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Abstract

Let R be a commutative ring with unity. In this paper we introduce and study the concept
of strongly essentially quasi-Dedekind module as a generalization of essentially quasi-
Dedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind

module if Hom (M /[N,M )= 0 for all semiessential submodules N of M. Where a submodule

N of an R-module M is called semiessential if , NN p#0 for all nonzero prime
submodules P of M .

Key Words: Essentially quasi-Dedekind Modules; Strongly essentially quasi-Dedekind
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1. Introduction

Let R be a commutative ring with unity and M be an R-module. Mijbass A.S in [7]
introduced and studied the concept of quasi-Dedekind, where an R-module M is called quasi-
Dedekind if, Hom (M /N,M) = 0 for all nonzero submodules N of M. Ghawi Th.Y. in [4]
introduced and studied the concept of essentially quasi-Dedekind, where an R-module M is
called essentially quasi-Dedekind if, Hom (M /N,M) =0 for all essential submodules N of
M (N £,M). In this paper we give a generalization of essentially quasi-Dedekind which we
call it strongly essentially quasi-Dedekind, where an R-module M is called strongly essentially
quasi-Dedekind if, Hom (M /N, M) =0 for all N <;, M. In fact a submodule N of M is called

semiessential in M and denoted by (N <,, M ) if, NN p#0 for all nonzero prime
submodules P of M [1], provided that M has nonzero prime submodule. In this paper we
present the basic properties of strongly essentially quasi-Dedekind and some relationships with
other modules.

Next throughout this paper, M has a nonzero prime submodules.

1.1 Definition
An R-module M is called strongly essentially quasi-Dedekind if, Hom (M /[N, M) =0 for
all semiessential submodules N of M.
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1.2 Remarks and Examples:

I- It is clear that if M is a strongly essentially quasi-Dedekind R-module, then M is an
essentially quasi-Dedekind R-module, since every essential submodule is semiessential
submodule.

2- Every quasi-Dedekind R-module is a strongly essentially quasi-Dedekind R-module, but
the converse is not true in general, for example: Z; as Z- module is strongly essentially

quasi-Dedekind, but it is not quasi-Dedekind, since Hom (Z / Q2),Z ) =Z,#0.
3- Each of Z, Zs, Z;, is strongly essentially quasi-Dedekind as Z-module.
4- EachofZ,, Zs, Z,,, Z ;5 1s not strongly essentially quasi-Dedekind as Z-module.
5- Zp is not strongly essentially quasi-Dedekind as Z-module ,for all prime numbers p.

0

6- Z® Z, is not essentially quasi-Dedekind as Z-module, see [4, Remark 1.2.14], so it is not
strongly essentially quasi-Dedekind as Z-module.

7- Let N = M and M/N is a strongly essentially quasi-Dedekind R-module, then it is not
necessarily that M is a strongly essentially quasi-Dedekind R-module; For example :

Let M = Z,, as Z-module and let N = (6)< Z,,then Z,/N=Z is astrongly essentially
quasi-Dedekind Z-module, but Z;, is not strongly essentially quasi-Dedekind as Z-module.

Recall that a nonzero R-module M is called semi-uniform, if every nonzero R-submodule
of M is a semiessential submodule of M [1].

1.3 Proposition:

Let M be a semi-uniform R-module. Then M is a quasi-Dedekind R-module if and only if
M is a strongly essentially quasi-Dedekind R-module.

Proof : It is clear. [
1.4 Corollary:
Let M be a uniform R-module .The following statements are equivalent:

1- M s a quasi-Dedekind R-module.
2- M s a strongly essentially quasi-Dedekind R-module.
3- M is an essentially quasi-Dedekind R-module.

Proof : It is clear . []
The followingis a characterization of strongly essentially quasi-Dedekind module.

1.5 Theorem:

Let M be an R-module M is strongly essentially quasi-Dedekind if and only if for each
feEnd,(M), f+0 implies Kerf £, M.

Proof :=) Suppose that M is a strongly essentially quasi-Dedekind R-module .Let
feEnd,(M), f#0. To prove that Kerf Z M. Assume that Kerf Z 6 M, define

g :M/Kerf——)M by g ( m+Kerf) = f(m) for all m e M. 1t is clear that g is well-defined
and g # 0, hence Hom (M /Kerf ,M)# 0 which is a contradiction.

<) Assume that there exists 4 :M/N — M, h# 0, for some N <,, M. Consider the
following : M——> M /N " 3 M, where m~ is the natural projective mapping then
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¢p=hor e End (M) and ¢ #0. Since N < Ker¢ and N <,, M, thus Ker¢ <,, M. Since (for
any prime submodule P of M, PN = (0)). But this is contradiction. [

1.6 Proposition:

Let M be an R-module and let R = RYJ, J Cann, M | then M is a strongly essentially
quasi-Dedekind R-module if and only if M is a strongly essentially quasi-Dedekind

R -module.

Proof : Since HomE(M/N,M) = Hom, (M /N,M) for all N < M, by [6, p.51] the result

follows easily. [

Recall that an injective R-module £( M) is called an injective hull ( injective envelope )
of an R-module M if, there exists a monomorphism f: M—— E(M) such that Imf <, E(M)

[6, p.142]. And recall that a quasi-injective R-module M s called a quasi-injective hull
(quasi-injective envelope) of an R-module M if, there exists a monomorphism

g: M—— M such that Img <, M [11].
Toprove the next result, we state and prove the following lemma:

1.7 Lemma:

Let M be an R-moduleand let 4 < M,B < M.If4 <,,B <,, Mthen4d <, M.

Proof : Let P be a nonzero prime submodule in M, then 0 # PN B is prime in B and to show

this: Let x €B,r eR. If rx € PnB, thenrx € Pand rx € B. Now rx € P implies either
x ePor r €[/ P:M], since Pis prime in M. Ifx eP,thenx € PnB. Andifr € [P : M], then

rM <P, but rB < rM < P, then ¥B — P and also' 7B < B, hence rB < PnB. Thus
r €[ PnB:BJ, so that PnB is prime in B. It follows that An(PNB) #0 and hence

ANP #0. Therefore A <, M. [
1.8 Proposition:

Let M be an R-module. If 3 is a strongly essentially quasi-Dedekind R-module, then M
is a strongly essentially quasi-Dedekind R-module.

Proof : Let fe End,(M), f#0. To prove that Kerf <,, M. Since M is quasi- injective

R-module, then there exists g : M —> M, g #0 such that g 0 i =i o f ( where i is the
inclusion mapping).
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But M is a strongly essentially quasi-Dedekind R-module, so Kerg <;, M, but Kerf < kerg,
then Kerf £, M, and since M < M ; that is M <, M, then by (Lemma 1.7) Kerf <, M

which implies Kerg <, M which is a contradiction. Thus M is a strongly essentially quasi-
Dedekind R-module. [

The following results follow directly by (Prop. 1.8).

1.9 Corollary:

Let M be a strongly essentially quasi-Dedekind and quasi-injective R-module. IfN <,, M
then N is a strongly essentially quasi-Dedekind R-module.

1.10 Corollary:

Let M be an R-module. If £(M) is a strongly essentially quasi-Dedekind R-module then M
is a strongly essentially quasi-Dedekind R-module .

The converse of (Coro. 1.10) is not true in general, as the following example shows:

1.11 Example:

It is well known that Z, as Z-module is a strongly essentially quasi-Dedekind. But
E(Zy) = Z,” is not strongly essentially quasi-Dedekind as Z-module .

1.12 Remark:

Let M be an R-module. If N < M is a strongly essentially quasi-Dedekind R-module then
it is not necessarily that M/N is a strongly essentially quasi-Dedekind R-module, consider the
following examp le:

1.13 Example:

Let M = Z as Z-module, and let N = 4Z < Z = M. It is clear that N <,, M and M is
strongly essentially quasi-Dedekind and quasi-injective as Z-module, so by (Coro.1.9) N is
strongly essentially quasi-Dedekind as Z-module, but M/N = Z/4Z = Z, is not strongly
essentially quasi-Dedekind as Z-module ( see, Rem.and.Ex(1.2)(4)) .

Recall that a nonzero R-module M is called compressible if, M embedded in each of its
nonzero submodules [2].

1.14 Proposition:

Let M be a multiplication R-module, N £ M. If N is a prime R-submodule of M, then
M/N is a strongly essentially quasi-Dedekind R-module.

Proof: Since N is a prime submodule of M, so by [12, Coro. 4.18, ch.1] M/N is a compressible
R-module, thus by [7,Prop 2.6, p.30] M/N is a quasi-Dedekind R-module. Therefore by
(Rem.and.Ex(1.2)(2)) M/N is a strongly essentially quasi-Dedekind R-module. [
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To prove our next result, we need the following lemma:

1.15 Lemma:

Let M, N be an R-modules, let /- M——> N be a monomorphism. Let K < M, 4 < N,
then:

1 K —seM implies f(K) <. N.
(2) 4 <,. N implies f7'(4) <, M, if f is an epimorphism and Kerf < P, where P is any

prime submodule of M.
Proof :

(1) Suppose that there exists a nonzero prime submodule /7 of IV such that /{K) N W = 0. But
K = f(f(K)), since fis a monomorphism. Hence K n r'y= f'(f(K) N f' W)=
UK W)= f7(0)= Kerf = {0}. But f~'(W) is a nonzero prime submodule of M,

so K £, M which is a contradiction.
(2) The proofis similarly. [
1.16 Proposition:

Let M = N. Then M is a strongly essentially quasi-Dedekind R-module if and only if N is
a strongly essentially quasi-Dedekind R-module.

Proof : =) Let ¢ . M——N be an isomorphism. Suppose that M is a strongly essentially

quasi-Dedekind R-module. Let feEndy(N), f #0 . To prove that Kerf %, N, consider the
follwing M —¢> N —L s N —% 5 M, let h=¢ "0 f o¢ cEndeg(M), h #0 since
hM) = ¢ ofog M) ¢ (fIN)) € ¢ (N) £0 .Then Kerh %, M, since M is a strongly
essentially quasi-Dedekind R-module. We claim that Kerf = {yeN: ¢ 'I(y) € Kerh}. To prove
our assertion. Let y eKerf, thenf(y) = 0. h(¢ ()= ¢ ' ofod (¢ ' v)=¢ "o f)=4¢" (0)=0.
Thus for each y eKerf, then ¢'1(y) € Kerh and hence ¢'1(Kerﬁ cKerh %, M this implies

¢_1(Kerf) %50 M, so by (Lemma.(1.16)(2)) Kerf %, N. Therefore N is a strongly essentially
quasi-Dedekind R-module.

<) The proof of the converse is similarly. [

1.17 Theorem:

Let M be an R-module such that M/V is projective R-module, for all V <, M. If M is a
strongly essentially quasi-Dedekind R-module, then M/N is a strongly essentially quasi-

Dedekind R-module for all N <M. Provided N <, M.
Proof: To prove that M/N is strongly essentially quasi-Dedekind, we must prove that

MIN M

N U/N N

enough to show that Hom( M/U, M/N)= 0. Let f € Hom( M/U, M/N ), f # 0 .Hence there exists
g : M/U—— M such that 7 og =f, since M/U is projective.

—)= 0 for all UN <,, M/N. By 31 isomorphism theorem / = o SO its
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So g #0, thus Hom(MJU,M)#0. U <, M, because U D N. Thus M is not strongly
essentially quasi-Dedekind R-module, so we get a contradiction .Thus M/N must be a strongly
essentially quasi-Dedekind R-module. [

To prove the next theorem we need the following lemma:

1.18 Lemma:

Let M;, M, be R-modules. If 4 <,, M;, B <;, Mothen A®B <,, M, ®M,.

Proof : Let P be prime in M, @ M, , then by [5] P= B @ P,, such that either p;, p, prime in
M, , M, respectively ,s0 (A@B)N(RO®P)=(ANB)DBNP)=0.

Or,P=PF®M,,then (A®B)N(BE®M,)=(ANP)+(BNM,)=ANF DB #0.
Or,P= M ®P,,then (A®B)N(M,®P)=(AnM)+(BNP)=AD®BNP, #0.0]
1.19 Theorem:

A direct summand of a strongly essentially quasi-Dedekind R-module is a strongly
essentially quasi-Dedekind R-module.

Proof : Let M =M, ®M,. Toprove M, is a strongly essentially quasi-Dedekind R-module.
Let f € End,(M,),f #0, we have the following diagram:

M, ®M,—25M,—L s M,—5 M, DM,

iofopeEnd, (M) .If iof op(M)=i0f(M,)=i(f(M,)) = /(M) =0,then Ker(iof 0p) & M.
Ker(i of 0 0) ={m,+m:iofo p(m,,m,) =0y ={m+my: 10f (m, ) = 0} ={m +ms: f(m) =0}=
Kerf ® M, £,. M, ® M, . But M, <, M,, so Kerf £,, M|, by (Lemma 1.18). [

The converse of ( Theorem 1.19) is not true in general ,consider the following example:

1.20 Example:
We know that each of Z, Z; as Z-module is strongly essentially quasi-Dedekind. But

Z®7Z, is not strongly essentially quasi-Dedekind as Z-module, since Z@Z, is not
essentially quasi-Dedekind.
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Recall that a nonzero submodule N of an R-module M is called quasi-invertible if
Hom(M |N,M) =0, [7].

1.21 Proposition:

If M be a strongly essentially quasi-Dedekind R-module. Then ann,M =ann,N for all
N < M.

Proof : Suppose that M 1is a strongly essentially quasi-Dedekind R-module, then
Hom(M/N,M)=0 for all N <, M, hence N is a quasi-invertible submodule of M, for all

N <, M . Thus by [7, Prop.1.4] ann,M =ann,N forall N <, M. []
To prove the following proposition, we need to prove the following lemma:

1.22 Lemma:
Let M be a faithful multiplication R-module. Then N <, M if and only if /N :M] <, R.

Proof : =) If N <, M. Let P be any nonzero prime ideal in R. Then by [3, Lemma 2.10] PM
is a nonzero prime submodul in M, hence N N PM#0; that is [(N:-M)M ] ~ PM+ 0, and since
M is a faithful multiplication R-module, / (N:M) nP] M #0, by [3]. Thus /[N-M] NP #0, so

/IN:MJ <. R.

<) If [N :M] <,, R Let P be any nonzero prime submodule in M, then by [3, Prop.2.8,ch1]
[P:M] is prime ideal in R, and since /N :M] <, R, we have [N:-M] ~[P:M] #0 which
implies ( [N-M] N [P:M])M + 0, so thatby [3] [N-M]M " [P:M] M #0, thus N NP #0; that
isN<, M. ' [

1.23 Proposition:

Let M be a faithful multiplication R-module. If M is a strongly essentially quasi-Dedekind
R-module, then R is a strongly essentially quasi-Dedekind R-module.

Proof : Let f: R ——> R, f #0. For any reR, f(r) = r f(1) = ra ,where a = f(1). Define

g: M ——> M by g(m) =am foreachmeM. g is well-defined and g #0 , hence Kerg %, M.
But Kerg = [Kerg:M]M, since M is a multiplication R-module. However we can show that
[Kerg:M] = Kerf as the following Let » € /Kerg:M] implies rM < Kerg, so g(rM) = 0, hence
arM = 0; that is ar eannygM = 0, thus f(r) = ar = 0, hence r € Kerf. Now, let r € Kerf, then
ar = f(r) = 0, so arM = 0; that is g(rM) = 0, thus M cKerg and hence r €/[Kerg:M].
Therefore /[Kerg:M] = Kerf- But Kerg %, M, implies by (Lemma (1.22)) / Kerg:M | % (R,

thus Kerf %, R and hence R is a strongly essentially quasi-Dedekind R-module. [
Recall that an R-module M is called scalar if for each f € Endg(M) , there exists r€R
such that f(a) = ar forallae M [10, p.8].

1.24 Proposition:

Let M be a finitely generated faithful multiplication R-module. If R is a strongly
essentially quasi-Dedekind R-module, then M is a strongly essentially quasi-Dedekind
R-module.
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Proof : Since M is a finitely generated multiplication R-module, then by [9,Th.2.3] M is a
scalar R-module, so for each /" € Endr(M), there exists » € R such that f(m) = rm, for all m e M.

Define g : R——> R by g(a) = ra, for all aeR , Kerg %, R, since R is a strongly essentially
quasi-Dedekind R-module. But Kerf = [Kerf: M] M, also by the same argument of the proof

of (Prop.1.23), we get Kerg = [Kerf: M], but Kerg ¥, R, so [Kerf-M] %,, R which implies
Kerf ¥, M, by (Lemma 1.22). Thus M is a strongly essentially quasi-Dedekind R-module.
By combining (Prop 1.23) and (Prop 1.24) , we get the following result:

1.25 Corollary:
Let M be a finitely generated faithful multiplication R-module.M is a strongly essentially

quasi-Dedekind R-module if and only if R is a strongly essentially quasi-Dedekind R-module.
We end this paper with the following corollary:
1.26 Corollary:

Let M be a finitely generated faithful multiplication R-module. If R is a strongly

essentially quasi-Dedekind R-module, then Endr(M) is a strongly essentially quasi-Dedekind
ring.
Proof : Since M is a finitely generated multiplication R-module , then by [9,1.2.3] M is a
scalar R-module. Then by [8, Lemma 6.2, ch.3] Endz(M) = R/annzyM =R, but R is a strongly
essentially quasi-Dedekind ring ,thus by Prop.1.16 Endgr(M) is a strongly essentially quasi-
Dedekind ring, [
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