Strongly Essentially Quasi-Dedekind Modules

I. M.A. Hadi, T.Y. Ghawi

Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad

Department of Mathematics, College of Education, University of Al-

Department of Mathematics, College of Education, University of Al-Qadisiya

Received in: 5 April 2011, Accepted in: 13July 2011

Abstract

Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasi-Dedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if Hom(M/N,M)=0 for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if $N \cap P \neq 0$ for all nonzero prime submodules P of M.

Key Words: Essentially quasi-Dedekind Modules; Strongly essentially quasi-Dedekind Modules, Multiplication Modules.

1. Introduction

Let R be a commutative ring with unity and M be an R-module. Mijbass A.S in [7] introduced and studied the concept of quasi-Dedekind, where an R-module M is called quasi-Dedekind if, Hom(M/N,M)=0 for all nonzero submodules N of M. Ghawi Th.Y. in [4] introduced and studied the concept of essentially quasi-Dedekind, where an R-module M is called essentially quasi-Dedekind if, Hom(M/N,M)=0 for all essential submodules N of M ($N \leq_e M$). In this paper we give a generalization of essentially quasi-Dedekind which we call it strongly essentially quasi-Dedekind, where an R-module M is called strongly essentially quasi-Dedekind if, Hom(M/N,M)=0 for all $N \leq_{se} M$. In fact a submodule N of M is called semiessential in M and denoted by ($N \leq_{se} M$) if, $N \cap p \neq 0$ for all nonzero prime submodules P of M [1], provided that M has nonzero prime submodule. In this paper we present the basic properties of strongly essentially quasi-Dedekind and some relationships with other modules.

Next throughout this paper, M has a nonzero prime submodules.

1.1 Definition

An R-module M is called strongly essentially quasi-Dedekind if, Hom(M/N, M) = 0 for all semiessential submodules N of M.

1.2 Remarks and Examples:

- 1- It is clear that if M is a strongly essentially quasi-Dedekind R-module, then M is an essentially quasi-Dedekind R-module, since every essential submodule is semiessential submodule.
- 2- Every quasi-Dedekind *R*-module is a strongly essentially quasi-Dedekind *R*-module, but the converse is not true in general, for example: Z_6 as Z- module is strongly essentially quasi-Dedekind, but it is not quasi-Dedekind, since $Hom(Z_6/(\overline{2}), Z_6) \cong Z_2 \neq 0$.
- 3- Each of Z, Z_6 , Z_{10} is strongly essentially quasi-Dedekind as Z-module.
- 4- Each of Z_4 , Z_8 , Z_{12} , Z_{16} is not strongly essentially quasi-Dedekind as Z-module.
- 5- $Z_{p^{\infty}}$ is not strongly essentially quasi-Dedekind as Z-module, for all prime numbers p.
- 6- $Z \oplus Z_2$ is not essentially quasi-Dedekind as Z-module, see [4, Remark 1.2.14], so it is not strongly essentially quasi-Dedekind as Z-module.
- 7- Let $N \le M$ and M/N is a strongly essentially quasi-Dedekind R-module, then it is not necessarily that M is a strongly essentially quasi-Dedekind R-module; For example: Let $M = Z_{12}$ as Z-module and let $N = (\overline{6}) \le Z_{12}$, then $Z_{12}/N \cong Z_6$ is a strongly essentially quasi-Dedekind Z-module, but Z_{12} is not strongly essentially quasi-Dedekind as Z-module.

Recall that a nonzero R-module M is called semi-uniform, if every nonzero R-submodule of M is a semiessential submodule of M [1].

1.3 Proposition:

Let M be a semi-uniform R-module. Then M is a quasi-Dedekind R-module if and only if M is a strongly essentially quasi-Dedekind R-module.

Proof: It is clear. \Box

1.4 Corollary:

Let M be a uniform R-module. The following statements are equivalent:

- **1-** *M* is a quasi-Dedekind *R*-module.
- **2-** *M* is a strongly essentially quasi-Dedekind *R*-module.
- **3-** *M* is an essentially quasi-Dedekind *R*-module.

Proof: It is clear. \Box

The following is a characterization of strongly essentially quasi-Dedekind module.

1.5 Theorem:

Let M be an R-module M is strongly essentially quasi-Dedekind if and only if for each $f \in End_R(M)$, $f \neq 0$ implies $Kerf \not\geq_{SE} M$.

Proof : \Rightarrow) Suppose that M is a strongly essentially quasi-Dedekind R-module .Let $f \in End_R(M)$, $f \neq 0$. To prove that $Kerf \not \geq_{se} M$. Assume that $Kerf \not \geq_{se} M$, define $g: M/Kerf \longrightarrow M$ by g(m+Kerf) = f(m) for all $m \in M$. It is clear that g is well-defined and $g \neq 0$, hence $Hom(M/Kerf, M) \neq 0$ which is a contradiction.

 \Leftarrow) Assume that there exists $h: M/N \longrightarrow M$, $h \neq 0$, for some $N \leq_{se} M$. Consider the following: $M \xrightarrow{\pi} M/N \xrightarrow{h} M$, where π is the natural projective mapping, then

Ibn Al-Haitham Journal for Pure and Applied Science							97	مجلة إبن الهيثم للعلوم الصرفة و التطبيقية						
	No.	$\boxed{1}$	Vol.	25	Year	2012	T -	2012	السنة (25	المجلد	(1)	العدد	

 $\phi = ho\pi \in End_R(M)$ and $\phi \neq 0$. Since $N \subseteq Ker\phi$ and $N \leq_{se} M$, thus $Ker\phi \leq_{se} M$. Since (for any prime submodule P of M, $P \cap N \neq (0)$). But this is contradiction. \square

1.6 Proposition:

Let M be an R-module and let $\overline{R} = R/J$, $J \subseteq ann_R M$, then M is a strongly essentially quasi-Dedekind R-module if and only if M is a strongly essentially quasi-Dedekind \overline{R} -module.

Proof: Since $Hom_{\overline{R}}(M/N, M) = Hom_{\overline{R}}(M/N, M)$ for all $N \leq M$, by [6, p.51] the result follows easily. \square

Recall that an injective R-module E(M) is called an injective hull (injective envelope) of an R-module M if, there exists a monomorphism $f: M \longrightarrow E(M)$ such that $Imf \leq_e E(M)$ [6, p.142]. And recall that a quasi-injective R-module \overline{M} is called a quasi-injective hull (quasi-injective envelope) of an R-module M if, there exists a monomorphism $g: M \longrightarrow \overline{M}$ such that $Img \leq_e \overline{M}$ [11].

To prove the next result, we state and prove the following lemma:

1.7 Lemma:

Let M be an R-module and let $A \leq M$, $B \leq M$. If $A \leq_{se} B \leq_{se} M$ then $A \leq_{se} M$.

Proof: Let P be a nonzero prime submodule in M, then $0 \neq P \cap B$ is prime in B and to show this: Let $x \in B$, $r \in R$. If $rx \in P \cap B$, then $rx \in P$ and $rx \in B$. Now $rx \in P$ implies either $x \in P$ or $r \in [P:M]$, since P is prime in M. If $x \in P$, then $x \in P \cap B$. And if $r \in [P:M]$, then $rM \subseteq P$, but $rB \subseteq rM \subseteq P$, then $rB \subseteq P$ and also $rB \subseteq B$, hence $rB \subseteq P \cap B$. Thus $r \in [P \cap B:B]$, so that $P \cap B$ is prime in B. It follows that $A \cap (P \cap B) \neq 0$ and hence $A \cap P \neq 0$. Therefore $A \subseteq_{se} M$. \square

1.8 Proposition:

Let M be an R-module. If \overline{M} is a strongly essentially quasi-Dedekind R-module, then M is a strongly essentially quasi-Dedekind R-module.

Proof: Let $f \in End_R(M)$, $f \neq 0$. To prove that $Kerf \leq_{se} M$. Since \overline{M} is quasi-injective R-module, then there exists $g : \overline{M} \longrightarrow \overline{M}$, $g \neq 0$ such that $g \circ i = i \circ f$ (where i is the inclusion mapping).

But \overline{M} is a strongly essentially quasi-Dedekind R-module, so $Kerg \leq_{se} \overline{M}$, but $Kerf \subseteq kerg$, then $Kerf \not \leq_{se} M$, and since $M \leq_{e} \overline{M}$; that is $M \leq_{se} \overline{M}$, then by (Lemma 1.7) $Kerf \leq_{se} \overline{M}$ which implies $Kerg \leq_{se} \overline{M}$ which is a contradiction. Thus M is a strongly essentially quasi-Dedekind R-module. \square

The following results follow directly by (Prop. 1.8).

1.9 Corollary:

Let M be a strongly essentially quasi-Dedekind and quasi-injective R-module. If $N \leq_{se} M$ then N is a strongly essentially quasi-Dedekind R-module.

1.10 Corollary:

Let M be an R-module. If E(M) is a strongly essentially quasi-Dedekind R-module then M is a strongly essentially quasi-Dedekind R-module .

The converse of (Coro. 1.10) is not true in general, as the following example shows:

1.11 Example:

It is well known that Z_2 as Z-module is a strongly essentially quasi-Dedekind. But $E(Z_2) = Z_2^{\infty}$ is not strongly essentially quasi-Dedekind as Z-module.

1.12 Remark:

Let M be an R-module. If $N \le M$ is a strongly essentially quasi-Dedekind R-module then it is not necessarily that M/N is a strongly essentially quasi-Dedekind R-module, consider the following example:

1.13 Example:

Let M=Z as Z-module, and let $N=4Z \le Z=M$. It is clear that $N \le_{se} M$ and M is strongly essentially quasi-Dedekind and quasi-injective as Z-module, so by (Coro.1.9) N is strongly essentially quasi-Dedekind as Z-module, but $M/N=Z/4Z \cong Z_4$ is not strongly essentially quasi-Dedekind as Z-module (see, Rem.and.Ex(1.2)(4)).

Recall that a nonzero R-module M is called compressible if, M embedded in each of its nonzero submodules [2].

1.14 Proposition:

Let M be a multiplication R-module, $N \not\subseteq M$. If N is a prime R-submodule of M, then M/N is a strongly essentially quasi-Dedekind R-module.

Proof: Since N is a prime submodule of M, so by [12, Coro. 4.18, ch.1] M/N is a compressible R-module, thus by [7,Prop 2.6, p.30] M/N is a quasi-Dedekind R-module. Therefore by (Rem.and.Ex(1.2)(2)) M/N is a strongly essentially quasi-Dedekind R-module. \square

To prove our next result, we need the following lemma:

1.15 Lemma:

Let M, N be an R-modules, let $f: M \longrightarrow N$ be a monomorphism. Let $K \leq M$, $A \leq N$, then:

- (1) $K \leq_{se} M$ implies $f(K) \leq_{se} N$.
- (2) $A \leq_{se} N$ implies $f^{-1}(A) \leq_{se} M$, if f is an epimorphism and $Kerf \subseteq P$, where P is any prime submodule of M.

Proof:

- (1) Suppose that there exists a nonzero prime submodule W of N such that $f(K) \cap W = 0$. But $K = f^{-1}(f(K))$, since f is a monomorphism. Hence $K \cap f^{-1}(W) = f^{-1}(f(K)) \cap f^{-1}(W) = f^{-1}(f(K)) \cap W = f^{-1}(0) = Kerf = \{0\}$. But $f^{-1}(W)$ is a nonzero prime submodule of M, so $K \not\leq_{se} M$ which is a contradiction.
- (2) The proof is similarly. \Box

1.16 Proposition:

Let $M \cong N$. Then M is a strongly essentially quasi-Dedekind R-module if and only if N is a strongly essentially quasi-Dedekind R-module.

Proof: \Rightarrow) Let $\phi: M \longrightarrow N$ be an isomorphism. Suppose that M is a strongly essentially quasi-Dedekind R-module. Let $f \in End_R(N)$, $f \neq 0$. To prove that $Kerf \nleq_{se} N$, consider the following: $M \xrightarrow{\phi} N \xrightarrow{f} N \xrightarrow{f} M$, let $h = \phi^{-1}o \ f \ o \ \phi \in End_R(M)$, $h \neq 0$ since $h(M) = \phi^{-1} \circ f \circ \phi \ (M) \subseteq \phi^{-1} \ (f(N)) \subseteq \phi^{-1} \ (N) \neq 0$. Then $Kerh \nleq_{se} M$, since M is a strongly essentially quasi-Dedekind R-module. We claim that $Kerf = \{y \in N: \phi^{-1}(y) \in Kerh\}$. To prove our assertion. Let $y \in Kerf$, then f(y) = 0. $h(\phi^{-1}(y)) = \phi^{-1} \circ f \circ \phi \ (\phi^{-1}(y)) = \phi^{-1} \circ f \ (y) = \phi^{-1} \ (0) = 0$. Thus for each $y \in Kerf$, then $\phi^{-1}(y) \in Kerh$ and hence $\phi^{-1}(Kerf) \subseteq Kerh \nleq_{se} M$ this implies $\phi^{-1}(Kerf) \nleq_{se} M$, so by (Lemma.(1.16)(2)) $Kerf \nleq_{se} N$. Therefore N is a strongly essentially quasi-Dedekind R-module.

 \Leftarrow) The proof of the converse is similarly. \Box

1.17 Theorem:

Let M be an R-module such that M/V is projective R-module, for all $V \leq_{se} M$. If M is a strongly essentially quasi-Dedekind R-module, then M/N is a strongly essentially quasi-Dedekind R-module for all $N \leq M$. Provided $N \leq_{se} M$.

Proof: To prove that M/N is strongly essentially quasi-Dedekind, we must prove that $Hom(\frac{M/N}{U/N}, \frac{M}{N}) = 0$ for all $U/N \leq_{se} M/N$. By 3^{rd} isomorphism theorem $\frac{M}{N} / \frac{U}{N} \cong \frac{M}{U}$, so its enough to show that Hom(M/U, M/N) = 0. Let $f \in Hom(M/U, M/N)$, $f \neq 0$. Hence there exists $g: M/U \longrightarrow M$ such that $\pi \circ g = f$, since M/U is projective.

So $g \neq 0$, thus $Hom(M/U,M) \neq 0$. $U \leq_{se} M$, because $U \supseteq N$. Thus M is not strongly essentially quasi-Dedekind R-module, so we get a contradiction .Thus M/N must be a strongly essentially quasi-Dedekind R-module. \square

To prove the next theorem we need the following lemma:

1.18 Lemma:

Let M_1 , M_2 be R-modules. If $A \leq_{se} M_1$, $B \leq_{se} M_2$ then $A \oplus B \leq_{se} M_1 \oplus M_2$.

Proof: Let P be prime in $M_1 \oplus M_2$, then by [5] $P = P_1 \oplus P_2$, such that either p_1, p_2 prime in M_1, M_2 respectively, so $(A \oplus B) \cap (P_1 \oplus P_2) = (A \cap P_1) \oplus (B \cap P_2) \neq 0$.

Or,
$$P = P_1 \oplus M_2$$
, then $(A \oplus B) \cap (P_1 \oplus M_2) = (A \cap P_1) + (B \cap M_2) = A \cap P_1 \oplus B \neq 0$.

Or,
$$P = M_1 \oplus P_2$$
, then $(A \oplus B) \cap (M_1 \oplus P_2) = (A \cap M_1) + (B \cap P_2) = A \oplus B \cap P_2 \neq 0$. \Box

1.19 Theorem:

A direct summand of a strongly essentially quasi-Dedekind *R*-module is a strongly essentially quasi-Dedekind *R*-module.

Proof: Let $M = M_1 \oplus M_2$. To prove M_I is a strongly essentially quasi-Dedekind R-module. Let $f \in End_R(M_1), f \neq 0$, we have the following diagram:

$$M_1 \oplus M_2 \xrightarrow{\rho} M_1 \xrightarrow{f} M_1 \xrightarrow{i} M_1 \oplus M_2$$

i of o $\rho \in \text{End}_{\mathbb{R}}(M)$. If i of o $\rho(M) = i$ of $(M_1) = i(f(M_1)) = f(M_1) \neq 0$, then Ker(i of o ρ) $\leq seM$. Ker(i of o ρ) = $\{m_1 + m_2 : i \circ f \circ \rho(m_1, m_2) = 0\} = \{m_1 + m_2 : i \circ f(m_1) = 0\} = \{m_1 + m_2 : f(m_1) = 0\} = \{m$

The converse of (Theorem 1.19) is not true in general, consider the following example: **1.20 Example:**

We know that each of Z, Z_6 as Z-module is strongly essentially quasi-Dedekind. But $Z \oplus Z_6$ is not strongly essentially quasi-Dedekind as Z-module, since $Z \oplus Z_6$ is not essentially quasi-Dedekind.

Recall that a nonzero submodule N of an R-module M is called quasi-invertible if $Hom(M \mid N, M) = 0$, [7].

1.21 Proposition:

If M be a strongly essentially quasi-Dedekind R-module. Then $ann_R M = ann_R N$ for all $N \leq_{se} M$.

Proof: Suppose that M is a strongly essentially quasi-Dedekind R-module, then Hom(M/N,M) = 0 for all $N \leq_{se} M$, hence N is a quasi-invertible submodule of M, for all $N \leq_{se} M$. Thus by [7, Prop.1.4] $ann_p M = ann_p N$ for all $N \leq_{se} M$. \square

To prove the following proposition, we need to prove the following lemma:

1.22 Lemma:

Let M be a faithful multiplication R-module. Then $N \leq_{se} M$ if and only if $N:M \leq_{se} R$.

Proof: \Rightarrow) If $N \leq_{se} M$. Let P be any nonzero prime ideal in R. Then by [3, Lemma 2.10] PM is a nonzero prime submodul in M, hence $N \cap PM \neq 0$; that is $[(N:M)M] \cap PM \neq 0$, and since M is a faithful multiplication R-module, $[(N:M) \cap P]M \neq 0$, by [3]. Thus $[N:M] \cap P \neq 0$, so $[N:M] \leq_{se} R$.

 \Leftarrow) If $[N:M] \leq_{se} R$.Let P be any nonzero prime submodule in M, then by [3, Prop.2.8,ch1] [P:M] is prime ideal in R, and since $[N:M] \leq_{se} R$, we have $[N:M] \cap [P:M] \neq 0$ which implies $([N:M] \cap [P:M])M \neq 0$, so that by [3] $[N:M]M \cap [P:M]M \neq 0$, thus $N \cap P \neq 0$; that is $N \leq_{se} M$. □

1.23 Proposition:

Let M be a faithful multiplication R-module. If M is a strongly essentially quasi-Dedekind R-module, then R is a strongly essentially quasi-Dedekind R-module.

Proof : Let $f: R \longrightarrow R$, $f \ne 0$. For any $r \in R$, f(r) = r f(1) = ra, where a = f(1). Define $g: M \longrightarrow M$ by g(m) = am for each $m \in M$. g is well-defined and $g \ne 0$, hence $Kerg \not \leq_{se} M$. But Kerg = [Kerg:M]M, since M is a multiplication R-module. However we can show that [Kerg:M] = Kerf as the following: Let $r \in [Kerg:M]$ implies $rM \subseteq Kerg$, so g(rM) = 0, hence arM = 0; that is $ar \in ann_R M = 0$, thus f(r) = ar = 0, hence $r \in Kerf$. Now, let $r \in Kerf$, then ar = f(r) = 0, so arM = 0; that is g(rM) = 0, thus $rM \subseteq Kerg$ and hence $r \in [Kerg:M]$.

Therefore [Kerg:M] = Kerf. But Kerg $\leq_{se} M$, implies by (Lemma (1.22)) [Kerg:M] $\leq_{se} R$, thus $Kerf \leq_{se} R$ and hence R is a strongly essentially quasi-Dedekind R-module. \square

Recall that an *R*-module *M* is called scalar if for each $f \in End_R(M)$, there exists $r \in R$ such that f(a) = ar for all $a \in M$ [10, p.8].

1.24 Proposition:

Let M be a finitely generated faithful multiplication R-module. If R is a strongly essentially quasi-Dedekind R-module, then M is a strongly essentially quasi-Dedekind R-module.

Ibn A	l-Haitha	m Journal	for Pure	and Applic	ed Science		مجلة إبن الهيثم للعلوم الصرفة و التطبيقية						
No.	1	Vol.	25	Year	2012	TIP -	2012	السنة (25	المجلد	1	العدد	

Proof: Since M is a finitely generated multiplication R-module, then by [9,Th.2.3] M is a scalar R-module, so for each $f \in End_R(M)$, there exists $r \in R$ such that f(m) = rm, for all $m \in M$. Define $g: R \longrightarrow R$ by g(a) = ra, for all $a \in R$, $Kerg \nleq_{se} R$, since R is a strongly essentially quasi-Dedekind R-module. But Kerf = [Kerf: M] M, also by the same argument of the proof of (Prop.1.23), we get Kerg = [Kerf: M], but $Kerg \nleq_{se} R$, so $[Kerf:M] \nleq_{se} R$ which implies $Kerf \nleq_{se} M$, by (Lemma 1.22). Thus M is a strongly essentially quasi-Dedekind R-module. \square By combining (Prop 1.23) and (Prop 1.24), we get the following result:

1.25 Corollary:

Let M be a finitely generated faithful multiplication R-module.M is a strongly essentially quasi-Dedekind R-module if and only if R is a strongly essentially quasi-Dedekind R-module.

We end this paper with the following corollary:

1.26 Corollary:

Let M be a finitely generated faithful multiplication R-module. If R is a strongly essentially quasi-Dedekind R-module, then $End_R(M)$ is a strongly essentially quasi-Dedekind ring.

Proof: Since M is a finitely generated multiplication R-module, then by [9,I.2.3] M is a scalar R-module. Then by [8, Lemma 6.2, ch.3] $End_R(M) \cong R/ann_RM \cong R$, but R is a strongly essentially quasi-Dedekind ring, thus by Prop.1.16 $End_R(M)$ is a strongly essentially quasi-Dedekind ring. \square

References

- 1. AL-Daban, N.K. (2005) Semi-Essential Submodules and Semi-Uniform Modules, M.Sc. Thesis, College of Education, University of Tikret.
- 2. Desale, G. and Nicholson, W.K. (1981) Endoprimitive Rings, J. Algebra, 70: 548-560.
- 3. EL-Bast, Z.A.and Smith P.F., (1988), Multiplication Modules, Comm. In Algebra, <u>16</u>: 755 779.
- 4. Ghawi, I.Y. (2010), Some Generalizations of Quasi-Dedekind Modules, M.Sc. Thesis, College of Education Ibn L-Haitham, University of Baghdad.
- 5. Hadi, I.M-A. (2003), Piecewise Noetherian Modules, Ph.D.Thesis, College of Education Ibn AL-Haitham, University of Baghdad.
- 6. Kasch, F. (1982), Modules and Rings, Academic Press, London.
- 7. Mijbass, A.S. (1997), Quasi-Dedekind Modules, Ph.D.Thesis, College of Science, University of Baghdad.
- 8. Mohamed–Ali, E.A. (2006), On Ikeda-Nakayama Modules, Ph.D.Thesis, College of Education Ibn AL-Haitham, University of Baghdad.
- 9. Naoum, A.G. (1990), On the Ring of Endomorphisms of a Finitely Generated Multiplication Modules, Periodica Math, Hungarica, 21(3):249 255.
- 10. Shihab B.N. (2004), Scalar Reflexive Modules, Ph.D.Thesis, College of Education Ibn AL-Haitham, University of Baghdad.
- 11. Zelmanowitz, J.M. (1986), Representation of Rings with Faithful Polyform Modules, Comm. In Algebra, 14 (6):1141 1169.
- 12. إيمان علي عذاب، (1996)، حول الموديو لات الجزئية الأولية والموديو لات الجزئية شُبه الاولية، رسالة ماجستير، كلبة العلوم، جامعة بغداد.

المقاسات شبه _ ديديكاندية الواسعة بقوة

إنعام محمد على هادي، ثائر يونس غاوي

قسم الرياضيات ، كلية التربية - ابن الهيثم ، جامعة بغداد

قسم الرياضيات ، كلية التربية، جامعة القادسية

استلم البحث في: 5 نيسان 2011، قبل البحث في: 13تموز 2011

الخلاصة

لتكن R حلقة أبدالية ذا عنصر محايد . في هذا البحث قدّمنا ودرسنا مفهوم المقاسات شبه - ديديكاندية الواسعة بقوة كأعمام إلى المقاسات شبه - ديديكاندية الواسعة، اذ يسّمى المقاس M على R مقاساً شبه - ديديكاندي واسع بقوة إذا كان M مقاس جزئي شبه واسع M في M . يطلق على مقاس جزئي M من مقاس كان M على M من مقاس جزئي أولى غير صفري M في M على شرط ان M لها مقاسات أولية غير صفرية.

الكلمات المفتاحية: المقاسات شبه الديدكانديه الواسعة، المقاسات شبه الديدكاندية الواسعة بقوة، المقاسات الجزئية شبه الواسعة، المقاسات الجدائية.

 Ibn Al-Haitham Journal for Pure and Applied Science
 العدد العيثم للعلوم الصرفة و التطبيقية

 No.
 1
 Vol.
 25
 Year
 2012
 2012
 السنة
 25
 السنة
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

