Ib	n Al-Hait	ham J	ournal for	Pure and	Applied Science	

Year

25

Vol.

المحلد

1

العدد

25

Semiprime Fuzzy Modules

2012

السنة

M. A.Hamil Department of Mathematics, College of Education - Ibn-Al-Haitham University of Baghdad

Received in: 19 June 2011, Accepted in: 20 September 2011

2012

Abstract

1

No.

In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

Key Words: Prime fuzzy module, semiprime module, semiprime fuzzy module.

Introduction

The notion of fuzzy subsets of a set $S \neq \phi$ as a function from S into [0,1] was first developed by Zadeh [1]. The concept of fuzzy modules was introduced by Negoita and Ralescu in [2]. The concept of fuzzy submodule was introduced by Mashinch and Zahedi [3]. The concept of fuzzy ideal of a ring by Liu in [4]. Dauns in [5] introduced the notion of semiprime submodules as a generalization of semiprime ideals of a ring Eman in [6] studied semiprime submodules. I.M.Hadi in [7] introduced the notion of semiprime fuzzy ideals of a ring also introduced semiprime fuzzy submodules of fuzzy module in [8]. Frias in [9] studies semiprime module. In this paper we introduce the notion of semiprime fuzzy modules as a generalization of R-semiprime modules and give many properties of this concept.

Throughout this paper R is commutative ring with unity, M is an R-module and X is a fuzzy module of an R-module M.

1- Preliminaries

In this section, we shall formulate the preliminary definitions and results that are required later in this paper.

1.1 Definition: [1]

Let S be a non-empty set. A fuzzy set A in S (a fuzzy subset of S) is a function from S into [0,1].

1.2 Definition: [2]

Let $x_t: S \longrightarrow [0,1]$ be a fuzzy set in S, where $x \in S$, $t \in [0,1]$ defined by:

$$\mathbf{x}_{t}(\mathbf{y}) = \begin{cases} t & \text{if } \mathbf{x} = \mathbf{y} \\ 0 & \text{if } \mathbf{x} \neq \mathbf{y} \end{cases}$$

for all $y \in S$. x_t is called a fuzzy singleton.

1.3 Proposition: [3]

Let a_t , b_k be two fuzzy singletons of a set S. If $a_t = b_k$, then a = b and t = k, where $t, k \in [0,1]$.

1.4 Definition: [4]

Let A and B be two fuzzy sets in S, then:

- 1- A = B iff A(x) = B(x), for all $x \in S$.
- **2-** $A \subseteq B$ iff $A(x) \le B(x)$, for all $x \in S$.
- **3-** $(A \cap B)(x) = \min\{A(x), B(x)\}, \text{ for all } x \in S, [2].$
- **1.5 Definition:** [5]

Let A be any fuzzy set in S for all $t \in [0,1]$, the set $A_t = \{x \in S, A(x) \ge t\}$ is called a level subset of A.

1.6 Remark: [1]

The following properties of level subsets hold for each $t \in [0,1]$.

- $1- (A \cap B)_t = A_t \cap B_t.$
- **2-** $A = B \text{ iff } A_t = B_t$.
- 1.7 Definition: [1]

Let f be a mapping from a set M into a set N, let A be a fuzzy set in M and B be a fuzzy set in N. The image of A denoted by f(A) is the fuzzy set in N defined by:

 $f(A)(y) = \begin{cases} \sup \{A(z) \colon z \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \phi \text{ for all } y \in N, \\ 0 & \text{otherwise} \end{cases}$

And the inverse image of B, denoted by $f^{-1}(B)$ is the fuzzy set in M defined by:

$$f^{-1}(B)(x) = B(f(x))$$
, for all $x \in M$.

1.8 Definition: [2]

Let M be an R-module. A fuzzy set X of M is called fuzzy module of an R-module M if:

- 1- $X(x y) \ge \min \{X(x), X(y)\}$ for all $x, y \in M$.
- **2-** $X(rx) \ge X(x)$, for all $x \in M$ and $r \in R$.
- **3-** X(0) = 1.

1.9 Definition: [5]

Let X and A be two fuzzy modules of R-module M. A is called a fuzzy submodule of X if $A \subseteq X$.

100

1.10 Proposition: [6]

Let A be a fuzzy set of an R-module M. Then the level subset $A_t, t \in [0,1]$ is a submodule of M iff A is a fuzzy submodule of X, where X is a fuzzy module of an R-module M.

1.11 Remark: [5]

If X is a fuzzy module of an R-module M and $x_t \subseteq X$ then for all fuzzy singleton r_k of R, $r_k x_t = (rx)_{\lambda}$, where $\lambda = \min\{k,t\}$.

1.12 Definition: [7]

A fuzzy subset K of a ring R is called a fuzzy ideal of R if for each x, $y \in R$:

المحلد

1

العدد

25

1- $K(x - y) \ge \min\{K(x), K(y)\}.$

2- $K(x \cdot y) \ge \max{K(x), K(y)}$.

1.13 Proposition: [7]

A fuzzy subset K of a ring R is a fuzzy ideal iff K_t , $t \in [0,1]$ is an ideal of R.

1.14 Definition: [2]

Let A and B be two fuzzy submodules of a fuzzy module X of an R-module M. The residual quotient A and B denoted by (A:B) is the fuzzy subset of R defined by:

2012

السنة

 $(A:B)(r) = \sup \left\{ t \in [0,1], \, r_t B \subseteq A \right\} \text{ for all } r \in R.$

That is $(A:B) = \{r_t : r_t B \subseteq A, r_t \text{ is fuzzy singleton of } R\}.$

1.15 Theorem: [2]

Let A and B be two fuzzy submodules of a fuzzy module X of an R-module M. Then the residual quotient (A:B) of A and B is a fuzzy ideal of R.

1.16 Definition: [8]

Let A be fuzzy submodule of a fuzzy module X. The fuzzy annihilator of A denoted by F-annA is defined by:

 $(F-annA)(r) = \sup \{t : t \in [0,1], r_tA \subseteq O_1\}$ for all $r \in R$. That is $F-annA = (O_1:A)$.

1.17 Definition: [9]

Let X and Y be two fuzzy modules of M_1 and M_2 respectively defined $X \oplus Y: M_1 \oplus M_2 \longrightarrow [0,1]$ by $(X \oplus Y)(a,b) = \min\{X(a),Y(b)\}$ for all $(a,b) \in X \oplus Y$. $X \oplus Y$ is called a fuzzy external direct sum of X and Y. **1.18 Proposition:** [9]

Let X and Y be fuzzy modules of M_1 and M_2 respectively then $X \oplus Y$ is a fuzzy module of $M_1 \oplus M_2$.

1.19 Remark: [9]

Let A and B be two fuzzy submodules of a fuzzy module X such that $X = A \oplus B$, then $X_s = A_s \oplus B_s$, for all $s \in [0,1]$.

1.20 Definition: [9]

A fuzzy module X of an R-module M is called a prime fuzzy module if F-annA = F-annX, for any nontrivial fuzzy submodule A of X.

2- Semiprime Fuzzy Modules

Firas in [9] introduced the concept of semiprime R-module (where M is called a semiprime module if for each $r \in R$, $x \in M$, $r^2x \subseteq M$ implies $rx \subseteq M$.. We shall fuzzify this concept in definition 2.3. But first we give the two definitions:

2.1 Definition: [7]

Let A be a non constant fuzzy ideal of a ring R. A is called semiprime fuzzy ideal if for any fuzzy singleton $x_t \in R$, $x_t^2 \in A$, implies $x_t \in A$.

2.2 Definition: [8]

Let A be a fuzzy submodule of a fuzzy module X of an R-module M such that $A \neq X$, A is called semiprime fuzzy submodule if for each fuzzy singletone $r_t \in R$, $x_s \subseteq X$, $r_t^2 x_s \subseteq A$ implies $r_t x_s \subseteq A$.

2.3 Definition:

Let X be a fuzzy module of an R-module M, X is called semiprime fuzzy module if for each non-zero fuzzy submodule A of X, F-annA is a semiprime fuzzy ideal of R.

2.4 Remarks:

1- Every prime fuzzy module X is a semiprime fuzzy module.

Proof: Let A be a fuzzy submodule of X. Since X is prime, hence F-annA is a prime fuzzy ideal by [17] which implies F-annA is a semiprime fuzzy ideal by [7]. Thus X is a semiprime fuzzy module.

2- If X is a semiprime fuzzy module, then F-annX is a semiprime fuzzy ideal.

Proof: It is clear by definition 2.3, so is omitted.

The following is a characterization of semiprime fuzzy module.

2.5 Proposition:

Let X be a fuzzy module of an R-module M. Then X is a semiprime fuzzy module if and only if X_t is a semiprime module, $\forall t \in [0,1]$.

Proof: (\Rightarrow) Let $N \subseteq X_t$, $t \in [0,1]$. To prove ann_RN is a semiprime ideal of R. Let $a^2 \in ann_RN \subseteq X_t$. Since $a^2 \in ann_RN$, then $a^2N = 0$, let $x \in N$, hence $a^2x = 0$. Assume X(x) = k. Hence $x_k \in X$, so $\langle x_k \rangle \subseteq X$. But F-ann $\langle x_k \rangle$ is a semiprime fuzzy ideal. and $a_k^2 x_k = (a^2x)_k \subseteq O_k \subseteq O_1$. Thus $a_k^2 \in F$ -ann $\langle x_k \rangle$. Since F-ann $\langle x_k \rangle$ is a semiprime fuzzy ideal. Thus $a_k \in F$ -ann $\langle x_k \rangle$, hence $a_k x_k \subseteq O_1$, so $(ax)_k = O_k \subseteq O_1$. Thus ax = 0, for any $x \in N$.

(\Leftarrow) Conversely, to prove F-annA is a semiprime fuzzy ideal of R for each non zero fuzzy submodule A of X. Let $r_k^2 \in$ F-annA, so $r_k^2 x_t \subseteq O_1$, for all $x_t \in A$. This implies $(r^2 x)_{\lambda} = 0$, where $\lambda = \min\{k,t\}$ hence $r^2 x = 0$, $x \in A_t$. But $A_t \subseteq X_t$ and X_t is semiprime by hypothesis. Hence rx = 0. This implies $(rx)_{\lambda} \subseteq O_1$. That is $r_k x_t \subseteq O_1$. Therefore $r_k \in$ F-annA. By def. (2.3) we get the result.

The following proposition gives another characterization of semiprime fuzzy module.

2.6 Proposition:

Let X be a fuzzy module of an R-module M. Then X is a semiprime fuzzy module if and only if O_1 is a semiprime fuzzy submodule of X.

is a semiprime fuzzy submodule.

المحلد

العدد

1

25

السنة

25 2012 No. 1 Vol. Year **Proof:** (\Rightarrow) Let $r_t^2 x_k \subseteq O_1$, for any fuzzy singleton r_t of R, $x_k \subseteq X$, hence $r_t^2 \in (O_1:x_k) =$ F-ann $\langle x_k \rangle$. But F-ann $\langle x_k \rangle$ is a semiprime fuzzy ideal. Thus $r_t \in (O_1:x_k)$, so $r_t x_k \subseteq O_1$. Thus O_1

(\Leftarrow) To prove X is a semiprime fuzzy module. By proposition 2.5. It is enough to show that X_t is semiprime, $\forall t \in [0,1]$. (i.e.) to prove {0} is semiprime submodule of X_t by [9,Th.4.1.8]. Let $r^2 = 0$, to prove r = 0, hence $r_t^2 = O_t \subseteq O_1$, $(r_t)^2 \subseteq O_1$, hence $r_t^2 \subseteq O_1$, which implies $r_t \subseteq O_1$, since O_1 is semiprime. Thus r = 0, hence X_t is a semiprime module, $\forall t \in [0,1]$. Thus X is a semiprime fuzzy module.

2012

Next we can give some examples of semiprime and not semiprime fuzzy module.

2.7 Examples:

- 1- Let X:Z₆ \longrightarrow [0,1] defined by X(a) = 1, $\forall a \in Z_6$. X_t = Z₆, which is a semiprime module, $\forall t \in [0,1]$. Thus by prop. (2.5),X is a semiprime fuzzy module.
- **2-** Let $X:\mathbb{Z}_6 \longrightarrow [0,1]$ defined by

$$X(x) = \begin{cases} 1 & \text{if } x \in \{0, 3\} \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

 $X_0 = Z_6$, $X_1 = Z_6$ which is semiprime and $\forall t > \frac{1}{2}$, $X_t = \{\overline{0}, \overline{3}\}$ is a prime submodule,

hence it is semiprime. Thus X_t is a semiprime module, $\forall t \in [0,1]$. Thus X is a semiprime fuzzy module.

3- Let X : $Z_{12} \longrightarrow [0,1]$ defined by: $X(a) = \begin{cases} 1 & \text{if } a \in \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\} \\ 0 & \text{otherwise} \end{cases}$

It is clear that X is a fuzzy module and $X_0 = Z_{12}$, is not semiprime module. By prop.(2.5) X is not semiprime fuzzy module.

inge of Education

2.8 Lemma:

Let A and B be two fuzzy submodules of fuzzy module of an R-module M. If for each $x_t \in B$, $[A:<x_t>]$ is a semiprime fuzzy ideal of R, then [A:B] is a semiprime fuzzy ideal of R.

Proof: Let $a_k^2 \subseteq [A:B]$, hence $a_k^2 B \subseteq A$. This implies $a_k^2 x_t \in A$, for all $x_t \in B$. Hence $a_k^2 \in [A: \langle x_t \rangle]$ which is a semiprime fuzzy ideal. Thus $a_k \in [A: \langle x_t \rangle]$. So $a_k x_t \in A$, hence $a_k B \subseteq A$. Thus [A:B] is a semiprime fuzzy ideal.

2.9 Proposition:

Let X be a fuzzy module of an R-module M. Then the following are equivalent:

Ibn Al-Haitham Journal for Pure and Applied Science		مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 1 Vol. 25 Year 2012	Π.9	العدد 1 المجلد 25 السنة 2012

- 1- X is semiprime.
- 2- [F-annA:B] is a semiprime fuzzy ideal of R for every nonzero fuzzy submodule A of X and for every non-zero fuzzy ideal B of R such that F-annA \subseteq F-annB.
- 3- [F-annA:x_t] is a semiprime fuzzy ideal of R for every non-zero fuzzy submodule A of X and for every fuzzy singleton $x_t \in R$ such that $x_t \notin F$ -annA.
- 4- F-ann(x_k) is a semiprime fuzzy ideal of R for non-zero fuzzy singleton $x_k \in X$.

Proof: (1) \Rightarrow (2) Let $r_k^2 \in$ [F-annA:B], hence $r_k^2 B \subseteq$ F-annA. So $r_k^2 b_s \subseteq$ F-annA, for all $b_s \in$ B.

Hence $r_k^2 b_s^2 \subseteq F$ -annA, so $(rb)_{\lambda}^2 \subseteq F$ -annA, where $\lambda = \min\{k,s\}$. Thus $(rb)_{\lambda} \subseteq F$ -annA, since F-annA is a semiprime fuzzy ideal. So $r_k b_s \in F$ -annA. Hence $r_k \in [F$ -annA:B]. Thus [F-annA:B] is a semiprime fuzzy ideal.

(2) \Rightarrow (3) It is followed by putting $\langle x_t \rangle = B$.

(3) \Rightarrow (4) It is easy to check that [F-annx_t:<1₁>] = F-ann<x_t>. But [F-ann<x_t>:<1₁>] is a semiprime fuzzy ideal by (3). Thus F-annx_t is a semiprime fuzzy ideal.

The following proposition shows that the direct sum of semiprime fuzzy modules is semiprime fuzzy module.

2.10 Proposition:

Let X and Y be two fuzzy modules of M_1 and M_2 R-modules respectively. Then X and Y are semiprime if and only if $X \oplus Y$ is a semiprime fuzzy module.

Proof: (\Rightarrow) If X and Y are semiprime, then X_t and Y_t are semiprime modules by proposition 2.5. Hence X_t \oplus Y_t is a semiprime module by [9,prop.4.1.11]. But X_t \oplus Y_t = (X \oplus Y)_t by remark

1.19. Thus $X \oplus Y$ is a semiprime fuzzy module by proposition 2.5.

 (\Leftarrow) The proof is similarly.

Now we turn our attention to image and inverse image of semiprime fuzzy module. We have the following:

2.11 Proposition:

Let X and Y be two fuzzy modules of R-modules M_1 and M_2 respectively. Let $fM_1 \longrightarrow M_2$ be R-homomorphism, then

3- Semiprime Fuzzy Modules and Other Related Fuzzy Modules

In this section we study the relationship between semiprime fuzzy module and divisible, uniform and F-regular fuzzy modules.

3.1 Definition: [17]

A fuzzy module X is divisible if $r_t X = X$, for all $r_t \neq O_t$ (r_t is a fuzzy singleton of R).

3.2 Definition: [17]

A fuzzy module is called uniform if $A \cap B \neq O_1,$ for any non trivial fuzzy submodules A and B.

3.3 Definition: [17]

Let A be a fuzzy submodule of fuzzy module X. Then A is called an essential fuzzy submodule if $A \cap B \neq O_1$, for any nontrivial fuzzy submodule B of X.

(Ibn A	l-Haitha	m Journal	for Pure	e and Appli	ed Science		يقية	ة و التطب	م الصرف	الهيثم للعلو	مجلة إبن	•)
	No.	$\boxed{1}$	Vol.	25	Year	2012	π.9	2012	السنة	25	المجلد	$\left(\begin{array}{c}1\end{array}\right)$	العدد	

3.4 Proposition:

Let X be a uniform fuzzy module. Then X is a prime fuzzy module if and only if X is semiptime fuzzy module.

Proof: (\Rightarrow) It is easy by prop.2.2.

(\Leftarrow) To prove F-annX = F-annA, for any non trivial fuzzy submodule A of X [17,Def.3.1.1]. It is clear that F-annX \subseteq F-annA. To prove F-annA \subseteq F-annX.

Let $r_t \in F$ -annA and $r_t \notin F$ -annX. Thus there exists $x_k \in X$, $x_k \neq 0_k$ such that $r_t x_k \notin O_1$. Since X is uniform, $A \cap \langle r_t x_k \rangle \neq O_1$, then there exists $y_s \in A$ and $y_s \in \langle r_t x_k \rangle$ such that $y_s \neq O_1$. Thus $y_s = a_\ell r_t x_k$, a_ℓ is a fuzzy singleton of R. $O_1 = r_t y_s = a_\ell r_t^2 x_k$, it follows $r_t^2 \in F$ -ann $\langle a_\ell x_k \rangle$ since $a_\ell x_k \neq O_1$, so F-ann $\langle a_\ell x_k \rangle$ is a semiprime fuzzy ideal of R. Therefore $r_t \in F$ -ann $\langle a_\ell x_k \rangle$. This implies that $O_1 = r_t a_\ell x_k = y_s$. Thus $y_s = O_1$ which is a contradiction.

3.5 Proposition:

If X is a uniform fuzzy module, then X_t is a uniform module, $\forall t \in (0,1]$.

Proof: Let N and W be submodules of X_t such that $N \neq O$, $W \neq O$. Define A: $M \longrightarrow [0,1]$, B: $M \longrightarrow [0,1]$ by

 $A(x) = \begin{cases} t & \text{if } x \in N, t \neq 0 \\ 0 & \text{otherwise} \end{cases}, B(x) = \begin{cases} t & \text{if } x \in W, t \neq 0 \\ 0 & \text{otherwise} \end{cases}$

This implies A and B are fuzzy submodules of X and $A_t = N$, $B_t = W$, for all $t \in (0,1]$. Since X is uniform, then $A \cap B \neq O_1$. But $(A \cap B)(x) = \begin{cases} t & \text{if } x \in N \cap W \\ 0 & \text{if } x \notin N \cap W \end{cases}$.

On the other hand, $(A \cap B)_t = A_t \cap B_t = N \cap W$. Hence $N \cap W \neq \{0\}$. Thus X_t is a uniform module, $\forall t \in (0,1]$.

Recall that an R-submodule N of module M is called quasi-invertible if Hom $(\frac{M}{N}, M) = 0$. And an R-module M is called quasi-Dedekind if every non-zero R-submodule of M is quasi-invertible(18).

3.6 Proposition:

Let X be a uniform and semiprime fuzzy module. Then X_t is a quasi-Dedekind module, $\forall t \in (0,1]$.

Proof: X is uniform, implies X_t is uniform $\forall t \in (0,1]$ and X is semiprime, then X_t is semiprime by prop. 2.5. Thus X_t is a quasi-Dedekind module $\forall t \in (0,1]$ by [9,prop.2.4].

3.7 Proposition:

Let X be a fuzzy module of an R-module M such that every fuzzy submodule of X is divisible, then X is semiprime.

Proof: Let $O_1 \neq x_t \in X$. It is enough to show that F-ann $\langle x_t \rangle$ is a semiprime fuzzy ideal by prop.(2.9)(4). Let $r_k^2 \in$ F-ann $\langle x_t \rangle$, hence $r_k^2 x_t = O_1$. But $\langle x_t \rangle$ is a divisible fuzzy submodule. Then $\langle x_t \rangle = r_k \langle x_t \rangle$; r_k is a fuzzy singleton of R. Hence $x_t = r_k c_\ell x_t$, $c_\ell \in X$. So $r_k x_t = r_k r_k c_\ell x_t = r_k^2 c_\ell x_t$, but $r_k^2 c_\ell x_t = c_\ell r_k^2 x_t = c_\ell O_1 = O_1$. Thus $r_k x_t = O_1$. So $r_k \in$ F-ann $\langle x_t \rangle$. Thus F-ann $\langle x_t \rangle$ is a semiprime fuzzy ideal. Thus X is semiprime fuzzy module.

3.8 Corollary:

Let X be a fuzzy module and every fuzzy submodule of X is divisible. Then X is a prime fuzzy module.

Proof: By prop.3.8, X is semiprime. But X is divisible, then X is prime by [17,prop.3.1.13].

3.9 Proposition:

Let X be an F-regular fuzzy module of an R-module M ,where R is a principle ideal domain. Then X is a semiprime fuzzy module.

Proof: Since X is F-regular, then X_t is F-regular $\forall t \in (0,1]$ by [11]. Hence X_t is a semiprime module $\forall t \in (0,1]$ by [9,prop.4.2.6]. Thus X is a semiprime fuzzy module.

References

- 1. Zadeh, L.A., (1965), Fuzzy Sets, Information and Control, <u>8</u>: 338-353.
- 2. Negoita, C.V. and Ralescu, D.A., (1975), Applications of Fuzzy Sets and System Analysis (Birkhous, Basel).
- 3. Maschinchi, M. and Zahedi, M.M., (1992), On L-Fuzzy Primary Submodules, Fuzzy Sets and Systems, <u>49</u>:231-236.
- 4. Liu, W.J. (1982), Fuzzy Invariant Subgroups and Fuzzy Ideals, Fuzzy Sets and Systems, <u>8</u>:133-139.
- 5. Dauns, (1980), Prime Modules and One-Sided Ideals in "Ring Theory and Algebra III" (Proceeding of the Trird Oklahama Conference), B.R. McDonald, NewYork, .301-314.
- 6. Athab, E.A. (1996), Prime Submodule and Semiprime Submodules, M.Sc Thesis, College of Science, Univ. of Baghdad.
- 7. Hadi, I.M.A. (2000), Semiprime Fuzzy Ideals of a Ring, Journal Published by Iraqi Society of Phy. And Math., <u>15(2)</u>.
- 8. Hadi, I.M.A., (2004), Semiprime Fuzzy Submodules of Fuzzy Modules, Ibn-Al-HaithamJ. for Pure and Appl. Sci., <u>17(3)</u>: 112–123.
- 9. Al-Sharid, F.A. (2008), S-Compactly Packed Submodules and Semi-Prime Modules, M.Sc. Thesis, Tikrit University.
- Zahedi, M.M. (1992), On L-Fuzzy Residual Quotient Modules and P.Primary Submodules, Fuzzy Sets and Systems, <u>51</u>:33-344.
- 11. Hamil, M.A. (2002), F-regular Fuzzy Modules, M.Sc. Thesis, Univ. of Baghdad.
- 12. Zahedi, M.M. (1991), Characterization of L-Fuzzy Prime Ideals, Fuzzy Sets and Fuzzy System, <u>44</u>:147-160.

Ibn Al-Haitham Journal for Pure and Applied Science		مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 1 Vol. 25 Year 2012	T.S.	العدد 1 المجلد 25 السنة 2012

- Martinex, L. (1996), Fuzzy Modules Over Fuzzy Rings in Connection with Fuzzy Ideal of Ring, J. Fuzzy Math., <u>4</u>: 843-857.
- 14. Mukhegee, T.K.; Sen, M,K, and Roy, D., (1996), On Submodules and Their Radicals, J. Fuzzy Math., <u>4</u>, pp.549-558.
- 15. Kumar, R., (1992), Fuzzy Cosets and Some Fuzzy Radicals, Fuzzy Sets and Systems, <u>46</u>: 261-265.
- 16. Majumdar, S. (1990), Theory of Fuzzy Modules, Eull. Col. Math. Sce., 82:395-399.
- 17. Rabi, H.J. (2001), Prime Fuzzy Submodules and Prime Fuzzy Modules, M.Sc.Thesis, Univ. of Baghdad.
- 18. Ali, S.Mijbass, (1997), Quasi-Dedekind Modules, Ph.D. Thesis, College of Science, Univ. of Baghdad.

Ibn Al-Haitham Journal for Pure and Applied Science	مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 1 Vol. 25 Year 2012	العدد 1 المجدد 25 السنة 2012

المقاسات شبه الأولية الضبابية

ميسون عبد هامل قسم الرياضيات ، كلية التربية – ابن الهيثم ، جامعة بغداد

استلم البحث في : 19 حزيران 2011، قبل البحث في : 20 ايلول 2011

الخلاصة

في هذا البحث قدم مفهوم المقاسات شبه الاولية الضبابية اعماما" للمقاسات شبه الاولية. ثم اعطيت العديد من التشخيصات والخواص لهذا المفهوم.

الكلمات المفتاحية: المقاس الأولي الضبابي ، المقاس شبه الأولي ، المقاس شبه الأولي الضبابي.

05 101