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Abstract

Let R be an associative ring with identity and M a non — zero unitary R-module.In this
paper we introduce the definition of purely co-Hopfian module, where an R-module M is said
to be purely co-Hopfian if for any monomorphism f 1 End (M), Imf is pure in M and we give
some properties of this kind of modules.

Keywords: co-Hopfian module, semi co-Hopfian module, purely co-Hopfian module

Introduction and Preliminaries

Let R be an associative ring with identity and M a non — zero unitary R — module, Recall
that a module M is called co-Hopfian if any injective endomorphism of M is an isomorphism
[1].A module M is called semi co-Hopfian if any injective endomorphism of M has a direct
summand image that means any injective endomorphism of M splits [1].A ring R is semi co-
Hopfian if R is semi co-Hopfian R - module. Clearly, any co-Hopfian is semi co-Hopfian but

the converse is not true in general as, for example M=Q N=10Q A Q A .. .,as Z-module is
semi co-Hopfian but it is not co-Hopfian [1]. A submodule N of M is called pure if IMNN=IN
for each ideal of R,[8].It is welknown every direct summand of a module M is pure
submodule but the converse is not true in general [2].This leads us to introduce the following
concept, namely purely co-Hopfian module.

Definition 1.1
An R- module M is called purely co-Hopfian if for any monomorphism f 1 End (M),
Imf is pure in M.

Remarks and examples 1.2

1. Every semi co-Hopfian module is purely co-Hopfian.

2. Every F- regular module M is purely co-Hopfian, where M is F- regular if every
submodule of Mis pure,[3].

3. Every semi simple R-module is purely co-Hopfian.

4. 1If M is pure simple ( that means M has only two pure submodules 0 , M) [2 ], then M is
purely co-Hopfian.

Icmma 1.3
The following are equivalent for an R-module M:
1. Mis purely co-Hopfian.
2. Any submodule N of M such that N @ M, N is pure in M.
Proof (1)—(2)
Let N <M, N @ M. Then there exists o : M — N, a is an isomorphism. Hence

M ?/4@)® N ?/ALI@ M where i : N — M s the inclusion map , and this implies io & 1
End (M) ,i0d& is monomorphism. So (io a) (M )is pure in M . Thus i (a (M)) =i(N) =
N is pure in M.

2)—(1): let £ 1 End (M), fis monomorphism. Hence (M) @ M and so by (2), f (M) is
pure in M.
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Proposition 1.4
The following are equivalent for aring R
1. Ris purely co-Hopfian.
2. R is semi co-Hopfian.
Proof (1)—(2)
Let R — R, fis R-monomorphism. Hence f (R) = < a > for some alolRr
Since R is purely co-Hopfian, < a > is pure ideal at R , hence <a>=<a’>(since<a>

I <a> = <a><a> ) .Thus a = ra® for some r 1 R, this implies ra is idempotent and< a >
=<ra>. Itfollows that <a > is a direct summand .
The proof of the part (2)—(1) is clear.

By combining proposition 1.4 and proposition 2.3 from [1] we get the following result.

Corollary 1.5

The following are equivalent for any aring R :

R is purely co-Hopfian.

R is semi co-Hopfian.

ann (a)=0,a B Rthen <a>is adirect summand .
Ifamn(a)=0,a l Rthen<a>=R.

5. Every R —isomorphism <a>—R,a | R, extends to R.
Proof

(1) <> (2): see proposition 1.4

(2) «>(3) «>(4) <>(5): (see proposition 2.3), [1].

o e

Corollary 1.6
If Ris aring with two idempotent 0,1 then the following statement are equivalent : -
1. R is co-Hopfian.
2. R is semi co-Hopfian.
3. Ris purely co-Hopfian.
Proof
(1) > (2): it is clear
(2) <> (3) by proposition 1.4
(3)—(2): Let f: R — R, fis monomorphism then f( R )= <a > for some a IR, ato bu
| = <a> is a direct summand of R (since R is Semi co-Hopfian) then < a > is generated by
idempotent. Since a 10, hence a = 1 and < a > = R.Thus f is onto and we get R is co-
Hopfian.

Recall that module M has C2 if for any submodule N of M which is isomorphic to a
direct summand of M, is a direct summand of M [4].

Corollary 1.7
If R B aring only idempotent 0 and 1 the following equivalent:

1. Rhas C,.
2. R is co-Hopfian.
3. Ris purely co-Hopfian.
4. R is semi co-Hopfian.
Proof (1) —»(2)

let £ R — R be monomorphism. To prove that R is co-Hopfian, we must prove f is an
isomorphism.Since  is monomorphismf ( R ) @ R . But R is C, by (1) and R is direct
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summand of R, hence f(R) is direct summand of R.It follows that f (R) is generated by
idempotent.Since R has only 2 — idempotent namely 0 , 1 and f (R) 10 then f(R)=<1>
thus f (R ) =R and so that f is an isomorphism .
(2) = (3t is clear.
(3) — (4)1t follows by proposition (1.4).
(4) — (1): It follows by proposition 2.4 [1].
Corollary 1.8
Let R be an integral domain. Then the following are equivalent:
1. R is co-Hopfian.
2. R is semi co-Hopfian.
3. Ris purely co-Hopfian.
4
P
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R is field.
roof
(1) & (2) <> (3) 1t follows by corollary 1.6
(1) > 4) Leta P R, a 10 then ann (a)=0 since Ris an integral domain . By corollary
1.5, <a>=R. Hence ais an invertible element.Then Ris a field.
(4) — (1) Since R is a field, R has only two ideals namely R, (0). Hence for any £ R — R, f
IS R — monomorphism f (R) 1 0. Hence f (R) =R.Thus fis onto then Ris co-Hopfian.

Proposition 1.9
Any direct summand of purely co-Hopfian module is purely co-Hopfian.
Proof

Let N be a direct summand of M, so M = N A A for some submodule A of M .Letft N —
N be monomorphism. Define g : M —M by gnta) = f(n)+awheren I N, a P At is easy

to see that g is monomorphism Hence g (M) = f (A) A N . Since M is purely co-Hopfian, g
(M) is pure in M.To prove f(N) pure in N,let | be any ideal of R,

IMNg(M)=Ig(M),

IINA AN (F(NAA)=1(F(N)A A)Y,

INA T NN A A =aNnntN) Aaana=T1rn) A A,

AINAEN) A A= F(N)A A INNF(N)=TF(N).

Thus f(N)is pure in N and so N is purely copfian.

Recall that a submodule N of M is a non- summand if N is not direct summand of M [1].

Proposition 1.10

Let M be an R- module such that every non summand N of M is purely co-Hopfian , if
for any non — summand submodule N of M, N is purely co-Hopfian, then M is purely co-
Hopfian.
Proof

Suppose M is not purely co-Hopfian then there exists N < M, N @ M, N is not pure in
M by lemma (1.3). But N is not pure implies N is not summand. Hence by hypothesis N is
purely co-Hopfian which implies M is purely co-Hopfian which is a contradiction.

Recall that M is fully stable if for any submodule N of M, £ N — M is then f (N) £N
[5].
Proposition 1.11

Let M = M A My, M is fully stable.Then M is purely co-Hopfian if and only if My, M, are
purely co-Hopfian

Proof
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It follows by proposition 1.9.Conversely, Let £ M — M be monomorphism put f; = f | M1
b= f| m2 .Since M is fully stable,f;(M;) £ M; and f, (My) £ M,. Since fis monomorphism,
f1, f2 are monomorphism. Hence fi (M), f (M) are pure in My, M respectively. Hencef;
M) A £ (M) is pure in M [2]. But it is easy to see that f (M) = . (M1) A% (My). Thus
f(M)is pure in M .

Corollary 1.12

Let I\/I=Ai I M, M is fully stable M is purely co-Hopfian if and only if M; is purely
co-Hopfian for all i 1 1.
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Recall that M is torsion free if rm = 0 thenr=0orm=0foranyr I R, m I M. Note
that torsion free module needs not purely co-Hopfian, for example Z as Z-module. Now we
have the following result which improves proposition 2.13.in [1].Which states that ,let R be a
commutative domain and let M be a torsion free semi co-Hopfian R-module .Then M is
injective .

Proposition 1.13

Let R be an integral domain and let M be a torsion free purely co-Hopflan R — module
.Then M is injective R-module.

Proof

leta I R,a 1 0. Defne f:M - Mbyf(m)=am, foralla I M. Thenfis
monomorphism, hence f (M) = aM is pure submodule in M since M is purely co-

Hopfian. Thus IM | f (M) =1f (M) for any ideal | of R. Take | = < a >. Hence (a) M 1 am
= (a). aM thus aM = a®M .Now forany m I M, am = a’my, so a (m — amy;) = 0.Hence m-
am=0 since M is torsion free and so m = amy. Thus we have M = aM, that is M divisible
torsion free, hence M is injective.

Proposition 1.14

If M has Dcc on non pure submodule (that means has Dcc on not pure submodule), then
M is purely co-Hopfian.
Proof

Suppose M is not purely co-Hopfian, then by lemma 1.3, there existsM; (not pure
submodule of M) such that M; (@ M. Hence M; is not purely co-Hopfian and, so there exists
M, submodule of M;  which is not pure of M, (@) My . By repeating this argument we have
strictly descending chain M; k= M, k= ...Moreover M; is not pure in M, for all i = 1, 2,......

To show this M; is not pure in M (by proof). If My pure in M ,then My pure in M

[2,Rem.7.2(1)] , which is a contradiction . Thus Mz is not pure in M.Similarly M; is not pure

in M, foralli=3,4,... . Thus M; E M, k... . is strictly descending chain of non pure
submodule of M, which is a contradiction. Thus M is purely co-Hopfian.
Remark 1.15

The endomorphism ring of purely co-Hopfian module need not be purely co-Hopfian.
Example 1.16

The Z — module Z, ¥ is co-Hopfian. S = End ( Z, ¥ ) is the integral domain of P-adic
integers is not co-Hopfian [6], Then S is not purely co-Hopfian by Corollary (1.6).

Recall that an R-module M is called multiplication module if for each N<M there
exists ideal I of R such that N=IM. Equivalently, Mis multiplication if for each N<M,
N=(N:M)M,where (N:M)={rr I R, rM I N}[7].

Theorem 1.17

Let M be a faithful finitely generated multiplication R — module the following
statements are equivalent:
1. Mis purely co-Hopfian.
2. R is semi co-Hopfian.
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3. Ris purely co-Hopfian.
4. M is co-Hopfian.
5. Mis Semi co-Hopfian.
Proof

(1) »(2):Leta DR, annga = 0. Define f: M — M by f( m) = am for any m I M .we
can see that f is monomorphism as follows, let m | Kerfthenam=0andsom I anny (a).
But anny (@) = (anng (@) ) M .Hence m | (annga) M = 0. M = 0, then we get m = 0.Now f
(M) =a M is pure in M. Hence < a > is fure in R, since M is faithful finitely generated
multiplication .Thus < a > = < a 2 > so a = ra*, which impliesa (1-ra) = 0, sinceann (a) =
0,1-ra=0, 1=rathat is ais an inevitable element ,so<a>=R.
(2) «(3): It follows by proposition (1.4).
(3) — 4): Let f: M — M be monomorphism , Since M is finitely generated multiplication,
then M is a scalar module , there existsa I R, a 1 Osuchthat, f(m)=amforallm I M
[8]. Since Kerf = {0}, annya = 0.[ To prove this. Since anny(@) ={m:am=0}={m:f(m
Y=03}={m:m=0 }] .But annya = (annga) M, so annr(@) .M = 0 .Thus anng(@) | annM =0
It follows that anng(a) = 0. But R is purely co-Hopfian so <a > =R by corollary (1.5) .
(4) —(5): It is clear any co-Hopfian is semi co-Hopfian by [ 1].
(5) — (1): By [ Remark and Examples 1.2 ]
corollary 1.18

Let M be a faithful finitely generated multiplication R-Module then the following are
equivalent:
1. Mis purely co-Hopfian module.
2. End g M is purely co-Hopfian ring ( semi co-Hopfian ,co-Hopfian )
Proof (1) < (2)

Since M is a finitely generated multiplication R-module M is a scalar module by

[8,prop.1.1.10].Hence End M@R by [9,lemma 6.1,ch.3].Thus by previous theorem we
obtained the result
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