system. The ejected electron that
originated from the metal is shown clearly in fig. (2) (direct capture). Whereas, the other one
in which the ejected electron originated from the atom is shown in the same figure (indirect
capture).In either case, one of the two electrons must originate in a specific level, namely, the
atomic excited level. The excited electron may appear outside the solid if it poses a sufficient
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momentum component (normal to the surface) to surmount the surface potential barrier [11,
12].

As clear from fig. (2) Auger de excitation, it is two-electron process, but in fact, it is
quasi one-electron in character .This property causes Auger de-excitation to have
fundamentally different energetic character resulting in a quite different kinetic energy
distribution of the excited electron from that of the auger neutralization.

The potential energy stored within the excited atom and the work function of the metal
surface are the driving parameters for the electronic transitions which are studied by detecting
and measuring both the yield and kinetic energy distribution of the emitted electrons during
these processes which are Auger character .

X (&) +ney X(e1) + (n-1) e, + €, direct capture
X'(e;) +nep X(e,) +(n-1) e, + 1  indirect capture

X" incident excited atoms:; n e, denoted n electrons in the metal surface, e; , € free

electrons[13] .

Theaoretical model
We use Eigen-state expansion method to describe the scattering of excited atom from

the metal surface, where the Auger level described by the wave function f;, with  Kinetic

energy & outside the metal For incident excited atom &m , €2 are excitation and ground
energies near the metal respectively, also €, , & are the energies of vacuum, Fermi levels
above the bottom of the conduction band in the metal respectively , @ is the metal work
function .

The Kinetic energy for the emitted electron is given as:

Eq: ga(Za) = 8m(Za)' 8]

The maximum &qis when gj= ® and the minimum is when & = &.

Starting from the broadening coefficient for the final level bga(t) taken from Ref [14]:
-1
‘Mﬂ(ej’ a) U

LT (1)
E,-E,

by, (t) = ab,m(t M (e;,2,)e " t°’gE

O

jt

Ej = ej + € (Za) -6, (Za) .
For the case that the projectile is fixed (i.e. incident velocity equals zero) then:

@b pa\M (e,,2,)] f(e; T)Be; 2,)
Where B(é’ i a) represent the energy broadening function for AD spectrum, and it’s
defined as:
............. @3) B(e;.z,) {[E -L(e; 2,0 +[pee; 2 ]}
Where,
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............... @ D(e;,2,) =g.pr.(e)M;(e;,2,)
yd IS normalization constant, ps (¢) is the surface density of state, 2A(¢) is Auger de-

excitation transition rate , Mj(ej,za) represents the matrix element for AD transition

D(e;,z,
(e, 2,)=p L3 2or2)
p- € -é;

The effective density of state for the metal surface is given by:

O
reff (ej) = ara(ejleqiza)
..................... (6) ]

Where

1 D(e;,Z,)
........................... (7) ra(ejiza):_- 2 n -
p [ej T L(ej,Za)J2 + [D(ej,za)J2

Matrix element

For the above equation we drive a new formula to find AD matrix element where M’ is
the matrix element for indirect capture, M" for the direct capture.
The general form for matrix element is [3]:

................. @ M={y, OVl 1)
Vi t, v, () represent initial, final wave function for AD interaction respectively V(1,2)

represents colomb interaction potential between the two electrons.

Substituting in eq (8) we get:

Where f] fr-n f;; represent the wave functions for the electron in metal, excited and ground
levels for the incident atom respectively.

M, =Mt+M0 For singlet case

M b= Mé-ME For triplet case

By sitting

- SN RICTE L
f,(r)= ﬁ?%e u-@ (10)
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L is the normalize area, g is the reciprocal lattice Al

is factor depends on the surface density
of state . So we interest with g=0.

.................... (11) u@+§(z) =e”

2
............. (15) 9 = \/h—T(é’q — &)

By substituing the above wave functions in equations (9-a) & (9-b) and simplify we get the
final form for the matrix element as:

I I e1 2 fJ el & 1 2
Mt = (2p)? ;2”{.'_

U b0 +b ih, g+by bG-b)ib(d-b) @ -b)
L5 Y, T I 1 2\l
+e' %l (B 2 (Z, g)eb—' b @‘b B o0 ) 93
g (qj_ a)[] a(Qj_ a) (qj_ a) Hb
Zo-g ¥ o oo P
A wdd wan rid rt
Qﬁ 9 (P el 4o
bib:e™i 6 b et 3 1 21
ME=(2p)°,|—2" j-—+24-"+ (2 -0) 2+ (2 - )+ — -
( ) ,02 qJ ,:\ b4 b5 bz g( a g) b( a g) bz bgH
b g b 5 12 12 Uil
....... (17)+b_n2]e o0 g(za g) b(z g) bz( a_g)+Fu
u
Where
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Results and Discussion

We apply the theoretical model on real systems such as He/Cu , He/Al , He/Na ,(as
shown in Fig.3) to investigate the effects of the energy band on the AD transition , then we
campier the results of He/Cu , H/Cu ,(as shown in Fig.4) to investigate also the effects of the
stored potential energy in the incident projectile.

We show in fig.5 that the direct capture transition is the most effective in (AD) process,
where this transition describes the effective density of state perr for the metal surface as shown
in fig. 6 , where perr is effected by the elliptic shape for ps that used. Fig.7 shows that the
transition rate A increaseS as the metal energy band width increases (See table.1 also).Fig.9
shows that Apix decries exponentially as z, increase, and that’s means that AD interaction
increase as the projectile becomes closer to the surface.

Fig.8 also shows that A increase as the surface energy band width increases. From Fig.10
we see that A for He/Cu system is larger than H/Cu system because the excited energy for He
atom is larger than H atom which means that as the stored potential energy in the excited
incident atom increases then AD transition decreases.
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In  Auger,s De-excitation Processes: Matrix

Table (1): The transition rate A increase as the metal energy band width

€0 EF EF- &0 €a €m €a- €m
Al -15.91 -4.26 11.65 - . :
Cu -11.61 -4.65 6.96 - - -
Na -8.2 -2.75 5.45 - - -
He - o - -24.6 -4.75 19.85
H - - r -13.56 -3.4 10.16

* All energies in eV
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Fig.3: The theoretical model on real systems such as He/Cu , He/Al , He/Na, to
investigate the effects of the energy band on the AD transition
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Fig.(4): The effects of the stored potential energy in the incident projectile
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Fig.(5): The direct capture transition is the most effective in (AD) process
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Fig.(6): The transition describe the effective density of state pe for the metal surface
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Fig.(7): The transition rate A increase as the metal energy band width increase
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Fig.(8): The A increase as the surface energy band width increase
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Fig.(10): Comparison between A for He/Cu and H/Cu systems
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