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Abstract. 
        In this paper, we give a comprehensive study of min (max)-CS modules such as a closed 

submodule of min-CS module is min-CS. Amongst other results we show that a direct 

summand of min (max)-CS module is min (max)-CS module. One of interested theorems in 

this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS 

ring. 
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1- Introduction 

        Throughout the paper all rings R are commutative with identity  and all R-modules are 
unitary. We write A  M and A  e M to indicate that A is a submodule of M and A is an 
essential submodule of M, respectively. Recall that anR-module M is called an extending 
module (or, CS-module) if every submodule is essential in a direct summand of M or M is 
extending if and only if every closed submodule is a direct summand, [1, p.55]. In this paper 
definitions, notations, examples and fundamental results of min (max)-CS modules are 
introduced.  
1.1 Definition: [2] 
        An R-module M is called min-CS module if every minimal closed submodule of M is                
a direct summand of M. 
        A ring R is called min-CS if it is min-CS R-module. 
 
1.2 Definition: [2] 
        An R-module M is called max-CS module if every maximal closed submodule of M with 
nonzero annihilator is a direct summand of M. 
        A ring R is max-CS if it is max-CS R-module. 
Recall that an R-module M is -injective (quasi-continuous) if and only if M satisfies    C1 
(M is extending) and C3, where M is said to satisfy the C3 if the sum of any two direct 
summands of M  with zero intersection is a direct summand of M. [3, p.18] 
 
1.3 Remarks and Examples  
1. Every CS-module is min-CS and max-CS. 
Proof:  
        It follows directly by [1, p.55].  
2. Every semisimple module is max-CS and min-CS.  

In particular ℤ2, ℤ3, ℤ6, ℤ10,…, ℤ30 as a ℤ-module is max-CS and min-CS. 
Proof:  
        By [1, p.55], every semisimple module is CS. Hence the result follows by  remark 1. 
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3. Every uniform R-module M is min-CS and max-CS. 

In particular each of ℤ-module ℤ, ℤ4, ℤ8, ℤ9, ℤ16 is min-CS and max-CS. 
4. If R is a semisimple ring, then every R-module M is injective, by [4, theorem 1.18, p.29]. 
Hence M is max (min)-CS module since every injective module is CS. By [1, p.16]. 

5. The ℤ-module ℤ12 is max-CS and min-CS. 

The submodules of ℤ12 are 2 , 3 , 4 , 6 , 0           and ℤ12. 

Since 123 4     ¢ . 

So each of 3   and 4   are direct summands. 
Hence they are closed submodules. 

2    e ℤ12 and e6 3      imply hat 2   and 6   are not closed. 

Thus M  is CS and so max-CS and min-CS. 

6. It is easy  to check that each of the ℤ-modules ℤ18 and ℤ24 are min-CS and max-CS. 
7. Let M be a module whose lattice of submodules is the following: 

2
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N N
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It is clear that N1 is closed in M, but it is not a direct summand of M. 
So M is not CS. 
 Also N1 is a minimal closed submodule of M. Hence M is not a min-CS module. 
 Notice that N1  N2  e M, so it is not closed submodule of M. 
It follows that N1 is a max-closed submodule of M. 
Hence M is not a max-CS module. 
8. Every -injective is min-CS and max-CS. 
Proof:  
        It follows by the definition of -injective module and remark 1.3 (1).   

9. Let M be the ℤ-module ℤ8  ℤ2. 
M is not CS-module, since there exists a submodule N = { (2 ,1 ), (4, 0), (6, 1 ), (0,0) } which is 

closed but not a direct summand. 
Moreover N is minimal closed, so M is not min-CS module. 
On the other hand M is a max-CS module, since the only maximal closed submodules of M 

are ℤ8  ( 0 ) and < (3,1) >, and (ℤ8  ( 0 ))  (( 0 ) ℤ2) = M  and                            < (3,1) >  

(( 0 )  ℤ2) = M . Hence we deduce that M is max-CS. 

10. Let M 1 and M 2 be two R-modules such that M 1 is isomorphic to M 2 (M 1≅M 2), then M1 
min (max)-CS if and only if M2 is min (max)-CS. 
 Mahmoud A.Kamal and Amany M.Menshawy in [5] gave the following: 
 An R-module M is called min-CS if every simple submodule of M is essential in a direct 
summand. 

 However this definition of min-CS is different from definition 1.1, since the ℤ-module M = 

ℤ8  ℤ2 is not min-CS in our sense. 

        However it is min-CS (in sense of Kamal and Menshawy) since ℤ8 is CS, so min-CS               

(in sense of Kamal and Menshawy) and ℤ2 is simple, so semisimple. 
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Hence by applying [5, lemma 3, p.166], M is min-CS (in sense of Kamal and Menshawy). 
 
1.4 Proposition:  
 

 Let M be an R-module, and let I be an ideal of R such that I ⊆ annM. M is                     max-
CS R-module then M is max-CS (R/I)-module and the converse is true if annM ≠ annN, for 

all maximal closed submodule N ≨ M. 
Proof:  
        Let N be a maximal-closed (R/I)-submodule of M and annR/IN ≠ 0R/I = I. It is easy  to see 
that N is a maximal closed submodule of M. 
Since annR/IN ≠ I = 0R/I, so there exists r + I  R/I with rI such that r + I  annN, hence              
r ≠ 0 and rN = 0. 
Thus annRN ≠ 0 and so that N is a direct summand of M. 
        Conversely, let N be a maximal closed R-submodule of M with annN ≠ 0. Hence N is            
a maximal closed (R/I)-submodule. 

Now, since ann M 

ann N, there exists r  ann N and r  ann M. 

Thus r  I; that is 0R/I = I ≠ r + I and (r + I)N = rN = 0. 
Hence ann R/IN ≠ 0R/I. 
But M is a max-CS (R/ I)-module, so N is a direct summand. 
 
1.5 Proposition:  
        Let M be an R-module, let I be an ideal of R such that I  ann M. Then M is min-CS R-
module if and only if M is min-CS (R/ I)-module. 
Proof:  
         It is straight forward, so it is omitted. 
        Recall that an R-module M is called a uniform extending (or uniform-CS) if every 
uniform submodule is essential in a direct summand. [1, p.55]. 
        Al-Hazmi in [2,p.24], mentioned that min-CS and uniform-CS are equivalent concepts 
without proof. We shall prove this equivalence, but first we need the following lemmas. 
 
1.6 Lemma:  
        Let N be a submodule of an R-module M. N is minimal closed if and only if N is 
uniform-closed (that is every closed submodule of N is essential in N). 
Proof:  
() It is enough to prove that N is uniform 
Let V, W be two nonzero submodules of N. Suppose V  W = (0). 
Hence, there exists V'  N such that V' is a relative complement of V and hence V' is closed           
in N. 
Since N is minimal closed of M thus N is closed in M, so by  [4, proposition 1.5, p.18], V' is 
closed in M and 0 ≠V'  N. 
Thus N is not minimal closed submodule of M, which is a contradiction. 
Therefore, N is uniform-closed submodule. 
() Suppose that there exists a closed submodule V of M such that V  N. 
But N is uniform. So V  e N. 
Hence V = N, since V is closed. 
Thus N is minimal closed.   
 
1.7 Lemma:  
        If U is a uniform submodule of M such that U e K  M. Then K is uniform. 
Proof:  
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  Let V and W be two nonzero submodules of K. 
Since U  e K, U  W ≠ (0) and U  V ≠ (0). 
But U is uniform submodule of M. 
So (U  V)  (U  W) ≠ (0). 
Hence U  (V  W) ≠ (0). 
Thus V  W ≠ (0); that is K is uniform. 
 
1.8 Lemma:  
        Let U be a submodule of an R-module M. Then U is uniform closed if and only if U is 
maximal uniform; that is U is maximal in the collection of uniform submodules of M . 
Proof:  
         () Suppose there exists a uniform submodule V of M such that U  V. 
Since V is uniform so U  e V. 
But U is closed so U = V. 
Thus U is a maximal-uniform submodule. 
() It is enough to show that U is closed. Suppose there exists V  M such that U  e V. 
Hence by lemma1.7, V is uniform. 
Thus U = V, since U is maximal uniform, so that U is closed. 
 
        By combining lemma 1.6 and lemma 1.8, we have the following: 
 
1.9 Corollary:  
        Let U be a submodule of an R-module. Then the following are equivalent: 
(1) U is minimal-closed. 
(2) U is uniform-closed. 
(3) U is maximal-uniform. 
        Now, we can give the proof of the following result. 
 
1.10 Proposition:  [2, p.24] 
        Let M be an R-module. M is uniform-CS if and only if M is min-CS. 
Proof:  
         () Let U be a maximal uniform submodule of M. 
Since M is uniform-CS, so U is essential in a direct summand V. 
Then by lemma 1.7, V is uniform. 
Hence U = V since U is a maximal uniform submodule. 
Thus U is a direct summand of M, it follows that every minimal-closed is a direct summand 
by lemma 1.6. 
So that M  is a min-CS module. 
() Let U be a uniform submodule of M. 
By [4, Exc.13, p.20], there exists a closed submodule V of M such that U  e V. 
Hence by lemma 1.7, V is uniform. 
Thus V is a closed-uniform submodule of M, and hence by lemma 1.6, V is minimal-closed. 
So that V is a direct summand of M, since M is min-CS module. 
It follows that U is essential in a direct summand. 
Thus M  is uniform-CS. 
        The following result is given in [2, lemma 3.1.1, p.45], we give the details of proof. 
 
1.11 Proposition:  
        Let M be an indecomposable R-module with a uniform submodule. If M is a min-CS 
module, then M is uniform. 
Proof:  



 

 
 

 مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة

 2012 السنة 25 المجلد 1 العدد

Ibn Al-Haitham Journal for Pure and Applied Science  

No. 1 Vol. 25 Year 2012 

         By hypothesis M has a uniform submodule, say U. 
By [4, Exc.13, p.20], there exists a closed submodule K of M  such that U  e K. 
Hence by lemma 1.7, K is a uniform submodule of M. 
Let C = {K: K is a uniform submodule of M and U  K}. 
Hence C ≠  , and so that by  Zorn's lemma C has a maximal element say W. 
It is clear that W is a maximal-uniform. 
So it is a minimal-closed submodule of M. 
Thus W is a direct summand of M, since M is a min-CS module. 
Then W  V = M  for some submodule V  M. 
But M is indecomposable, hence V = (0). 
Thus W = M ; that is M is uniform. 
 
1.12 Corollary:  
        Let M be an indecomposable R-module with a uniform submodule. Then M is min-CS 
module if and only if M is a uniform module. 
 
1.13 Proposition:  
        Let M be an R-module. The following statements are equivalent for a module M:- 
(1) M is a min-CS module. 
(2) For every minimal-closed submodule A of M, there is a decomposition M = M 1  M 2 
such that A is a submodule of M1 and M2 is a complement of A in M. 
Proof:  
         (1)  (2) Let A be a minimal-closed submodule in M. 
Therefore A is a direct summand of M since M is a min-CS module. 
That is M  = A  M' for some submodule M' of M. 
It is clear that A is a submodule of A, and it is easy  to check that M' is a complement of A. 
(2)  (1) To prove M is a min-CS module. Let A be a minimal-closed submodule of M. 
Therefore, there is a decomposition M = M 1  M 2, where M1 and M2 are two submodules of 
M and A is a submodule of M1 and M2 is a complement of A in M. 
Since M2 is a complement of A in M, then A  M 2  e M. 
But A is a closed submodule in M and A is a submodule in M 1, therefore A is closed in M1. 
Therefore, A  M 2 is closed in M1  M 2 = M  by [4, Exc.15, p.20]. 
Thus A  M 2 = M . 
So that A is a direct summand in M. 
Hence M is a min-CS module. 
 
1.14 Proposition:  
        Let M be a min-CS R-module. If N is a closed submodule, then N is a min-CS module. 
Proof:  
         Let U be a minimal closed submodule of N. 
Since N is a closed submodule in M, then by [4, proposition 1.5, p.18], U is closed in M. 
We claim that U is a minimal closed submodule of M. 
To prove our assertion: 
Suppose there exists a closed submodule V of M such that V  U. 
But V  U  N, implies V is a closed submodule in N by  [4, p.18]. 
But U is a minimal closed submodule of N so U = V. 
Thus U is a minimal closed submodule of M, and hence U is a direct summand of M, since M 
is a min-CS module. 
Hence M = U  W for some W  M. 
It follows that N = (U  W)  N and by modular law, N = U  (W  N); that is U is a direct 
summand of N and so N is a min-CS module. 
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1.15 Remark:  
        The converse of the previous proposition is not true in general 
For example: 

        The ℤ-module ℤ8  ℤ2 is not min-CS, but N = ℤ8  (0) ≅ ℤ8 is min-CS. 
 
1.16 Corollary:  
        A direct summand of min-CS module is min-CS. 
Proof:  
         Let M be a min-CS module and let N be a direct summand of M. 
Hence by [4, Exc.3, p.19], N is a closed submodule of M. 
Hence, N is a min-CS module by proposition 14. 
 
1.17 Corollary:  
        Let M be an R-module. If M  M is min-CS, then M is a min-CS module. 
Proof:  
It follows by corollary 1.16. 
 
 
  Corollary 1.16, lead us to give the following example:- 

Let M = ℤ8  ℤ2   ℤ3 as a ℤ-module. 

Thus M is not min-CS because if it is, then N = ℤ8  ℤ2  M is min-CS by corollary 1.16, 
which is a contradiction. 
 
1.18 Remark:  
        The condition N is closed can not be dropped from proposition 1.14 as the following 
example shows:- 

        Let M be the ℤ-module ℤ16  ℤ2. 

M is min-CS. Let N = ( 2 )  ℤ2. 

It is clear that N  e M, so N is not closed in M, also N is isomorphic to ℤ8  ℤ2 which is not a 
min-CS module. 
 
1.19 Proposition:  
        Let M be a finitely generated or multiplication R-module. Then if every maximal 
submodule is a direct summand, then M is a max-CS module. 
Proof:  
         Let A be a maximal closed submodule of M. Since M is a finitely generated or 
multiplication module. 
Then by [6, theorem 2.3.11, p.28] and by [7, theorem 2.5 (1)], there exists a maximal 
submodule B of M such that A  B. 
But B is a direct summand, by hypothesis; hence B is a closed submodule by [4, Exc.3, p.19]. 
It follows that A = B. 
Thus A is a direct summand of M. 
Hence M is a max-CS module.    
        The converse of the previous proposition is not true in general, as the following example 
shows: 
 
1.20 Example:  

        ℤ as a ℤ-module is a max-CS module; also ℤ is a multiplication ℤ-module. 
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But 2ℤ as a ℤ-module is a maximal submodule of ℤ and it is not a direct summand. 
  Note that we have an analogous result to corollary 1.16, for max-CS modules, that is                     
a direct summand of max-CS module is max-CS module, but first we prove the following: 
 
1.21 Proposition:  
        Let M be an R-module, and let N be a closed submodule of M. If M is a max-CS module, 
then (M/N) is a max-CS R-module, provided M is not faithful. 
Proof:  
         Let (B/N) be a maximal closed submodule in (M/N), with annR(B/N)≠ 0. 
We claim that B is a maximal closed submodule in M. To prove our assertation: 
First, assume that B  e L  M. 
But N is closed in M and N  B  L, so N is closed in L. Hence by [4, proposition 1.4, p.18], 
N  B  e L implies  B/N  e L/N  M/N. 
Hence (B/N) = (L/N), since (B/N) closed in (M/N). 
Thus B = L and B is closed in M. 
Now, assume there exists a closed submodule B' of M such that B  B', hence N  B'  M. 
Then, by [4, Exc.16, p.20], (B'/N) is closed in (M/N) and so that (B/N)  (B'/N). This implies 
(B/N) = (B'/N), since (B/N) is a maximal closed submodule in (M/N). 
Moreover annRB  annRM ≠ 0, so annB ≠ 0. 
Since M is max-CS then B  K = M for some K  M, and hence (B/N)((K+ N)/N) = (M/N). 
It follows that (M /N) is a max-CS module. 
 
1.22 Corollary:  
        A direct summand of a max-CS R-module M is a max-CS module, provided M is not 
faithful. 
Proof:  
         Since N is a direct summand of M, so M  = N  W for some W  M. 
Hence (M/W) isomorphic to N by  second isomorphism theorem. 
But (M/W) is a max-CS by proposition 1.21. 
So N is a max-CS module, by remark 1.3 (10). 
 
1.23 Corollary:  
        Let M be an R-module. If M  M is a max-CS module. Then M is max-CS module 
provided M is not faithful. 
Proof:  
         It follows by corollary 1.22. 
        Recall that a proper submodule N of an R-module M is called prime submodule if 
whenever r  R, x  M, r x  N implies x  N or r  [N:M]. 
        An R-module M is called a prime module if annRM =annRN for each submodule N of M .  
Equivalently, M is called a prime module if (0) is a prime submodule of M, [8]. 
 
1.24 Corollary: 
        Let M be a not faithful prime max-CS R-module. If f : M  M' is an epimorphism, 
then M' is a max-CS module. 
Proof:  
     M is a max-CS module. 

Then (M/ker f) ≅ M', by the 1
st fundamental theorem. 

We claim that ker f is clsed submodule in M. 

To show this, let ker f ≨ e L  M. 
Assume there exists 0 ≠ x  L such that x  ker f. 
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Then there exists 0 ≠ r  R such that 0 ≠ r x  ker f. 
Hence rf(x) = 0. 
Since M is a prime module, so either f(x) = 0  or  r  annM. 
But f(x) ≠ 0 since x  ker f, hence r  annM and this implies r x = 0 which is a contradiction. 
Thus ker f = L and so that ker f is a closed submodule of M. 
Since annM ≠ 0 by hypothesis. Then by proposition 1.21, (M/ker f) is a max-CS module and 
hence by remark 1.3 (10) M' is a max-CS module. 
 
1.25 Corollary:  
        Let M be a max-CS not faithful R-module. If N is a prime submodule of M and                
[N

R
: M] = annRM. Then (M/N) is a max-CS R-module. 

Proof:  
         Since N is a prime R-submodule of M, then (M/N) is a torsion free (R/[N:M])-module, 
[8, p.61-69]. 
Hence (M/N) is a torsion free (R/annM)-module, and so that N is closed (R/annM)-module of 
M by [9, remark 3.3,p.48]. 
It follows that N is closed R-submodule of M. Then by proposition 1.15, (M/N) is a max-CS 
R-module. 
 
1.26 Corollary:  
        If M is a max-CS not faithful R-module and N is a submodule of M, such that (M /N) is 
torsion free, then (M/N) is max-CS. 
Proof:  
         Since (M/N) is torsion free R-module. Then N is closed submodule in M by [9, remark 
3.3, p.48]. Hence the result follows by proposition 1.21. 
        Now we have the following note for min-CS modules. 
 
1.27 Remark:  
        The homomorphic image of min-CS need not be a min-CS, as the following examples 
show. 
 
1.28 Examples:  

(1) Let M be the ℤ-module ℤℤ. It is clear that M is a min-CS module. Let N = 8ℤ2ℤ, 
and let : M  (M/N) be the natural projection. 

Since (M/N) is isomorphic to ℤ8ℤ2, so (M /N) = (M) is not min-CS module. 

(2) Let M be the ℤ-module ℤℤ2. M is min-CS. Let N = 8ℤ( 0 ), N  e ℤ( 0 ), but               

(M/N) = ℤ8ℤ2 is not min-CS. 

(3) Let M = ℤ8ℤ be a ℤ-module, M is a CS-module. So M is a min-CS module. Let           

N = (0) (2) . (M/N) is isomorphic to ℤ8ℤ2 which is not min-CS module. 
 
1.29 Theorem:  
        Let M be an R-module. If M is a faithful, finitely generating and multiplication                     
R-module, then M is a max-CS module if and only if R is a max-CS ring. 
Proof:  
        () If M is a max-CS R-module. Let I be a maximal closed ideal of R such that ann I≠0. 
We claim that N = IM is a maximal closed R-submodule of M. 
First of all N = [IM :M]M since M is multiplication and by [10, proposition 3.31] [IM:M] is a 
closed ideal of R. 
But M is finitely generating faithful multiplication, then by [7, theorem 3.1] I = [IM:M]. 
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Thus by  [10, proposition 3.31, ch.3], N = [IM:M]M is a closed submodule of M. 
Now, to prove that N is a maximal submodule of M. 
Suppose there exists a closed submodule W of M such that N  W. 
Hence N = IM = [N:M]M  [W:M]M = W and by [7, theorem 3.1], I = [N:M]  [W:M]. 
On the other hand by [10, proposition 3.31, chapter three], I = [N:M] and [W:M] are closed 
ideals of R. 
Hence I = [W:M], since I is a maximal closed ideal of R. 
It follows N = W and N is maximal closed submodule of M. 
But M is faithful multiplication, so annRN = annRI ≠ 0. 
Thus N is a direct summand of M. 
So that N  L = M for some L  M. 
But N = IM, L = [L:M]M, so that IM   [L:M]M = M  and hence (I  [L:M])M = M . But by 
[7, theorem 1.6] (I  [L:M])M = IM  [L:M]M = (0), and so (I  [L:M])M = 0; that is              
(I  [L:M])  annM = (0). Thus I  [L:M] = (0), so that M  = RM  = (I  [L:M])M and hence 
R = I  [W:M] by [7, theorem 6.1]. 
() Let N be a maximal closed submodule of M with annN ≠ 0. 
Since N is closed, then by [10, proposition 3.1] [N:M] is closed in R. 
We claim that [N:M] is a maximal closed ideal in R. 
To show this, assume J is a closed ideal in R such that [N:M]  J, hence N = [N:M]M  JM . 
But JM  = [JM:M]M and by [7, theorem 6.1] [JM:M] = J and by [10, proposition 3.1] JM is a 
closed submodule of M. 
It follows that N = [N:M]M = JM , since N is a maximal closed submodule of M. Then by           
[7, theorem 3.1], [N:M] = J; that [N:M] is a maximal closed. 
But annN = ann[N:M] since M is faithful multiplication. 
Thus [N:M] is a maximal closed ideal of R, with annR[N:M] ≠ 0. 
On the other hand R is a max-CS ring, so [N:M] is a direct summand of R. 
Thus R = [N:M]  T where T is an ideal of R, and hence  
M = RM  = ([N:M]  T)M 
              = [N:M]M  TM. 
But by [7, theorem 1.6], [N:M]M  TM = ([N:M]  T)M = 0M  = 0 
So M = [N:M]M  TM; that is M = N  TM. 
       By the same argument of proof of theorem 1.29, we have the following: 
 
1.30 Proposition:  
        Let M be a faithful, multiplication and finitely generated R-module, then M is a min-CS 
ring if and only if R is min-CS ring. 
        Next we have for nonsingular rings, the concepts min-CS ring and max-CS ring are 
equivalent. But first we need the following which is given in [2, lemma 2.1.1, p.31]. We give 
the details of proof. 
 
1.31 Lemma:  
        For a ring R, a complement of minimal (maximal) closed ideal of R is a maximal 
(minimal) closed ideal of R. 
Proof:  
         () Let I be a minimal closed ideal of R. Let J be the relative complement of I. Then by 
[4, proposition 1.3, p.17], (I  J)  e R, and J is closed in R, by [4, proposition 1.4, p.18]. 
Now, we shall show that J is a maximal closed ideal in R. 
Assume that there exists a closed ideal J* in R, such that J 


J* 


 R. 

It follows that J*  I ≠ (0) because J is the largest ideal in R such that I  J = (0). 
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On the other hand I is a minimal closed ideal in R, so it is uniform closed by lemma 1.6. 
Hence J* I  e I. But J  e I, hence 
(J* I)  J  e I  J  e R and so that (J* I)  J  e R, by [4, proposition 1.1(a), p.16]. 
But J* I  J* and J < J*, hence (J* I)  J  J*. 
Thus J*  e R, which is a contradiction. 
() If T is a maximal closed ideal of R and V its complement. 
To prove V is minimal closed in R, it is enough to show that V is uniform by lemma 1.6. 
Assume A  B = (0) for some two nonzero ideals A and B of V. 
Now, there exists a closed ideal I in R such that A  T  e I, by [4, Exc.13, p.20]. 
Hence T 


 I which is a contradiction, since I is closed in R and T is a maximal closed ideal in 

R. Thus V is uniform closed, that is V is minimal closed. 
 
1.32 Note:  
        By a similar argument of proof of lemma 1.31, we get analogous results for submodules. 
        Recall that a ring R is semiprime if for each x  R, x

2 = 0, then x = 0, [4, p .2]. 
        Now, we can give the following theorem: 
 
1.33 Theorem:  
        Let R be a nonsingular ring. Then R is max-CS if and only if R is min-CS. 
Proof:  
         () If R is a max-CS ring. Let I be a minimal closed ideal in R. 
By [4, theorem 2.38, p.65], I = ann annI, hence annI ≠ 0, but R is nonsingular, so R is 
semiprime by [4, proposition 1.27(b), p.35], which implies I  annI = 0. 
Let J be the relative complement of I, so by  lemma 1.31, J is a maximal closed ideal in R. 
Also by  [4, theorem 2.38, p.65], J = ann annJ, so annJ ≠ 0. 
Therefore J is a direct summand of R since R is max-CS. 
It follows that J = <e> for some idempotent  e  in R. 
On the other hand, IJ  I  J = (0), implies that J  annI. 
But I  annI = (0), so J = annI since J is the largest ideal in R such that I  J = (0).  
Thus annJ = ann annI = I and so < 1 – e > = I. 
It follows that I is a direct summand of R. 
() If R is a min-CS ring. 
Let I be a maximal closed ideal in R, with annI ≠ 0. 
By [4, theorem 2.38, p.65], I = ann annI. Let J be a relative complement of I. So J is                       
a minimal closed ideal of R, by Lemma 1.31. 
Hence J is a direct summand of R, since R is min-CS. 
Thus J = < e > for some idempotent  e  R. 
But IJ  I  J = (0), so I  ann J = ann <e > = <1 – e >. 
But <1 – e > is closed ideal of R, since it is a direct summand of R. 
It follows that I = <1 – e > because I is a maximal closed ideal of R. 
Thus I is a direct summand of R. 
        Recall that, a ring R is called semihereditary if every finitely generating ideal of R is 
projective, [4, p.10]. 
 
1.34 Corollary:  
        Let R be a semiheriditary ring. Then R is a min-CS ring if and only if R is a max-CS 
ring. 
Proof:  
         Since R is a semiheriditary ring. Then R is a nonsingular ring, [4, p.36]. So we get the 
result by  Theorem 1.33. 
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        Recall that a ring R is called regular (Von Neumann) if for every aR there is an x  R 
such that a x a = a, that is a = a2 x, [4, p.10]. 
 
1.35 Corollary:  
        If R is a regular ring. Then R is min-CS if and only if R is a max-CS. 
        The following lemma is needed for the following corollary. 
 
1.36 Lemma: [4, Exc.5, p.36] 
        For a commutative ring, R/Z(R) is a nonsingular ring. 
Proof:  
         Suppose there exists x = x + Z(R)  Z(R/Z(R)) and x  Z(R), so x ≠ 0 and ann(x) is not 
essential in R, also annR/Z(R)( x + Z(R))  e R/Z(R). 

Then for each I/Z(R) with I 

Z(R), (I/Z(R)) annR/Z(R)( x+Z(R))≠OR/Z(R)=Z(R). So there 

exists a + Z(R)  ann R/Z(R)( x + Z(R)), a  I such that a  Z(R).  
Then a ≠ 0. 
Thus ax + Z(R) = Z(R), annR(a) is not essential in R and a  I. 
Hence ax  Z(R) and annR(a) is not essential in R. So that ann(ax)  e R and ann(a) is not 
essential in R. 
Now, since ann(ax)  e R, then for each nonzero ideal J of R, J  ann(ax) ≠ 0. 
Hence there exists y  ann(ax) and y ≠ 0. Thus yax = 0. 
(1) If ya = 0 then 0 ≠ y  ann(a) thus 0 ≠ y  Jann(a) so that ann(a)  e R which is                        
a contradiction. 
(2) If ya ≠ 0, then 0≠yaann(x)J. Hence ann(x)  e R which is a contradiction. 
(3) If yx = 0 then 0 ≠ y  ann(x), so that 0 ≠ y  ann(x)  J. Thus ann(x)  e R which is                     
a contradiction. 
(4) If yx ≠ 0, then 0≠ yxann(a)J, so that ann(a) e R which is a contradiction. 
(5) If ax = 0 then 0 ≠ a ann(x)  I, that is ann(x)  e R which is a contradiction. 
Thus our assumption is false and so Z(R/Z(R)) = Z(R) = OR/Z(R). 
 
1.37 Corollary  
        Let R be a ring. Then R/Z(R) is min-CS if and only if R/Z(R) is max-CS. 
Proof:  
         By lemma 1.36 R/Z(R) is nonsingular, so the result follows by theorem 1.33.   
        Before we give the following corollary, we need the following lemma. 
 
 
1.38 Lemma:  [4, Exc.13, p.37] 
        If R is a nonsingular ring, then R[x1, x2, …, xn] is a nonsingular ring. 
Proof:  
         First we shall prove that R[x] is a nonsingular. 
Let f(x)  Z(R[x]), then annR[x]f(x)  e R[x]. 
Assume f(x) = a0 + a1x + … + anx

n, where ai  R, for each i = 0, 1, …, n. 
annR[x]f(x) = annR[x]a0  annR[x]a1x  …  annR[x]anx

n  e R[x]. 
So, annR[x]a0 e R[x], annR[x]a1x  e R[x], …, annR[x]anx

n  e R[x]. 
We claim that annR(ai)  e R, for all i = 0, 1, …, n. 
To prove this. Suppose there exists J  R and J ≠ 0 such that annRa0  J = 0. 
J ≠ 0 so J[x] is an ideal in R[x] and J[x] ≠ 0. Hence J[x]  annR[x]a0 ≠ 0. 
Let 0 ≠ g(x)  annR[x]a0 and g(x)  J[x], such that g(x) = b0 + b1x + … + bmxm, where bi  J, 
for all i = 0, 1, …, m and there exists k  {0,1,…,m} with bk ≠ 0. Since g(x)  annR[x](a), then 
(b0 + b1x + …+ bk x

k +… + bmxm)a0 = 0. 
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Thus b0 a0 + b1 a0 x + …+ bk a0 x
k + … + bm a0 x

m = 0 
which implies b0 a0 = 0, b1 a0 = 0, …, bk a0 = 0 , …, bm a0 = 0. But bk a0 = 0 and 0 ≠ bk  J 
implies that J  annRa0 ≠ 0, which is a contradiction with our assumption. Hence annRa0  eR, 
so that a0  Z(R). But R is nonsingular, hence a0 = 0. By the same way we can prove that 
each of a1,…, am belongs to Z(R)=(0). Thus f(x) = 0 and Z(R[x]) = (0); that R[x] is 
nonsingular. 
Then by induction R[x1, x2,…, xn] is a nonsingular ring. 
 
1.39 Corollary:  
        Let R be a nonsingular ring. Then R[x1, x2,…, xn] is min-CS if and only if R[x1, x2,…, xn] 
is a max-CS ring. 
Proof:  
         By lemma 38 if R is a nonsingular ring, then R[x1, x2,…, xn]  is a nonsingular ring. 
Hence the result follows by theorem 33.  
 
1.40 Note: 
        A direct sum of min (max)-CS modules will be discussed in another paper. 
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  الخلاصة

ن أصـغر مقـاس ) أعظـم(        في ھذا البحث نعطي دراسة واسعة لأصغر  ي المغلـق مـ اس الجزئـ ل المقـ مقاسـات التوسـع مثـ
مقـاس توسـع ) أعظم(ومن بین النتائج الاخرى نستعرض أنھ مركبة المجموع المباشر لأصغر . توسع ھو أصغر مقاس توسع

ت الحلقـة ) أعظم(ھو أصغر  ط إذا كانـت Rیـر مفـرده فـان الحلقـة  غRمقاس توسـع وكـذلك اذا كانـ عـ إذا وفقـ  أعظـم حلقـة توس
  . أصغر حلقة توسع والتي ھي واحدة من المبرھنات المھمة في ھذا البحثRالحلقة 

  

  . مقاس توسع، أصغر مقاس توسع، أعظم مقاس توسع، مقاس توسع منتظم:الكلمات المفتاحیة

  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

            


