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Abstract

The main purpose of this work is to find the complete arcs in the projective 3-space over
Galois field GF(2), which is denoted by PG(3,2), by two methods and then we compare
between the two methods.
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Introduction, [1,2]

A projective space PG(3,q) over Galois field GF(q), q = p", for some prime number p
and some integer m, is a 3 — dimensional projective space.

Any point in PG(3,q) has the form of a quadrable (x;, x,, X3, X4), where x;, X, X3, X4 are
elements in GF(q) with the exception of the quadrable consisting of four zero elements.

Two quadrables (x;, Xy, X3, X4) and (¥, Y2, V3, Y4) represent the same point if there exists
A in GF(q) \ {0} such that (x;, X, X3, X4) = A (Y1, Y2, ¥3, Y4), this is denoted by (x;, X, X3, Xg) =

(Y1, Y2, Y3, Ya)-
Similarly, any plane in PG(3,q) has the form of a quadrable [x;, X, X3, X4], where X;, x,,

X3, X4 are elements in GF(q) with the exception of the quadrable consisting of four zero
elements.

Two quadrables [x;, X, X3, X4] and [y, Y2, ¥3, V4] represent the same plane if there exists
A in GF(q)\{0} such that [x;, X, X3, X4] = A [y1, Y2, Y3, Y4l, this is denoted by [X;, Xy, X3, X4] =
[Y1, Y2, Y3 Yal--

Also a point P(x;, X, X3, X4) 18 incident with the plane © [a;, a,, a3, a4] iff
axtaxtazxgtasxy=0.

Every line in PG(3,q) contains q + 1 points and every point is on exactly q + 1 lines._Any
plane in PG(3,q) contains exactly q2 +q+ 1 points and g~ + q + 1 lines. Every point is on q2 +
q + 1 planes and is on q2 + q + 1 lines.

Moreover PG(3,q) contains exactly q3 + q2 + q + 1 points and also contains exactly
q3+q2+q+ 1 planes.

Definition 1: [1,3]
A (k,n) — arc A in PG(3,q) is a set of k points such that at most n points of which lie in
any plane, n > 3. n is called the degree of the (k,n) — arc.



( Ibn Al-Haitham Journal for Pure and Applied Science ) dgd el g 48 pal) aslall (“3:"34‘ &) ddaa }
No. | 1) wor [[25)] Year [ 2012 3 2012 ] et |((25 )] e |(( 1 ] asu

Definition 2: [1,3]
In PG(3,q), if A is any (k,n) — arc, then an (n-secant) of A is a plane m such that
It Al=n.

Definition 3: [1,3]
Let T; be the total number of the i — secants of a (k,n) — arc A, then the type of A denoted
by (Tna Tn— JEREREES] TO)

Definition 4: [1,3]
Let (ky,n) — arc A is of type (T,, ..., To)and (k,,n) —arc B is of type (S,, ..., Sp), then A
and B are projectively equivalent iff T; = S;.

Definition 5: [1,3]
If a point N not on a (k,n)-arc A has index i iff there are exactly i(n —secants) of A
through N, one can denote the number of points N of index i by C;.

Definition 6:
If (k,n)-arc A is not contained in any (k + L,n)-arc, then A is called a complete (k,n)-arc.

Remark:
From definition 5, it is concluded that the (k,n)-arc is complete iff Cy = 0.

Thus the (k,n)-arc is complete iff every point of PG(3,q) lies on some n-secant of the
(k,n)-arc.

1- The Construction of Complete (k,n)-Arcs in PG(3,2)

1.1 The Construction of Complete (k,3)-arcs in PG(3,2):

PG(3,q) contains 15 points and 15 planes such that each point is on 7 planes and every
plane contains 7 points (see table 1).

The set A = {1, 2, 3, 4, 13} is taken which is the set of unit and reference points:
1(1,0,0,0), 2(0,1,0,0), 3(0,0,1,0), 4(0,0,0,1), 13(1,1,1,1). This set contains five points no four
of them are on a plane since A intersects any plane in at most three points. Thus A is
a (5,3)-arc.

A is a complete (5,3) —arc since every point of PG(3,2) not in A is on a 3-secant; that is,
there are no points of index zero for A. This is equivalent to C, = 0.

1.2 The Construction of Complete (k,4) — arcs in PG(3,2) :

The distinct (k,4) —arcs can be constructed by adding to A in each time one point from
the remaining ten points of PG(3,2) as follows:
A =AULSE, Ay=AU{6), A=AU{TY, A=AU{BY, As=AU{9}, Ac=AU{10}, A=AU{11},
Ag=AU{12}, Ag=AU{14}, A =AU{15}.

By definition 4 of projectively equivalent (k,n) — arcs, there is only one (6,4) — arc since
the arcs Ay, ..., Ao are projectively equivalent.
For Ty=0, T,=2, T,=3, T3=6, T4,=4. Thus we have B=AU{5}={1,2,3,4,5,13} is a complete
(6,4) — arc, since every point not in B is on a 4 — secant and B intersects any plane in at most 4
points, that is Cy = 0.
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1.3 The Construction of Complete (k,5) — arcs in PG(3,2) :

The arc B is a complete (6,4) — arc. The distinct (k,5) — arcs can be constructed by
adding to B in each time one of the remaining nine points as follows:
B,=Bu{6}, B,=Bu{7}, B;=Bu{8}, B,=BU{9}, Bs=Bu{10}, Bs&= Bu{l1}, B;=Bu{12},
Bs=BuU{14}, B=BU{15}.

By definition 4, there are only two projectively distinct (7,5) — arcs since the arcs By, By,
Bs, B;, Bg, By are projectively equivalent, for T(=0, T =1, T,=2, T;=5, T4=6, Ts=1 and the
arcs : B,, B, Bg are projectively equivalent, for : Ty=0, T =0, T,=4, T3=5, T4=4, Ts=2. Thus
we have two projectively distinct (7,5) — arcs C=Bu{6}={1,2,3,4,5,6,13}, D = B U {7}
={1,2,3,4,5,7,13}.

We try to show the completeness of these arcs. Each of C and D is not complete since
there exist some points of index zero.

We take the union of C and D. Then E=CuD={1,2,3,4,5,6,7,13}, E is incomplete
(8,5) — arc since there exists one point of index zero for E, which is the point (15).

We add the point (15) to E, we obtain a complete (9,5) — arc F,
F=Eu{15}={1,...,7,13,15}. Thus every point not in F is on a (5 — secant) and F intersects any
plane in at most 5 points.

1.4 The Construction of Complete (k,6) — arcs in PG(3,2) :

The arc F={1,...,7,13,15} is a complete (9,5) — arc. The distinct (k,6) — arcs can be
constructed by adding to F in each time one of the remaining six points, then:
F1:FU{8}, FQZFU{9}, F3:FU{10}, F4:FU{1 1}, F5:FU{12}, F6:FU{14}

By the definition 4, there are only two projectively distinct arcs since the arcs Fy, F,, Fs,
F¢ are projectively equivalent, For T(=T =T,=0, T;=2, T,=4, Ts=6, T(=3 and the arcs F; and
F, are projectively equivalent, for T\=T = 2, Ts=2, T4,=4, Ts=7, T¢=2. Thus we have two
projectively distinct (10,6) — arcs G={1,2,3,4,5,6,7,8,13,15}, G,={1,2,3,4,5,6,7,11,13,15}
each of them is incomplete since there exist some points of index zero. We take the union of
G, and G,. G= G,UG,={1,2,3,4,5,6,7,8,11,13,15}. G is incomplete (11,6) — arc since there
exists one point of index zero, which is the point (9), then H=GU{9}={1,...,9,11,13,15}.

H is a complete (12,6) — arc, since every point not in H is on a 6 — secant and H
intersects any plane in at most 6 points.

1.5 The Construction of Complete (k,7) — arcs in PG(3,2) :

The arc H = {I1,...,9,11,13,15} is a complete (12,6) — arc. Adding all the remaining
points to H, The complete (15,7) — arc can be obtained which is the maximal arc since it
contains all points of PG(3,2), (see figure (1)).

2- The Reverse Construction of Complete (k,n)-Arcs in PG(3,2):
Complete (k,n) — arcs in PG(3,2) can be constructed by eliminating some points from the
complete arcs of degree m, wherem =n + 1, 3 < n < 6, through the following steps:

2.1 The complete (k,7) — arc in PG(3,2) :

The projective space PG (3,2) contains 15 points and 15 planes, each plane contains
exactly 7 points, then the maximal complete (k,7) — arc A exists when k = 15. This arc
contains all the points of PG(3,2) since it intersects every plane in exactly 7 points and hence
there arc no points of index zero for A. So A = {1, ..., 15} is the complete (15,7) — arc.

2.2 The Construction of Complete (k,6) — arc in PG(3,2) :

A complete (k,6) — arc B is constructed from the complete (15,7) — arc A by eliminating
some points from A such that:
1. B intersects any plane in at most 6 points.
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2. every point not in B is on at least one 6 — secant of B.
The points 1, 2, 5 are eliminated from A, we obtain a complete (12,6) — arc B, since there are
no points of index zero for B. B= {3, 4, 6, ..., 15}.

2.3 The Construction of Complete (k,5) — arc in PG(3,2) :

A complete (k,5) — arc in PG (3,2) can be constructed from the complete (12,6) — arc B
by eliminating some points from B, which are: 3,6,9.
Then a complete (9,5) — arc C is obtained, C = {4, 7, 8, 10, 11, 12, 13, 14, 15} since each
point not in C is on at least one 5 — secant, hence there are no points of index zero for C and C
intersects any plane of PG(3,2) in at most 5 points.

2.4 The Construction of Complete (k,4) — arc in PG(3,2) :

A complete (k,4) — arc in PG(3,2) can be constructed from the complete (9,5) — arc C by
eliminating three points from C, which are the points 4, 7, 10, then a complete (6,4) — arc D is
obtained, D = {8, 11, 12, 13, 14, 15} since each point not in D is on at least one 4 — secant of
D and hence there are no points of index zero and D intersects each plane in at most 4 points.

2.5 The Construction of Complete (k,3) — arc in PG(3,2) :

A complete (k,3) —arc in PG(3,2) can be constructed from the complete (6,4) — arc D by
eliminating one point from D, which is the point : 15.
A complete (5,3) — arc E is obtained, E= {8, 11, 12, 13, 14} since each point not in E is on at
least one 3 — secant, hence there are no points of index zero for E and E intersects each plane
in at most 3 points.
See figure (2).

3- Results and Conclusion
From the previous results of the two methods, we found that there is no differences

between them, the numbers of the points of the complete (k,n) — arcs in the two methods given
in table (2).
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Table (1):The Points P; and Planes 7; of PG(3,2)

i P; T

1 1 (1,0,00) [ 234 6 7 10 | 12
2 10,100 [1([3] 4] 7 9 14 | 15
310010 ((11]214]|5 8 10 | 15
410,001 |1 ]12[3] 5 6 9 | 11
51 (1,1,00) | 3[4 S5 7 8 11 ] 13
6 [ (01,100 | 1 14| 6] 11 [ 12 ] 13 [ 15
71001, (11251 7 12 | 13| 14
8 | (1,1,0,1) [ 3 | 5|10 11 | 12| 14 | 15
0 1 (1.0.10) [2 4]0 1011|1314
100100 [ 1389 [10]12]13
11| a,1100 4[5 6] 8 9 12 | 14
121 @O1L1L1) | 1[6] 7] 8 10 [ 11 | 14
1B3{aLL) [sfe] 7 9 10 | 13 | 15
141,011 |2 [7] 8] 9 11 [ 12 | 15
15 | (1.0.0.) | 21316 8 | 13| 14] 15

Table (2):The Maximum (k,n)-arcs in Two Methods

n maximum (k,n)— arcs maximum (k,n)— arcs
in the first method in the second method

3 5 5

4 6 6

5 2 9

6 12 12

7 15 15
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Fig. (1):All complete (k,,n) — arcsin PG(3,2),3<n<7
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Fig. (2):All complete (k,,n) — arcsin PG(3,2), 3 <n < 7, by reverse construction
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