Density and Viscosity of Amino Acid Serine in Aqueous Dimethyl Sulfoxide Solution at Different Temperatures

Z.A. AL-Dulaimy , Z. W. AL-Amel ,R. S. AL-Khalisy , Z. H. Hussein Department of Chemistry, College of Education Ibn-Al-Haitham University of Baghdad

أية التربية ابن

Received in: 23 August 2011, Accepted in: 10 November 2011

Abstract

Densities ρ and viscosity η of serine in 20, 40, and 60% (w/w) dimethyl sulfoxide (DM SO)-water mixtures were measured at 298.15, 303.15 and 308.15k. From these experimental data, apparent molal volume ϕ , limiting apparent molal volume ϕ , the slop S_v , transfer volume ϕ_v^o (tr), Jones-Dole coefficients A and B were calculated. The results are ϕ_v^o discussed the solute-solvent and solute-solute interaction, and showed that serine behaves as structure-breaker in aqueous DM SO solvent.

Key word: Density, Viscosity, Amino Acid, Serine, dimethyl sulfoxide

Introduction

Amino acid which are the fundamental substances for building blocks of proteins are used as model compounds to study the interactions of proteins in water and different solutions.

A number of workers studied the volumetric and viscometric properties of amino acids in water [1-3]. Ali and Shahjaham [4] studied the volumetric and viscometric behaviour of L-serine, L-threonime, L-glutamine, L-lysine, L-arginine and L-histidine amino acids and their group contributions in aqueous tetramethyl ammonium bromide at different temperatures.

It is well known that the mixed aqueous solvents (with different percent w/w) can influence the solubility behavior of amino acids. Consequently thermodynamic properties, enthalpies, heat capacities, apparent molal volumes and viscosities of amino acids and peptide in mixed aqueous solvents are useful to obtain information about various types of interactions in these solutions [5-6]. Serine (abbreviated as Ser or S) [7], is an amino acid with the formula $HO_2CCH(NH_2)CH_2OH$..

It is one of the proteinogenic amino acids. By virtue of the hydroxyl group, serine is classified as a polar amino acid.

Patel and workers [8] demonstrate the interaction of some amino acids(L-serine, L-threonime, L-glutamine, L-lysine, L-arginine and L-histidine) in aqueous caffeine they got positive values of partial molal volume of transfer of amino acid from water to aqueous-

caffeine $\phi_{_{_{\!\!v}}}^{\circ}(\mathrm{tr})$ ($\phi_{_{_{\!\!v}}}^{\circ}$, caffeine- $\phi_{_{_{\!\!v}}}^{\circ}$, water) which indicate the diminishing of electrostrictive effect of amino acids and addition of caffeine. They related the diminishing to shielding of the amino acids zwitterionic groups from water.

The partial molar volumes of transfere $\phi_{\nu}^{o}(tr)$ of amino acids from aqueous to aqueous tetramethyl ammonium bromide solution were interpreted in the light of cosphere overlap model. The cosphere overlap model [9] can be used for interpretation of negative $\phi_{\nu}^{o}(tr)$ values, according to which the overlap of two hydration spheres is destructive.

HO -
$$CH_2$$
 - C - $CO\bar{O}$
 I_+
 NH_3
 CH_3
 CH_3
 CH_3

Serine (Ser)

 $M=105.1 \text{ g.mol}^{-1}$

Dimethyl sulfoxide (DMSO)

 $M=78.13 \text{ g.mol}^{-1}$

In present work viscosities η and densities ρ of serine (0.1, 0.15, 0.20, 0.25, 0.30 and 0.35 molar concentration) were measured in 20, 40 and 60% (w/w) DM SO + water mixtures at 298.15, 303.15 and 308.15k.

Then the apparent molal volumes ϕ_v , limiting molal volumes at infinite dilution ϕ_v^o , transfer volumes at infinite dilution ϕ_v^o (tr) and Jones-Dole coefficients B and D were calculated.

Experimental

Amino acid serine obtained from Fluka company is Analar and used without any further treatment. Dimethyl sulfoxide (DMSO) is aprotic polar liquid with a high dielectric constant obtained from Fluka company (purity >99.7%) used without further purification.

Water used for preparation for all the solution doubly distilled (Sp. conductivity $\sim 10^{-6}$ ohm¹ cm⁻¹). The serine concentration in these mixtures was ranged from (0.1-0.35) mol.dm³. The viscosity η were determined using a suspended-level ubbelohde viscometer described by findly [10], in a bath controlled to ± 0.01 K for all measurements.

Densities ρ of all solutions were measured using a vibrating tube with digital Anton Parr densimeter (DMA 60/602) according to shuklu *etal*. Procedure[11], in athermostated bath controlled to ± 0.01 K.

Results and Discussion

The results of absolute viscosities η and densities ρ are listed in table 1.

The apparent molal volume $\phi_{_{v}}$ of serine in aqueous dimethyl sulfoxide (DM SO+H₂O) is measured at 298.15, 303.15 and 308.15K using the following relation [12].

$$\phi_{v} = \frac{1}{m} \left[\frac{10^{3} + mM}{\rho} - \frac{10^{3}}{\rho_{o}} \right] \qquad \dots (1)$$

Where ρ and ρ_0 are the densities of solution and solvent respectively, M is molecular weight of solute and m is the molality of solution. m is calculated using the following relation m=1/(P/C -M/10³)where C is the molar concentration. The results of ϕ are tabulated in table (1). Table (1) shows that the value of ϕ decrease with the increase of concentration of serine but ϕ increases with increasing DM SO% content and temperature increase in solution suggesting that the solute-solvent interaction increase with the increase of DM SO%. Since the limting apparent molal volume ϕ were obtained from the realation [13].

$$\phi_{v} = \phi_{v}^{o} + S_{v} m \qquad \dots (2)$$

Where the intercept ϕ_{ν}^{o} , which is measure of solute-solvent interaction, and the experimental slop S_{ν} , which is aparameter of solute-solte interaction were obtained by the molality fitting of ϕ_{ν} values to eqution(2)in figure(1) and tabulated in table(2). Table 2 reveals that ϕ_{ν}^{o} are positive and increase with the increase of temperature, indicating the presence of solute-solvent interactions. The increase in ϕ_{ν}^{o} on going from 20% to 60% DM SO indicates the increasing trends of solute-solvent interaction. Table 2 shows that all the values of S_{ν} are negative pointing the presence of weak solute-solute interactions in solutions. Moreover, the values of S_{ν}^{o} become more negative with the increase of DM SO content suggesting decreasing in solute-solute interaction with DM SO-rich solvent. In fact negative S_{ν}^{o} values are often obtained in solvent of high dielectric constant such as (DM SO + Water Solvent) [14].

The transfer volumes $\phi_{\nu}^{o}(tr)$ of serine when transferred from water to (DM SO+Water) mixture solution are found using this equation:

$$\phi_{\nu}^{o}(tr) = \phi_{\nu}^{o}(DM SO + Water) - \phi_{\nu}^{o}, water$$

The values of ϕ_v^0 , water for serine are 68.07, 66.28 and 65.28 cm³.mol⁻¹ at 298.15, 303.15 and 308.15K respectively which are estimated from our previous work[15]. The ϕ_v^0 (tr) results are listed in table (3).

A perusal of table 3 indicates that ϕ_{ν} of serine in mixed liquids (DM SO+ Water) are lower than those in pure water, $\phi_{\nu}(tr)$ values are negative for all solutions studied. It is known that zwitterionic groups of amino acids induce a considerable concentration in volume of peripheral solvent (water) due to electrostrictive effect, which is diminished on addition of DM SO.

Viscosity data were analyzed employing Jone-Dole equation [16].

$$\eta_{\text{rel}} - 1/\sqrt{C} = A + B\sqrt{C} \dots (3)$$

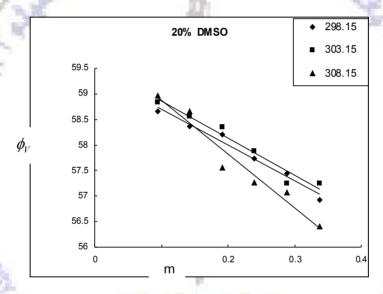
Where η and η_o are the viscosity of solution and solvent respectively, the Jones-Dole coefficient, A, reflects the effect of solute-solute interaction and B, is a measure of structural modifications induced by the solute-solvent interaction. The viscosity coefficient A and B were obtained from the intercept and slope of the plots η_{rel} -1/ \sqrt{C} against \sqrt{C} . The values of A and B are listed in table (2). Table (2) shows that the values of A-coefficient are negative whereas those of B-coefficients are positive, suggesting weak solute-solute and strong solute-solvent interaction. The variation of B with T is depicted graphically in figure 1, revealed that the slope ($\partial B / \partial T$) is positive for serine in 20, 40 and 60% DM SO content in solution, serine in all solutions act as structure-breakers[17].

Conclusions, the values coefficient A and B support the behaviors of S_{ν} and $\phi_{\nu}^{o}(tr)$ which all suggest stronger solute-solvent interactions as compared to solute-solute interactions. The positive $(\partial B/\partial T)$ values for all solutions which pointed that the serine acts as a structure-breaker when DM SO added to solutions.

References

- 1. Frank, H.S. and Wen, W.Y.(1957) Ion-Solvent interaction strructual aspects of ion-solvent interaction in aqueous solution asuqqested picture of water structure. Discuss Faraday Soc., 24:133.
- 2. Tyrrell, H.J.V. and Kennerley, M. (1968)A, Viscosity B- coefficients between 5° and 20° for glycolamide, glycine, and N- methylatde glycines in aqueous solution. J. Chem. Soc 90: 2724.
- 3. Devine, W. and Lowe, B.M.(1971)A, Apparent molar volumes and viscosity B-coefficients of same α -amino acids in aqueous solutions from 278.15K to 308.15K 2113 J. chem.. Soc..
- **4.** A Ali A. and Shahjahan, Z.(2008) Volumetric and viscomitre behavior of some amino acids and thir group contribution in aqueous tetramethyl ammonium bromide at different temperatures, phys. Chem. <u>222</u>:1519.
- 5. Phangs, Aust. (1977) The viscosity of glycine and DL-alanine in dimethyl formamid-water mixtures at 298.15K, J. chem., 30:1605.
- **6.** Prasad, K. P. and Ahluwalia, J. C. (1980)Biopolymers, Heat capacity changes and partial molal heat capacities of some and tripeptides in water, <u>19</u>:263.

- 7. Λ "Nomencluture and Symbolism for amino acids and peptides (IUPAC-IUB Recommendations 1983)" Pure Appl. Chem., <u>56(5)</u>: 595-624, 1984.
- **8.** Ali, A.; Sabir, S.; Nain, A.K.; Hgder, S.; Ahmed, S.; Tariq, M. and Patel, R. (2007) J. Chin. Chem. Soc., Interaction of phenylalanine, tyrosine and hitadine in aqueous caffeine solution at different temperatures, <u>54</u>:659.
- **9.** Friedman, H.L.; Krishnan, C.V.(1973)Water-Acomprehensive Treatise. F. Franks (Ed.), Plenumpress, New York,
- **10.** Findly, A. " Practical Physical Chemistry", 8th ed., J. A. Kitchrer (London: Longman), 1954.
- 11. James, A. M. and Prichard, E. F. (1974) Practical physical chemistry, Wiley, New York.
- **12.** Pal, A. and Kumar, S. (2005) Volumetric studies of some amino acids in binary aqueous solution of MgCl₂.6H₂O at 288.15 and 308.15K, T. Chem. Soc. <u>117</u> (3):267.
- **13.** Hedwig, G.R. and Reading, J.(1991) Faraday Trans, Aqueous solutions containing amino acids and peptides part 27-partial molar heat capacities and partial molar volumes of some N-acetyl amino acids amides and tow peptides at 25°C, J. Chem. Soc. <u>87</u>:1751.
- **14.** Ali, A, ;Nain, A.K.; Kumar, N. and Ibrahim, M.(2002)Densities viscosities of magnesium sulphate in formamide+ethylene glycol mixed solvents, Proc. Indian Acad. Sci. (Chem. Sci.) <u>114</u>:495.
- **15.** AL-Dulaimy, Z. A. H.;AL-Jawary, A. A.; AL- Saidi, S. F.(2009) Viscosity and volumetric studies of amino acids in solution at different temperatures, J. of Kerbala University 7:289-295.
- **16.** Jones, G.and Dole, M.(1929) The viscosity of aqueous solutions of strong electrolytes with special reference of strong electrolytes with special reference to barium chloride, J. AM. Chem. Soc., 51:2950.
- 17. Ali, A.; Hyder, S.; Sabir, S.; Chand, D.and Nain, A. K.(2006) Thermodyn., Volumatric, viscometric and refractive index behavior of α-amino acids and their groups' contribution in aqueous D-glucose solution at different temperatures J. Chem. <u>38</u>:136.


 Ibn Al-Haitham Journal for Pure and Applied Science
 العدل الع

Table(2): Partial molal volume at infinite dilution $\phi_{_{_{\!v}}}^{\circ}$, $S_{_{_{\!v}}}$, Jones-Dole coefficients

A and B of serine in various water + DMSO mixtures at different temperatures.

	298.15k	303.15k	308.15k
Solu.	Ser. $+ H_2O + 2$	0% DMSO	I
$\phi_{\nu}^{\circ} \text{cm}^3.\text{mol}^{-1}$	59.41	58.803	59.925
$S_{\nu} \text{ cm}^3 \text{.mol}^{-2} \text{kg}$	-7.0466	-8.586	-10.482
A L 1/2 .mol -1/2	-0.3308	-0.3374	-0.3455
B L.mol ⁻¹	1.5051	1.5296	1.5900
Solu.	Ser. $+ H_2O + 4$	0% DMSO	6./1
ϕ_{ν}^{0} cm ³ .mol ⁻¹	61.193	62.401	63.727
$S_{\nu} \text{ cm}^3 \text{.mol}^{-2} \text{kg}$	-10.606	-10.636	-11.306
A L 1/2.mol-1/2	-0.3152	-0.3421	-0.3653
B L.mol ⁻¹	2.3072	2.6084	2.9695
Solu.	Ser. $+ H_2O + 6$	0% DMSO	
$\phi_{\nu}^{\text{o}} \text{cm}^3.\text{mol}^{-1}$	64.131	65.121	65.259
$S_{\nu} \text{ cm}^3 \text{.mol}^{-2} \text{kg}$	-11.508	-12.028	-12.441
A L 1/2 .mol -1/2	-0.3270	-0.3631	-0.3927
B L.mol ⁻¹	0.4727	2.9637	3.1620

Serine in mixed liquid (DMSO + Water)	$\phi_{_{_{\boldsymbol{v}}}}^{\circ}(tr)$ (cm ³ . mMol ⁻¹)								
	298.15k	303.15k	308.15k						
20% DMSO	-8.660	-7.477	-5.355						
40% DMSO	-6.877	-3.879	-1.553						
60% DMSO	-3.930	-1.159	-0.021						

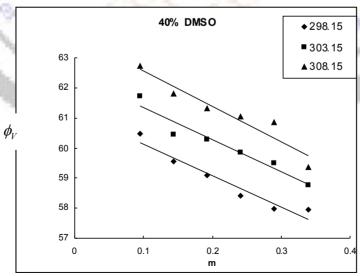


Fig.(1): ϕ_V Against m for serine in various water+DMSO mixture at different temperature

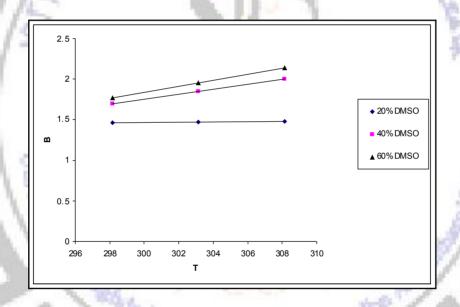


Fig. (2): B-coefficient verses T for serine in various water +DMSO mixtures

دراسة لزوجية وكثافة الحامض الاميني سيرين في المحلول المائي لداي مثيل سلفوكسايد بدرجات حرارية مختلفة

زينب عباس الدليمي ، زينب وجدي العامل ، رقية سمير الخالصي ، زينة حمودي حسين قسم الكيمياء ، كلية التربية _ أبن الهيثم ، جامعة بغداد

استلم البحث في :23 آب 2011 قبل البحث في :10 تشرين الثاني 2011

الخلاصة

(w/w) (w/w) ϕ (ϕ (ϕ (ϕ (ϕ (ϕ)) ولزوجة ϕ محاليل الحامض الاميني سيرين في محاليل لتركيز ϕ (ϕ (ϕ (ϕ)) ϕ (ϕ (ϕ (ϕ)) ϕ (ϕ (ϕ (ϕ)) ولروجة ϕ (ϕ (ϕ)) والحجم المولالي الظاهري (ϕ (ϕ)) والحجم المولالي الظاهري (ϕ (ϕ)) والحجم المولالي الظاهري (ϕ (ϕ)) ϕ (ϕ)) ϕ (ϕ (ϕ)) ϕ (ϕ (ϕ)) ϕ (ϕ)) (ϕ (ϕ)) ϕ (ϕ) (ϕ)) ϕ (ϕ)) ϕ (ϕ)) ϕ (ϕ)) (

تمت مناقشة طبيعة التداخلات من نوع مذاب – مذيب ومذاب – مذاب وقد اظهرت النتائج ان السيرين يسلك سلوك مهدم للتركيب في المحاليل المائية لداي مثيل سلفوكسايد.

College of Education to

الكلمات المفتاحية: الكثافة، اللزوجة، الحوامض الامينية، السيرين، داي مثل سلفوكسايد.

Ibn Al-Haitham Journal for Pure and Applied Science		التطبيقية	مجلة إبن الهيثم للعلوم الصرفة و التطب					
No. 1 Vol. 25 Year 2012	T	نة 2012	المجلد 25 السنة	العدد 1				

Table (1): Densities (ρ) and Viscosities (η) with calculated apparent molal volume (ϕ), and the $(\eta_{rel}-I/\sqrt{C})$ of serine in water at

different percent (w/w) of dimethyl sulfoxide mixtures at different temperatures.

100		•	,		•	-87						
			20%			40%						
C		m	ρ	η	Ø,		m	ρ	η	Ø,		m
mol.dm	\sqrt{C}	mol.kg ⁻	g.cm ⁻³	ср	cm ³ .mol ⁻	η_{rel} - $1/\sqrt{C}$	mol.kg	g.cm ⁻³	ср	cm ³ .mol ⁻	η_{rel} - $1/\sqrt{C}$	mol.kg
0.00		0.0000	1.0582	1.0838			0.0000	1.0595	1.1203			0.0000
0.1	0.3162	0.0950	1.0625	1.1403	58.6604	0.1642	0.0949	1.0636	1.2789	60.4768	0.4477	0.0929
0.15	0.3873	0.1430	1.0647	1.1820	58.3692	0.2339	0.1428	1.0658	1.3658	59.5420	0.5658	0.1419
0.2	0.4472	0.1912	1.0669	1.2433	58.2064	0.3291	0.1910	1.0680	1.4655	59.0794	0.6890	0.1898
0.25	0.5000	0.2397	1.0692	1.3125	57.7382	0.4220	0.2394	1.0703	1.5786	58.4142	0.8182	0.2378
0.3	0.5477	0.2886	1.0715	1.3819	57.4413	0.5022	0.2884	1.0726	1.6911	57.9882	0.9303	0.2863
0.35	0.5916	0.3374	1.0739	1.4450	56.9198	0.5633	0.3372	1.0748	1.8459	57.9407	1.0948	0.3350
							Į.	298.15k	1	<u> </u>		Į.
0.00		0.0000	1.0556	0.9889			0.0000	1.0546	1.0698			0.0000
0.1	0.3162	0.0953	1.0599	1.0365	58.8323	0.1522	0.0954	1.0586	1.2459	61.7253	1.6461	0.0950

0.00		0.0000	1.0556	0.9889			0.0000	1.0546	1.0698			0.0000
0.1	0.3162	0.0953	1.0599	1.0365	58.8323	0.1522	0.0954	1.0586	1.2459	61.7253	1.6461	0.0950
0.15	0.3873	0.1435	1.0621	1.0877	58.5618	0.2579	0.1435	1.0608	1.3374	60.4553	1.6676	0.1430
0.2	0.4472	0.1917	1.0643	1.1365	58.3551	0.3337	0.1919	1.0629	1.4504	60.2946	1.7788	0.1913

	المهيتم للعلوم الصرفة و التطبيقية العادم الصرفة و التطبيقية العادم الصرفة و التطبيقية العادم												
	No.	1	Vol.	25	Year	2012		2012	السنة	25	المجلد	العدد 1	
0.2399	1.8859	59.8395	1.5742	1.0651	0.2407	0.4228	57.8808	1.1977	1.0666	0.2403	0.5000	0.25	
0.2888	1.9835	59.5111	1.7064	1.0673	0.2896	0.5024	57.2409	1.2610	1.0690	0.2891	0.5477	0.3	
0.3379	2.0845	58.7552	1.8503	1.0697	0.3389	0.5744	56.8013	1.3250	1.0714	0.3383	0.5916	0.35	
			ı	303.15k		ı			ı	l			
0.0000			1.0289	1.0533	0.0000			0.9869	1.0530	0.0000		0.00	
0.0952	1.8991	62.7404	1.2243	1.0572	0.0955	0.1520	58.9617	1.0360	1.0573	0.0955	0.3162	0.1	
0.1433	1.9995	61.7946	1.3375	1.0593	0.1437	0.2699	58.6584	1.0901	1.0595	0.1437	0.3873	0.15	
0.1917	2.0998	61.3237	1.4610	1.0614	0.1922	0.3693	57.5616	1.1499	1.0619	0.1922	0.4472	0.2	
0.2403	2.1996	61.0424	1.5947	1.0635	0.2410	0.4448	57.2710	1.2064	1.0642	0.2409	0.5000	0.25	
0.2893	2.2997	60.8546	1.7388	1.0656	0.2901	0.5236	57.0667	1.2699	1.0665	0.2893	0.5477	0.3	
0.3389	2.3997	59.3639	1.8931	1.0682	0.3394	0.5979	56.3999	1.3360	1.0690	0.3391	0.5916	0.35	
			1	308.15k		1	1	1	1	1			

 Ibn Al-Haitham Journal for Pure and Applied Science

 No.
 1
 Vol.
 25
 Year
 2012

 No.
 1
 Vol.
 25
 Year

