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Abstract

Reconstruction an object from its Fourier magnitude has taken a great deal in the literature
and there is still no obvious solution for the failure of this algorithm. In this paper, the
frequent failure of the phase retrieval is discussed in details and it has been shown that when
the object is cento-symmetric, the object support is vital element to ensure uniqueness while
for asymmetric object; the asymmetric support of the object is not enough to ensure
uniqueness but the reconstruction appear to include most of the information of the original
object. This is also true for the reconstruction of a complex function.
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Introduction

The problem of phase retrieval (magnitude- reconstruction only) has attracted a great deal
of attention in the literature and still many questions remain unanswered. Phase retrieval
involves finding the phase of a complex wave field when only the intensity (or its positive
square root) is known. For further background on the subject, the reader is referred to a
review by the following papers [1-6]. Exact solutions based upon polynomial models for the
wave field and either factorization or complex zero location [5] encounter computational
difficulties with large images and have limited stability in the presence of noise. The method
based upon zero location has the distinct advantage that it generates all possible solutions and
provides a means of testing for uniqueness. Iterative algorithms for phase retrieval are well
established [2,3,4] but their performance is often poor, particularly if no additional constraints
can be placed upon the solution. Many attempts have been made to enhance the performance
of phase retrieval technique. Numerical investigation to the uniqueness of p hase retrieval was
studied extensively using gradient search [7]. Additional step such as using sup port constraint
and low resolution image in connection with error reduction algorithm are used to retrieve the
Fourier phase of a complex function [8,9].

An algorithm for reconstruction a symmetric three dimensional image from its Fourier
intensity in the case of crystallographic problem is presented in [10]. Another approach was
made to formulate the phase retrieval problem with mathematical care to establish new
connections between well established numerical phase retrieval schemes and classical convex
optimization methods [11].

A projection-based method, the Hybrid projection reflection (HPR) algorithm was
proposed for solving phase retrieval problem [12]. The difficulties associated with phase
retrieval al gorithm and how to solve such problem using adaptive optics is described in [13].

Prior discrete Fourier transform (PDFT) spectral estimation technique was proposed to
reconstruct signals from incomplete data [14]. The third-order intensity correlations from the
data set of measured intensities for each distance triplet were calculated to reconstruct
astronomical images [15]. Taking derivation of the field autocorrelation holography with
extended reference allows direct reconstruction of a complex object from measurement of its
franhofer diffraction pattern [16].
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A Fourier heighted projection is proposed to tackle the problem of far-field measurement
that associated with the coherent lensing imaging [17]. Finally a Fourier domain Wiener filter
for the reconstruction of under sampled imagery is proposed [18]. This filter is depending on
a net transfer function that characterizes the combined effects of the imaginary system and
reconstruction process. Although many attempts have been made to solve the problem, phase
retrieval in practice is far from easy.

The work described in this paper tackles the frequent failure of iterative algorithms to
converge to the correct solution [3]. Furthermore, relatively little attention has been paid to
the reconstruction of specifically complex images.

Theory
In one dimension it is well known that the Fourier magnitude is non-unique, i.e. there
exists many functions f{x) with the same Fourier magnitude |F(u)|, where:

F(u) = | f(x)exp( iux)dx (1)

and /a,b] is the support of f(x).

In practice, iterative schemes for phase retrieval in one dimension almost always fall to
converge to the required solution [5]. This is attributed that if the polynomial function
describing the field from uniformly illuminated object, then in one dimension this
polynomials can always be factorized over the field of complex numbers and this will produce
well known ambiguities.

In two dimensions, the Fourier magnitude |F(u,v)| is uniquely specifies an image f(x,)),

where

Fu,v)= ”f(x, vyexp[ 2m(ux+vy)] dxdy )

SIZ
and S, is the support of f(x,y).

Since |F | is identical to |F" | (where an asterisk denotes complex conjugation), Fourier
magnitude data alone is insufficient to distinguish between the two. Consequently there is at
least a two-fold ambiguity in magnitude-only reconstruction of the image f(x,)). Both f(xy)
and f(-x,-y) have the same Fourier magnitude. Similarly, the magnitude is unaffected by a
multiplicative linear phase factor. The corresp onding reconstructed image is a shifted version
of the original. Alternative images of this kind having the same Fourier magnitude as the
required solution are usually classed as trivial ambiguities.

Uniqueness is usually taken to mean that only f{x,y) or its trivial ambiguities are consistent
with |F(u,v)|. Specifically, the trivial ambiguities refer to f(-x,-y). i.e., the image is reflected
through the origin, as well as it is shifted version of the original image.

For a centro-sy mmetric image:

S, )= f(=x-y) 3)

and |F(u,v)| is truly unique. In the following text, an image that is not centro-symmetric is
referred to as an asymmetric image, for which:

fp)# f=x-p) @
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and there exists a two — fold ambiguity.

It has often been assumed that there is no clear connection between the expectation of
uniqueness and the success of iterative algorithms [4]. However, the results presented in this
paper indicate a direct link between the absence of trivial ambiguities and successful
reconstruction.

Iterative phase retrieval as discussed in this paper refers to a generalization of the
Gerchberg-Saxton algorithm [19] known as the error-reduction algorithm [3] as shown in the
block diagram that illustrated in Fig.(1). The latest estimate of the image is Fourier
transformed, and the calculated Fourier magnitude replace by the known (true) magnitude.
The modified Fourier data (the true magnitude and the estimated phase) are inverse Fourier
transformed, and the known support of the image is imposed. The procedure is repeated until

the estimate of the image is sufficiently close to the original.
In two dimensions, the exact support of the image cannot be deduced from the

autocorrelation function and the support constraint tends to be weak. It is generally accepted
that if the support constraint is tightened, then the convergence is improved. The support of
the object could be imposed according to the following equation:

g2, (%) (x,y)es
ga(xy) = (5)
0 (x,y)és

k represents number of iterations.

An improved algorithm that can be used to speed up convergence is the hybrid input-
output algorithm [3] as shown in Fig(2). The Fourier transform, the Fourier domain
constrains, and the inverse transform are classed as a single system have an input and an
output. The (k+1 )th input is equal to the previous input wherever the image domain constraints
are satisfied, and equal to the previous input less some fraction of the output. The new input is
no longer simply the best estimate of the image, but is an attempt to drive the next output in
the right direction.

Results and Discussion

Before we start the study of frequent failure of magnitude only reconstruction algorithm,
let us begin with the reconstruction from using Fourier phase information. Fig.(3) shows the
importance of the Fourier phase than Fourier magnitude in image reconstructions.

Fig.(4 e,f,gh) show the reconstructions of centro-symmetric images using exact centro-
symmetric suppott. In this case, the Fourier phase is particularly simple; it assumes values of
only 0 or m. The reconstruction is successful using exact support. This is explained by noting
that for a centro-symmetric image, the two permissible solutions (corresponding
toF and F*) are identical. While, the reconstruction is fail to converge if the cento-
sy mmetric support is taken slightly bigger or smaller than the exact radius. Now, let us start
changing the symmetry of the object. If the same centro-sy mmetric support is used through
the image f(x,y) 1s not centro-symmetric. The reconstruction fails even if we imposed the
exact support constraint. The two possible solutions are no longer identical, the algorithm is
unable to converge on either one of them, and the reconstruction appears to be a confused
mixture of the two. Even through uniqueness to within a trivial ambiguity is assured (readily
achieved by means of Eisenstein's criterion [5], the support constraint is insufficient to ensure
true uniqueness as shown in Fig(5).

Fig.(6) shows an original real positive image and its reconstruction when exact asy mmetric
supp ort was imposed.
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Now, let us extend our study to include the reconstruction of a complex function. The
complex data is generated by assuming its real and imaginary are centro-symmetric functions
as shown in Fig(7 b & c). This function is Fourier transformed and its absolute function
represent the estimates Fourier magnitude. The reconstruction using exact support for the real
and imaginary parts are shown in Fig.(7 g&j). The results bear most of the information of the
comp lex function but not converge to the required solution.

Now if we changinge the symmetry of this complex function, the reconstruction is shown
in Fig.(8). Finally, it should be pointed out here that the number of iterations that used for all
the reconstructions is 100.

Conclusions

The reconstruction is good in sharp contrast. When rectangular or circular support
constraints are used, the reconstruction is failed to converge by iterative means even when the
additional constraints of reality and positivity are used. However, when an exact and
asymmetric support is used, the reconstruction converges quickly to the required solution. The
results presented above suggest that the convergence is significantly better if the support is
asymmetric and specifically excludes one of the trivial ambiguities, namely the image
reflected through the origin.

It is sometimes thought that the constraints of reality and positivity are important in
iterative reconstruction of real positive images. However, it is shown that it is the support
constraint which most affects the likelihood of convergence, and good results are obtained
with complex images.
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Fig. (1): Block Diagram of Fourier Magnitude Reconstruction or
sometimes called Error-reduction algorithm [3].
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Fig. (3): The importance of Fourier phase in Image reconstruction
(= denotes Fourier transfer operator)
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Fig. (4): Cento-symmetric object and there constructions with exact, longer and
smaller supports:

1.
2.
3.

4.

a)-(d) are cento-symmetric objects.

(e)-(h) Reconstructions of (1) consequently using exact support.
(i)-(I) Reconstructions of (1) consequently with slightly bigger
support.

(m)-(p) Reconstructions of (1) consequently with smaller support.
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Fig. (5): Changing the symmetry of the object.

(a)-(d) are cento-symmetric objects.

2. (e)-(h) Reconstructions of (1) consequently using exact support.
3.

(i)-(1) Reconstructions of (1) consequently with slightly bigger
support.
(m)-(p) Reconstructions of (1) consequently with smaller support.
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Fig. (6): Changing the symmetry of the object

[¢]

a- Real object

b- Reconstruction with exact support.

c- Reconstruction with drcle support shown in (e).
d- Reconstruction with square support shown in (f).
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Fig.(7): (a) Absolute of a complex function.

(b) Real of a complex function.

(¢) Imaginary of a complex function.
1. (d)-(f) Absolute of the reconstructions.
2. (g)-(i) Real of the reconstructions.

3. (j)-(1) Imaginary of the reconstructions.
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Fig (8): (a) Absolute ofa complex function.
(b) Real of a complex function.
(¢) Imaginary of a complex function.
1. (d)-(g) Absolute of the reconstructions.
2. (h)-(k) Real of the reconstructions.
3. (I)-(o) Imaginary of the re constructions.
(a)-(e) Absolute of the reconstructed complex object.
1. (f)-(j Real of the reconstructed complex
object.
2. (k)-(o) Imaginary of the reconstructed
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