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Abstract 
       In this work we shall introduce the concept of weakly quasi-prime modules and give 
some properties of this type of modules. 
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1- Introduction 
       Let R be a commutative ring with unity , and let M be an R-module, we introduce that an 
R-module M is called weakly quasi–prime module if annRM = annRrM for every r annRM, 
where annRM = {r: rR and rM = 0}. 
       The main purpose of this work is to investigate the properties of weakly quasi-prime 
modules, and we give several characterizations of weakly quasi-prime modules. Recall that an 
R-module is called prime if annRM = annRN for every non-zero submodule N of M and 
annRM = {r: rR and rM = 0}, [1]. 
A submodule N of M is said to be prime if a m  N for a  R, m  M, then either m  N or      
a  [N:M] where [N:M] = {r: rR, rM  N}, [1], [2]. 
It was shown that in [1] M is prime module iff (0) is p rime submodule. 
The concept of quasi-prime module is introduced in [3] where an R-module M is quasi-prime 
module if annRN is prime ideal for every nonzero submodule N of M. If M is quasi-prime 
module then annRM = annRrM  r  annRM, [3]. But the converse is not true for example: 

        Let M = 
p

Z  as Z-module is not quasi-prime module since if N = <1/p
2
 + z >  

p
Z . So 

annRN = p2z is not prime ideal in Z. 

But ann p
Z  = 0 and  r  0, let a  ann r p

Z  so a r
p

Z   = 0, so a r  ann p
Z . 

a r = 0, but r  0 so a = 0 so ann r p
Z  = 0. Then ann p

Z = ann r p
Z . 

 
 

2- Weakly Quasi-Prime Module 
       In this section we introduce the concept of weakly quasi-prime module and give several 
results about it. 
 
2.1 Definition: 
        An R-module M is called weakly quasi-prime module (briefly W.q.p) if                     
annRM = annRrM for every r ann RM. 
        Recall that if R is an integral domain, an R-module M is said to be divisible iff rM = M  
for every nonzero element r in R, [4,p.35]. 
 
2.2 Examples and Remarks:  
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1. If M is divisible over integral domain then M is W.q.p. 
2. Every quasi-prime is W.q.p but the converse is not true (see the example in the 

introduction). 
3. Z as Z-module is W.q.p module since annRZ = 0 = annR rZ,  r annRZ. 
4. Z4 as Z-module is not W.q.p module Since annRZ4 = 4Z and annR2Z = annR( 2 ) = 2Z. Thus 

Z4 as Z-module is not W.q.p module. 
5. Z6 as Z-module is not W.q.p module since annZ6 = 6Z and ann2Z6 = ann( 2 ) = 3Z, so 

annZ6 ann 2Z6. 
6. Zn as Z-module is W.q.p module iff n is prime. 
7. Let M = ZZp; p is prime number is W.q.p module since annM = ann rM = 0 for each            

r  ann(Z Zp). 

8. 
p

Z  is W.q.p module since ann 
p

Z = ann r 
p

Z = 0. 

 
2.3 Note: 
        Let M be W.q.p over integral domain in R. Then every divisible submodule of W.q.p 
module. Recall that a proper submodule N of M is called semi-prime submodule if every r  
R,  x  M, k  Z+, such that rkx  N, then rx  N, [4,p .50]. 
 
2.4 Proposition: 
        Let M be divisible and (0) submodule of M is semi-prime submodule, then the following 
statements are equivalent 
1. M is prime module, 
2. M is q.p module, 
3. M is W.q.p module. 
Proof  :(1) → (2), by [2,p10] 
(2) → (3), by [2,p20] 
(3) → (1) To prove M is prime module, i.e. to show that (0) is p rime submodule. 
Let rm = 0, r  R, m  M, to prove either m = 0  or  r  annRM. Suppose r  annRM, so we 
must prove that m = 0. Since r  annRM, rM  0. Hence rM = M, because M is divisible. 
Thus m = rm1 for some m1  M. Since rm = r(rm1) = 0, that is r2m1 = 0 which implies that    
rm1 = 0, since (0) submodule of M is semi-prime. Thus m = 0. 
 
2.5 Remark: 
        The condition in proposition 2.4 is necessary as the following example shows: 

        
p

Z  is not q.p since if N = 
2

1

p
 + Z then ann N = p2Z is not prime ideal, but 

p
Z  is 

W.q.p module (see the example in the introduction). 
 
2.6 Theorem: 
        Let M be a module over an integral domain R and every submodule of M is divisible 
then ann (rm) =ann (m), for each r  ann (m). 
Proof: Since (rm)  (m), so   
ann(m)  ann (rm)                                                                                                                …(1) 
To prove ann (rm)  ann (m) 
Let x  ann (rm) so x (rm) = 0. Since every submodule of M is divisible, (rm) = (m) and so     
xm = 0 which implies x  ann (m). Thus 
ann(rm)  ann(m)                                                                                                                 …(2)  
From (1) and (2), we have ann (m) = ann(rm), for each r  ann (m). 
 Recall that an R-module M is called multiplication R-module if for every submodule N of M ,  
there exists an ideal I of R such that IM  = N. 
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2.7 Theorem: 
        Let M be multiplication W.q.p R-module. Then every submodule of M is W,.q.p module. 
Proof: Let N be submodule of M, since M is multiplication R-module, so N = IM; I be ideal 
of ring R. To prove N is W.q.p module. 
To prove annRN = annRrN,  r annRN since rN  N so 
annRN  annRrN                                                                                                                   …(1) 
To prove annRrN  annRN. Let x  annRrN so xrN = 0. Since M is multiplication so there 
exists an ideal I of R such that N = IM. Thus xrIM = 0; that is xI  annRrM = annRM, hence 
xIM = 0; so xN = 0 which implies x  annRN. Thus 
annRrN  annRN                                                                                                                   …(2) 
From (1) and (2) we have annRN = annRrN so N is W.q.p module. 
 
2.8 Proposition: 
        Let M be cyclic W.q.p R-module. Then M is q.p module. 
Proof: Let M be cyclic so there exist x  M; M = (x), let y  M, to prove annRy is prime ideal, 
so y = rx; r  R, let a, b  annRy, to prove either a  annRy  or  b  annRy. Since            ab  
annRy = annRrx, so abrx = 0. Suppose b  annRy = annRrx, i.e brx ≠ 0, so                               
ab  annR(rx) = annR(x), since M is W.q.p module, so abx = 0 which implies that a annRbx= 
annR(x) (since M is W.q.p). Thus ax = 0 which implies rax = r.0 = 0 so a  ann (rx) which 
means a  annRy. 
 
2.9 Theorem: 
        Let M be cyclic R-module then the following statements are equivalent 
1. M is prime module 

2. annRM = annRIM; I ⊈ annRN 
3. M is W.q.p module. 
Proof: To prove (1) → (2) 
It is clear by definition of prime submodules. 
(2)  (3) it is obvious. 
To prove (3)  (1), to prove M is prime module. 
By proposition (2.8) we have M is q.p module which implies that annRM is prime ideal, see 
[3,p.14] and by [3,p.8] we get M  is a prime module. 
 
2.10 Theorem: 
        The direct sum of two W.q.p R-module is also W.q.p R-module. 
Proof: Let M = M 1  M 2 where M 1  and  M 2 are two W.q.p module, to prove M is W.q.p 
module, i.e to prove annRM = annRrM, for all r  annRM. 
annRrM = annRr(M 1  M 2) 
            = annR(rM 1  rM 2)           , see [2, p.80] 
            = annRrM 1  annRrM 2      , see [2, p.83] 
            = annRM 1  annRM 2         , since M 1 and M2 are W.q.p 
            = annR(M 1  M 2) 
            = annRM 
 
2.11 Corollary: 
        Let M be an R-module if M is W.q.p module then for any positive integer n, M

n
 is W.q.p 

module where M
n is the direct sum of n copies of M . 

 
2.12 Remark: 
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        A direct summand of W.q.p module is need not be W.q.p module. 
For example: Let M  = Z  Z4 so annRM = annRrM  r  annRM. But Z4 is not W.q.p module, 
(see remarks and examples (2.2(4)). 
 
 
2.13 Theorem: 
       Let M 1 ;  M 2 then M1 is W.q.p iff M2 is W.q.p. 
Proof:  Let f: M 1 → M 2 be 1-1 and onto and homomorphisim and M2 is W.q.p. To prove            
M 1 = f – 1(M 2) is W.q.p module, that is to prove annRrf – 1(M 2)  annRf – 1(M 2); rannRf –1(M2), 
let x  annR r f – 1(M 2) so xrf – 1(M 2) = 0 and since f – 1is homomorphisim so f – 1(xrM 2) = f-1(0) 
and since f

 – 1
 is 1-1 so xrM 2 = 0 which mean x  annRrM 2 but M 2 is W.q.p module and          

rannRM 2 then xM 2 = 0 which implies f
 – 1

(xM 2) = f
 – 1

 (0), but f
 – 1

 is homomorphisim so           
x f

 – 1
(M 2) = 0 implies  x  annRf

 – 1
(M 2) so 

annRr f – 1(M 2)  annR f – 1(M 2)                                                                                             …(1) 
and since r f – 1(M 2)  f – 1(M 2 ), so  
annRf – 1(M 2)  annRr f – 1(M 2)                                                                                              …(2) 
From (1) and (2) we have annRf – 1(M 2) = annRrf – 1(M 2). So f – 1(M 2) is W.q.p module. 
  clearly. 
 
2.14 Note: 
        The condition "isomorphism" in theorem 2.13 is necessary as the following example 
shows 
Example: Let : Z  Z  ⁄ (4) ; Z4, where Z is W.q.p, but Z4 is not  W.q.p. 
 
 
        It is known that, if M is an R-module and I is an ideal of R which is contained in annRM 
then M is R/I-module, by taking (r + 1)x = rx x  M, r  R, see [5,p.40]. 
 
        Now, we give the following result. 
 
2.15 Theorem: 
        Let M be an R-module and let I be an ideal of R, which is contained in annRM. Then M 
is W.q.p R-module iff M is W.q.p R/I-module. 
Proof:  To prove M is W.q.p R/I-module, i.e. to prove annR/IM = annR/I(r + 1)M. Since            
(r + 1)M   M so  
annR/IM  annR/I(r + 1)M                                                                                                      …(1) 
To prove annR/I(r + 1)M   annR/IM 
Let x  annR/I(r + 1)M so x(r + 1)M = 0, which implies (xr + 1)M = 0 so (xr)M = 0                
(by definition), so x  annRrM = annRM (since M is W.q.p R-module). 
x  annR/IM (since I  annR/IM), so 
annR/I(r + 1)M   annR/IM                                                                                                     …(2) 
From (1) and (2) we have annR/IM = annR/I(r + 1)M . 
 If M is W.q.p R/I-module then M is W.q.p R-module, i.e. to prove annRM = annRrM,              
 r  annRM. Since rM  M so  
annRM  annRrM                                                                                                                 …(1) 
To prove annRrM  annRM 
Let x  annRrM so (xr)M = 0 implies that (xr + 1)M = 0, so x(r + 1)M = 0, hence                      
x  annR/I(r + 1)M = annR/IM (since M is W.q.p R/I-module). Thus x  annR/IM, which 
implies that x  annRM (since I  annRM), so  
annRrM  annRM                                                                                                                 …(2) 
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From (1) and (2) we have annRM = annRrM. 
So M is W.q.p module. 
        Recall that a subset S of a ring R is called multiplicatively closed if 1  S and ab  S 
for every a, b  S. We know that every proper ideal P in R is prime if and only if R-P is 
multiplicatively closed, see [4,p.42]. 
        Let M be a module on the ring R and S be a multiplicatively closed on R such that S  0 
and let RS be the set of all fractional r/s where r  R and s  S and M S be the set of all 
fractional x/s where x  M, s  S; x1/s1 = x2/s2 if and only if there exists t  S such that            
t(s1x2 – s2x1) = 0. So, can make M S into RS-module by setting x/s + y/t = (tx + sy )/st,                
r/tx/s = rx/ts for every x, y  M and for every r  R, s, t  S. If S = R-P where P is a prime 
ideal we use M P instead of M S and RP instead of RS. A ring in which there is only one 
maximal ideal is called local ring, see [4,p.50], hence RP is often called the localization of R, 
similar M P is the localization of M at P. So we can define the two maps :R  RS, such 
that (r) = r /1, rR, :M  M S, such that (m) = m /1, mM, see [5,p.69].        
Through this paper S – 1R and S – 1M represent RS and MS respectively. 
 
2.16 Proposition: 
        Let M be W.q.p R-module then S

 – 1M is W.q.p S – 1R-module for each multiplicatively 
closed set S of R. 

Proof: To prove 1
S Rann  S

 – 1
M = 1

S Rann  r/t S
 – 1

M 
r

t
 1

S Rann  S
 – 1

M, since r/t S
 – 1

M  S
 – 1

M 

so 1
S Rann  S

 – 1
M  1

S Rann  r/t S
 – 1

M                                                                                      …(1) 

To prove 1
S Rann  r/t S

 – 1
M  1

S Rann  S
 – 1

M  

Let y/t '  1
S Rann  r/t S

 – 1
M so y/t 'r/t S

 – 1
M = 0 which implies that yr/tt 'S

 – 1
M = 0 where           

yr  M, tt '  S so yr/ tt 'S
 – 1

M = 0 which implies that yr/ tt 'M/S = 0 so yrM = 0. Hence               
y  annRrM = annRM. 
Since y  annRM so yM = 0. Thus yM/ts = 0 so y/tS – 1M = 0, y/t annRS – 1M, hence 

1
S Rann  r/t S

 – 1
M  1

S Rann  S
 – 1

M                                                                                          …(2) 

From (1) and (2) we have 1
S Rann  S – 1M = 1

S Rann  r/t S – 1M, so S – 1M is W.q.p module. 
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