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Abstract.

In this paper, we give a.comprehensive study of min (max)-CS modules such as a closed
submodule of min-CS module is min-CS. Amongst other results we show that a direct
summand of min (max)-CS module is min (max)-CS module. One of interested theorems in
this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS
ring,
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1- Introduction

Throughout the paper all rings R are commutative with identity and all R-modules are
unitary. We write A <M and A <. M to indicate that A is a submodule of M and A is an
essential submodule of M, respectively. Recall that anR-module M is called an extending
module (or, CS-module) if every submodule is essential in a direct summand of M or M is
extending if and only if every closed submodule is a direct summand, [1, p.55]. In this paper
definitions, notations, examples and fundamental results of min (max)-CS modules are
introduced.

1.1 Definition: [2]

An R-module M is called min-CS module if every minimal closed submodule of M is
a direct summand of M.

A ring R is called min-CS if it is min-CS R-module.

1.2 Definition: [2]

An R-module M is called max-CS module if every maximal closed submodule of M with
nonzero annihilator is a direct summand of M.

A ring R is max-CS if it is max-CS R-module.
Recall that an R-module M is m-injective (quasi-continuous) if and only if M satisfies ClI
(M is extending) and C3, where M is said to satisfy the C3 if the sum of any two direct
summands of M with zero intersection is a direct summand of M. [3, p.18]

1.3 Remarks and Examples
1. Every CS-module is min-CS and max-CS.
Proof:
It follows directly by [1, p.55].
2. Every semisimple module is max-CS and min-CS.

In particular Z,, 75, Z¢, Z 1, ..., 30 as a Z-module is max-CS and min-CS.
Proof:
By [1, p.55], every semisimple module is CS. Hence the result follows by remark 1.
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3. Every uniform R-module M is min-CS and max-CS.
In particular each of Z-module Z, 74, Zg, Z, Z 6 is min-CS and max-CS.

4. If R is a semisimple ring, then every R-module M is injective, by [4, theorem 1.18, p.29].
Hence M is max (min)-CS module since every injective module is CS. By [1, p.16].

5. The Z-module Z, is max-CS and min-CS.

The submodules of Z, are <2 >,<3>,<4>,<6><0> and Z,,.

Since <3>@®<4>=¢,.

So each of <3 > and <4 > are direct summands.

Hence they are closed submodules.

<2><.Zpand < 6 ><, <3 > imply hat <2 > and <6 > arenot closed.
Thus M is CS and so max-CS and min-CS.

6. It is easy to check that each of the Z-modules Z 5 and Z,, are min-CS and max-CS.
7. Let M be a module whose lattice of submodules is the following

It is clear that N is closed in M, but it is not a direct summand of M.
So M is not CS.
Also N; is a minimal closed submodule of M. Hence M is not a min-CS module.
Notice that N; @ N, <. M, so it is not closed submodule of M.
It follows that N, is a max-closed submodule of M .
Hence M is not a max-CS module.
8. Every m-injective is min-CS and max-CS.
Proof:
It follows by the definition of n-injective module and remark 1.3 (1).

9. Let M be the Z-module Z3 @ Z,.
M is not CS-module, since there exists a submodule N = {(2,1),(4,0),(6,T), (0,0) } which is
closed but not a direct summand.

M oreover N is minimal closed, so M is not min-CS module.
On the other hand M is a max-CS module, since the only maximal closed submodules of M

are Zg ® (0)and <(3,1)>, and (Zs ® (0)) @ ((0) ®Z,) =M and <3, >
((0) ® Z,) =M. Hence we deduce that M is max-CS.

10. Let M, and M, be two R-modules such that M is isomorphic to M, (M;=M,), then M
min (max)-CS if and only if M, is min (max)-CS.

Mahmoud A.Kamal and Amany M .M enshawy in [5] gave the following

An R-module M is called min-CS if every simple submodule of M is essential in a direct
summand.

However this definition of min-CS is different from definition 1.1, since the Z-module M =
/g @ 7, is not min-CS in our sense.
However it is min-CS (in sense of Kamal and Menshawy) since Zg is CS, so min-CS

(in sense of Kamal and Menshawy) and Z, is simple, so semisimple.
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Hence by applying[5, lemma 3, p.166], M is min-CS (in sense of Kamal and M enshawy).

1.4 Prop osition:

Let M be an R-module, and let I be an ideal of R such that I € annM. M is max-
CS R-module then M is max-CS (R/I)-module and the converse is true if annM # annN, for

all maximal closed submodule N £ M.
Proof:

Let N be a maximal-closed (R/I)-submodule of M and anng;N # Og; = L. It is easy to see
that N is a maximal closed submodule of M.
Since anng;N # I = Oy, so there exists » + I € R/l with r¢I such that » + I € annN, hence
r#0and rN = 0.
Thus anngN # 0 and so that N is a direct summand of M.

Conversely, let N be a maximal closed R-submodule of M with annN # 0. Hence N is
a maximal closed (R/I)-submodule.

Now, since ann M —ann N, there exists 7 € ann N and » ¢ ann M.,
+*

Thus r ¢ Iy that is Oy =1# r+1and (» + DN =rN = 0.
Hence ann g ;N # Ogy.
But M is a max-CS (R/ I)-module, so N is a direct summand.

1.5 Prop osition:

Let M be an R-module, let I be an ideal of R such that I < ann M. Then M is min-CS R-
module if and only if M is min-CS (R/ I)-module.
Proof:

It is straight forward, so it is omitted.

Recall that an R-module M is called a uniform extending (or uniform-CS) if every
uniform submodule is essential in a direct summand. [1, p.55].

Al-Hazmi in [2,p.24], mentioned that min-CS and uniform-CS are equivalent concepts
without proof. We shall prove this equivalence, but first we need the following lemmas.

1.6 Lemma:
Let N be a submodule of an R-module M. N is minimal closed if and only if N is
uniform-closed (that is every closed submodule of N is essential in N).
Proof:
(=) It is enough to prove that N is uniform
Let V, W be two nonzero submodules of N. Suppose VW =(0).
Hence, there exists V' < N such that V' is a relative complement of V and hence V' is closed
in N.
Since N is minimal closed of M thus N is closed in M, so by [4, proposition 1.5, p.18], V'is
closed in M and 0 #V' = N.
Thus N is not minimal closed submodule of M, which is a contradiction.
Therefore, N is uniform-closed submodule.
(<) Suppose that there exists a closed submodule V of M such that V < N.
But N is uniform. So V<, N.
Hence V =N, since V is closed.
Thus N is minimal closed.

1.7 Lemma:

If U is a uniform submodule of M such that U <, K < M. Then K is uniform.
Proof:
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Let V and W be two nonzero submodules of K.
Since U<, K, UNW=#(0)and U "NV #(0).
But U is uniform submodule of M.

So (UnNV)n(UnW)+£(0).
Hence U N (VN W) £ (0).
Thus VN W # (0); that is K is uniform.

1.8 Lemma:
Let U be a submodule of an R-module M. Then U is uniform closed if and only if U is
maximal uniform; that is U is maximal in the collection of uniform submodules of M.
Proof:
(=) Suppose there exists a uniform submodule V of M such that U <'V.
Since V is uniformso U <, V.
But U is closed so U= V.
Thus U is a maximal-uniform submodule.
(<) It is enough to show that U is closed. Suppose there exists V. < M such that U <, V.
Hence by lemmal.7, V is uniform.
Thus U =V, since U is maximal uniform, so that U is closed.

By combining lemma 1.6 and lemma 1.8, we have the following:

1.9 Corollary:
Let U be a submodule of an R-module. Then the following are equivalent:
(1) U is minimal-closed.
(2) U is uniform-closed.
(3) U is maximal-uniform.
Now, we can give the proof of the following result.

1.10 Proposition: [2, p.24]
Let M be an R-module. M is uniform-CS if and only if M is min-CS.
Proof:
(=) Let U be a maximal uniform submodule of M.
Since M is uniform-CS, so U is essential in a direct summand V.
Then by lemma 1.7, V is uniform.
Hence U = V since U is a maximal uniform submodule.
Thus U is a direct summand of M, it follows that every minimal-closed is a direct summand
by lemma 1.6.
So that M is a min-CS module.
(<) Let U be a uniform submodule of M.
By [4, Exc.13, p.20], there exists a closed submodule V of M such that U <. V.
Hence by lemma 1.7, V is uniform.
Thus V is a closed-uniform submodule of M, and hence by lemma 1.6, V is minimal-closed.
So that V is a direct summand of M, since M is min-CS module.
It follows that U is essential in a direct summand.
Thus M is uniform-CS.
The followingresult is given in [2, lemma 3.1.1, p.45], we give the details of proof.

1.11 Proposition:

Let M be an indecomposable R-module with a uniform submodule. If M is a min-CS
module, then M is uniform.
Proof:
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By hypothesis M has a uniform submodule, say U.
By [4, Exc.13, p.20], there exists a closed submodule K of M such that U <, K.
Hence by lemma 1.7, K is a uniform submodule of M.
Let C = {K: K is a uniform submodule of M and U < K}.
Hence C # ¢, and so that by Zorn's lemma C has a maximal element say W.
It is clear that W is a maximal-uniform.
So it is a minimal-closed submodule of M.
Thus W is a direct summand of M, since M is a min-CS module.
Then W® V=M for some submodule V<M.
But M is indecomp osable, hence V = (0).
Thus W =M that is M is uniform.

1.12 Corollary:
Let M be an indecomposable R-module with a uniform submodule. Then M is min-CS
module if and only if M is a uniform module.

1.13 Prop osition:
Let M be an R-module. The following statements are equivalent for a module M :-
(1) M is a min-CS module.
(2) For every minimal-closed submodule A of M, there is a decomposition M = M; & M,
such that A is a submodule of M| and M is a complement of A in M.
Proof:
(1) = (2) Let A be a minimal-closed submodule in M.
Therefore A is a direct summand of M since M is a min-CS module.
Thatis M = A @ M' for some submodule M' of M.
It is clear that A is a submodule of A, and it is easy to check that M' is a complement of A.
(2) = (1) To prove M is a min-CS module. Let A be a minimal-closed submodule of M.
Therefore, there is a decomposition M =M @ M,, where M| and M, are two submodules of
M and A is a submodule of M| and M, is a complement of A in M.
Since M, is a complement of A in M, then A @ M, <. M.
But A is a closed submodule in M and A is a submodule in M ;, therefore A is closed in M ;.
Therefore, A @ M, is closed in M; @ M, =M by [4, Exc.15, p.20].
Thus A @ M, =M.
So that A is a direct summand in M.
Hence M 1is a min-CS module.

1.14 Prop osition:
Let M be amin-CS R-module. If N is a closed submodule, then N is a min-CS module.
Proof:
Let U be a minimal closed submodule of N.
Since N is a closed submodule in M, then by [4, proposition 1.5, p.18], U is closed in M.
We claim that U is a minimal closed submodule of M.
To prove our assertion:
Suppose there exists a closed submodule V of M such that V < U.
But Vc U c N, implies V is a closed submodule in N by [4, p.18].
But U is a minimal closed submodule of Nso U=V,
Thus U is a minimal closed submodule of M, and hence U is a direct summand of M, since M
is a min-CS module.
Hence M =U @ W for some W < M.
It follows that N = (U © W) N N and by modular law, N=U @ (W N N); that is U is a direct
summand of N and so N is a min-CS module.
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1.15 Remark:
The converse of the previous proposition is not true in general
For example:

The Z-module Zg ® Z, is not min-CS, but N = Z3 ® (0) = Zg is min-CS.

1.16 Corollary:

A direct summand of min-CS module is min-CS.
Proof:

Let M be a min-CS module and let N be a direct summand of M.
Hence by [4, Exc.3, p.19], N is a closed submodule of M.

Hence, N is a min-CS module by proposition 14.

1.17 Corollary:

Let M be an R-module. If M @ M is min-CS, then M is a min-CS module.
Proof:
It follows by corollary 1.16.

Corollary 1.16, lead us to give the following examp le:-
Let M =Z3® Z, ® /5 as a Z-module.

Thus M is not min-CS because if it is, then N = Zg @ Z, < M is min-CS by corollary 1.16,
which is a contradiction.

1.18 Remark:
The condition N is closed can not be dropped from proposition 1.14 as the following
examp le shows:-

Let M be the Z-module Z 4 ® 7.
M is min-CS. Let N = (2) @ Z,.

It is clear that N <. M, so N is not closed in M, also N is isomorphic to Zg ® Z, which is nota
min-CS module.

1.19 Prop osition:

Let M be a finitely generated or multiplication R-module. Then if every maximal
submodule 1s a direct summand, then M 1s a max-CS module.
Proof:

Let A be a maximal closed submodule of M. Since M is a finitely generated or
multiplication module.
Then by [6, theorem 2.3.11, p.28] and by [7, theorem 2.5 (1)], there exists a maximal
submodule B of M such that A < B.
But B is a direct summand, by hypothesis; hence B is a closed submodule by [4, Exc.3, p.19].
It follows that A = B.
Thus A is a direct summand of M.
Hence M is a max-CS module.

The converse of the previous proposition is not true in general, as the following example
shows:

1.20 Example:

Z as a Z-module is a max-CS module; also Z is a multiplication Z-module.
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But 27 as a Z-module is a maximal submodule of Z and it is not a direct summand.
Note that we have an analogous result to corollary 1.16, for max-CS modules, that is
a direct summand of max-CS module is max-CS module, but first we prove the following:

1.21 Prop osition:

Let M be an R-module, and let N be a closed submodule of M. If M is a max-CS module,
then (M/N) is a max-CS R-module, provided M is not faithful.
Proof:

Let (B/N) be a maximal closed submodule in (M/N), with anng(B/N)# 0.
We claim that B is a maximal closed submodule in M. To prove our assertation:
First, assume that B<,L < M.
But Nis closedin M and N € B c L, so Nisclosed in L. Hence by [4, proposition 1.4, p.18],
N c B<.Limplies B/N<, LN <M/N.
Hence (B/N) = (L/N), since (B/N) closed in (M/N).
Thus B =L and B is closed in M.
Now, assume there exists a closed submodule B' of M such that B — B', hence N < B'< M.
Then, by [4, Exc.16, p.20], (B'/N) is closed in (M/N) and so that (B/N) < (B'/N). This implies
(B/N) = (B'/N), since (B/N) is a maximal closed submodule in (M/N).
M oreover anngB D anngM # 0, so annB # 0.
Since M is max-CS then B @ K = M for some K < M, and hence (B/N)®((K+ N)/N) = (M/N).
It follows that (M/N) is a max-CS module.

1.22 Corollary:
A direct summand of a max-CS R-module M is a max-CS module, provided M is not
faithful.
Proof:
Since N is a direct summand of M, so M =N @ W for some W < M.
Hence (M /W) isomorphic to N by second isomorphism theorem.
But (M/W) is a max-CS by proposition 1.21.
So N is a max-CS module, by remark 1.3 (10).

1.23 Corollary:

Let M be an R-module. If M @ M is a max-CS module. Then M is max-CS module
provided M is not faithful.
Proof:

It follows by corollary 1.22.

Recall that a proper submodule N of an R-module M is called prime submodule if
whenever » € R, x € M, rx € Nimplies x € Nor r € [N:-M].

An R-module M is called a prime module if anngM =anngN for each submodule N of M.
Equivalently, M is called a prime module if (0) is a prime submodule of M, [8].

1.24 Corollary:
Let M be a not faithful prime max-CS R-module. If f : M —— M is an epimorphism,

then M' is a max-CS module.
Proof:
M is a max-CS module.

Then (M/ker f) = M, by the 1* fundamental theorem.
We claim that ker f'is clsed submodule in M.

To show this, let ker f £ . L < M.
Assume there exists 0 # x € L such that x ¢ ker f.
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Then there exists 0 # » € R such that 0 # r x € ker f.

Hence r-f(x) = 0.

Since M is a prime module, so either f(x) =0 or » € annM.

But f(x) # 0 since x ¢ ker f, hence » € annM and this implies » x = 0 which is a contradiction.
Thus ker f= L and so that ker f is a closed submodule of M.

Since annM # 0 by hypothesis. Then by proposition 1.21, (M/ker f) is a max-CS module and
hence by remark 1.3 (10) M' is a max-CS module.

1.25 Corollary:
Let M be a max-CS not faithful R-module. If N is a prime submodule of M and
[N : M]=anngM. Then (M/N) is a max-CS R-module.
R

Proof:

Since N is a prime R-submodule of M, then (M/N) is a torsion free (R/[N:M ])-module,
[8, p.61-69].
Hence (M/N) is a torsion free (R/annM )-module, and so that N is closed (R/annM )-module of
M by [9, remark 3.3,p.48].
It follows that N is closed R-submodule of M. Then by proposition 1.15, (M/N) is a max-CS
R-module.

1.26 Corollary:

If M is a max-CS not faithful R-module and N is a submodule of M, such that (M/N) is
torsion free, then (M/N) is max-CS.
Proof:

Since (M/N) is torsion free R-module. Then N is closed submodule in M by [9, remark
3.3, p.48]. Hence the result follows by proposition 1.21.

Now we have the following note for min-CS modules.

1.27 Remark:
The homomorphic image of min-CS need not be a min-CS, as the following examp les
show.

1.28 Examples:

(1) Let M be the Z-module Z®Z. 1t is clear that M is a min-CS module. Let N =87®27,
and let 1: M —— (M/N) be the natural projection.

Since (M/N) is isomorphic to Zg®Z,, so (M/N) = (M) is not min-CS module.

(2) Let M be the Z-module Z®Z,. M is min-CS. Let N = 8Z®(0), N <. Z&(0), but
(M/N) = Z¢®Z, is not min-CS.

(3) Let M = Zg®Z be a Z-module, M is a CS-module. So M is a min-CS module. Let
N= (0)@®(2). (M/N) is isomorphic to Zg®Z, which is not min-CS module.

1.29 Theorem:

Let M be an R-module. If M is a faithful, finitely generating and multiplication
R-module, then M is a max-CS module if and only if R is a max-CS ring
Proof:

(=) If M is a max-CS R-module. Let I be a maximal closed ideal of R such that ann [0.
We claim that N = IM is a maximal closed R-submodule of M.
First of all N = [IM:M]M since M is multiplication and by [10, proposition 3.31] [IM:M]isa
closed ideal of R.
But M is finitely generating faithful multiplication, then by [7, theorem 3.1] I = [IM:M].
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Thus by [10, proposition 3.31, ch.3], N = [IM:M]M is a closed submodule of M.
Now, to prove that N is a maximal submodule of M.
Suppose there exists a closed submodule W of M such that N ¢ W.
Hence N=IM =[N:-M]M < [W:M]M =W and by [7, theorem 3.1], I=[N:M] < [W:M].
On the other hand by [10, proposition 3.31, chapter three], [ = [N:M] and [W:M] are closed
ideals of R.
Hence I = [W:M], since | is a maximal closed ideal of R.
It follows N = W and N is maximal closed submodule of M.
But M is faithful multiplication, so anngN = anngl # 0.
Thus N is a direct summand of M.
So that N @ L =M for some L < M.
But N=IM, L=[L:M]M, so that IM @ [L:M]M =M and hence (1 & [L:M])M = M. But by
[7, theorem 1.6] (I » [L:M])M =1IM N [L:M]M = (0), and so (I n [L:M])M = 0; that is
(IN[L:M]) € annM = (0). Thus I N [L:M ] = (0), so that M = RM = (1 @ [L:M ])M and hence
R=1® [W:M] by [7, theorem 6.1].
(<) Let N be a maximal closed submodule of M with annN # 0.
Since N is closed, then by [10, proposition 3.1] [N:M] is closed in R.
We claim that [N:M ] is a maximal closed ideal in R.
To show this, assume J is a closed ideal in R such that [N:M] c J, hence N = [N:-M M < JM.
But JM = [JM:M]M and by [7, theorem 6.1] [JM:M]=1J and by [10, proposition 3.1] JM isa
closed submodule of M.
It follows that N = [N:M]M = JM, since N is a maximal closed submodule of M. Then by
[7, theorem 3.1], [N:M] =1J; that [N:M] is a maximal closed.
But annN = ann[N:M ] since M is faithful multiplication.
Thus [N:M] is a maximal closed ideal of R, with anng[N:M ] # 0.
On the other hand R is a max-CS ring, so [N:M] is a direct summand of R.
Thus R = [N:M] @ T where T is an ideal of R, and hence
M =RM =([N:M] & T)M
=[N:MM @& TM.

But by [7, theorem 1.6], [N\MM N'TM = (IN:-M]NT)M =0M =0
SoM =[N:M]M @ TM; thatisM =N @ TM.

By the same argument of proof of theorem 1.29, we have the following;

1.30 Prop osition:

Let M be a faithful, multiplication and finitely generated R-module, then M is a min-CS
ringif and only if R is min-CS ring

Next we have for nonsingular rings, the concepts min-CS ring and max-CS ring are
equivalent. But first we need the following which is given in [2, lemma 2.1.1, p.31]. We give
the details of proof.

1.31 Lemma:

For a ring R, a complement of minimal (maximal) closed ideal of R is a maximal
(minimal) closed ideal of R.
Proof:

(=) Let I be a minimal closed ideal of R. Let J be the relative complement of I. Then by
[4, proposition 1.3, p.17], { @ J) <. R, and J is closed in R, by [4, proposition 1.4, p.18].
Now, we shall show that J is a maximal closed ideal in R.

Assume that there exists a closed ideal J* in R, such that J] <J* <= R.
# *

It follows that J* I # (0) because J is the largest ideal in R such that I N J = (0).
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On the other hand I is a minimal closed ideal in R, so it is uniform closed by lemma 1.6.
Hence J*m 1<, 1. But J <. I, hence

J*NnD)@I< . 1®J<.Randsothat (J*n 1) @J <. R, by [4, proposition 1.1(a), p.16].

But J*n 1< J*and J <J*, hence (J*n 1) ® J < J*,

Thus J* <. R, which is a contradiction.

(<) If T is a maximal closed ideal of R and V its comp lement.

To prove V is minimal closed in R, it is enough to show that V is uniform by lemma 1.6.
Assume A N B = (0) for some two nonzero ideals A and B of V.

Now, there exists a closed ideal [ in R such that A @ T <. I, by [4, Exc.13, p.20].

Hence T < I which is a contradiction, since I is closed in R and T is a maximal closed ideal in
#*

R. Thus V is uniform closed, that is V is minimal closed.

1.32 Note:
By a similar argument of proof of lemma 1.31, we get analogous results for submodules.
Recall that a ring R is semiprime if for each x € R, X = 0, thenx =0, [4, p.2].
Now, we can give the following theorem:

1.33 Theorem:
Let R be a nonsingular ring Then R is max-CS if and only if R is min-CS.
Proof:
(=) If R is a max-CS ring Let I be a minimal closed ideal in R.
By [4, theorem 2.38, p.65], I = ann annl, hence annl # 0, but R is nonsingular, so R is
semiprime by [4, proposition 1.27(b), p.35], which implies I m annl = 0.
Let J be the relative complement of I, so by lemma 1.31, J is a maximal closed ideal in R.
Also by [4, theorem 2.38, p.65], J = ann annJ, so annJ # 0.
Therefore J is a direct summand of R since R is max-CS.
It follows that J = <e> for some idempotent e in R.
On the other hand, IJ < I n J = (0), implies that J < annl.
But I m annl = (0), so J = annl since J 1s the largest ideal in R such that I n J = (0).
Thus annJ = annannl=landso<1-e>=1L
It follows that I is a direct summand of R.
(<) If R is a min-CS ring
Let I be a maximal closed ideal in R, with annl # 0.
By [4, theorem 2.38, p.65], I = ann annl. Let J be a relative complement of I. So J is
a minimal closed ideal of R, by Lemma 1.31.
Hence J is a direct summand of R, since R is min-CS.
Thus J = <e> for some idempotent e € R.
ButllJcInJ=(0),solcann]J=ann<e>=<l-e>.
But <1 — e > is closed ideal of R, since it is a direct summand of R.
It follows that I = <1 — e > because I is a maximal closed ideal of R.
Thus I is a direct summand of R.
Recall that, a ring R is called semihereditary if every finitely generating ideal of R is
projective, [4, p.10].

1.34 Corollary:

Let R be a semiheriditary ring Then R is a min-CS ring if and only if R is a max-CS
ring,
Proof:

Since R is a semiheriditary ring Then R is a nonsingular ring, [4, p.36]. So we get the
result by Theorem 1.33.
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Recall that a ring R is called regular (Von Neumann) if for every a€R there is an x € R
such that a x a = a, thatis a = a’ x, [4, p.10].

1.35 Corollary:
If R is a regular ring Then R is min-CS if and only if R is a max-CS.
The following lemma is needed for the following corollary.

1.36 Lemma: [4, Exc.5, p.36]
For a commutative ring, R/Z(R) is a nonsingular ring
Proof:
Suppose there exists ¥=x+ Z(R) € Z(R/Z(R)) and x ¢ Z(R), so x # 0 and ann(x) is not
essential in R, also anngzg)(x + Z(R)) <. R/Z(R).
Then for each I/Z(R) with I 5Z(R), (I/Z(R)) nanngzr)( x+Z(R))#Orzr)=Z(R). So there
+*

exists a + Z(R) € anngzr)( x + Z(R)), @ € I such that a ¢ Z(R).

Then a #0.

Thus ax+ Z(R) =Z(R), anng(a) is not essential in R and a € L.

Hence ax € Z(R) and anng(a) is not essential in R. So that ann(ax) <. R and ann(a) is not
essential in R.

Now, since ann(ax) <. R, then for each nonzero ideal J of R, J m ann(ax) # 0.

Hence there exists y € ann(ax) and y # 0. Thus yax = 0.

(1) If ya = 0 then 0 # y € ann(a) thus 0 # y € Jnann(a) so that ann(a) < . R which is
a contradiction.

(2) If ya # 0, then O#yacann(x)J. Hence ann(x) <. R which is a contradiction.

(3) If yx = 0 then 0 # y € ann(x), so that 0 # y € ann(x) N J. Thus ann(x) <. R which is
a contradiction.

(4) If yx # 0, then 0# yxeann(a)J, so that ann(a)< . R which is a contradiction.

(5) If ax=0then 0 # ae ann(x) N I, that is ann(x) <. R which is a contradiction.

Thus our assumption is false and so Z(R/Z(R)) = Z(R) = Oz ).

1.37 Corollary
Let R be aring Then R/Z(R) is min-CS if and only if R/Z(R) is max-CS.
Proof:
By lemma 1.36 R/Z(R) is nonsingular, so the result follows by theorem 1.33.
Before we give the following corollary, we need the following lemma.

1.38 Lemma: [4, Exc.13, p.37]
If R is a nonsingular ring, then R{xy, x, ..., x,] is a nonsingular ring,
Proof:
First we shall prove that R[x] is a nonsingular.
Let f(x) € Z(R[x]), then anngp,f(x) <. R[x].
Assume f(x) =ag + a;x + ... + a,x", where a; € R, foreachi=0, 1, ..., n.
annR[x]f(x) = anngpy do M ANNR[AX M ... M annR[x]anx" <. R[X]
So, anngpjdo< . R[x], anngpjaix <. R[x], ..., anngpqa,x” <. R[x].
We claim that anng(a;)) <. R, foralli=0, 1, ..., n.
To prove this. Suppose there exists J < R and J # 0 such that anngag N J = 0.
J # 050 J[x] is an ideal in R[x] and J[x] # 0. Hence J[x] M anngja, # 0.
Let 0 # g(x) € anngqao and g(x) € J[x], such that g(x) = by + byx + ... + b,x", where b; € J,
forall1=0, 1, ..., m and there exists k € {0,1,...,m} with b; # 0. Since g(x) € anng,j(a), then
(bo+ byx+ ..+ by X +... + bx™)ay = 0.
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Thus by ap+ by agx + ...+ by agxX* + ... + by, ag X" =0

which implies by ag = 0, by ay =0, ..., by ag=0, ..., b,,ap=0.But b, ay=0and 0 £ b, €J
implies that J m annga, # 0, which is a contradiction with our assumption. Hence annga, < (R,
so that ay, € Z(R). But R is nonsingular, hence ay = 0. By the same way we can prove that
each of ay,..., a, belongs to Z(R)=(0). Thus f(x) = 0 and Z(R[x]) = (0); that R[x] is
nonsingular.

Then by induction R[xy, x,,..., x,] is a nonsingular ring

1.39 Corollary:
Let R be a nonsingular ring Then R[x;, x,..., x,] is min-CS if and only if R[xy, x,,..., X,]
is a max-CS ring
Proof:
By lemma 38 if R is a nonsingular ring, then R[xy, x,,..., x,] 1S a nonsingular ring
Hence the result follows by theorem 33.

1.40 Note:
A direct sum of min (max)-CS modules will be discussed in another paper.
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