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Abstract

In this work we shall introduce the concept of weakly quasi-prime modules and give
some properties of this type of modules.
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1- Introduction

Let R be a commutative ring with unity, and let M be an R-module, we introduce that an
R-module M is called weakly quasi—prime module if anngM = anngrM for every r ¢anngM,
where anngM = {r: reR and rM = 0}.

The main purpose of this work is to investigate the properties of weakly quasi-prime
modules, and we give several characterizations of weakly quasi-prime modules. Recall that an
R-module is called prime if anngM = anngN for every non-zero submodule N of M and
anngM = {r: reR and M =0}, [1].

A submodule N of M is said to be prime if @ m € N for a € R, m € M, then either m € N or
a € [N:M] where [N:M] = {r: reR, rM < N}, [1], [2].

It was shown that in [1] M is prime module iff (0) is prime submodule.

The concept of quasi-prime module is introduced in [3] where an R-module M is quasi-prime
module if anngN is prime ideal for every nonzero submodule N of M. If M is quasi-prime
module then anngM = anngrM V r ¢ anngM, [3]. But the converse is not true for example:

Let M = me as Z-module is not quasi-prime module since if N = <1/p2 + 5> 4 Zpoo . So

anngN = pzz 1s not prime ideal in Z.
ButannZ ., =0andV r=0,leta cannrZ . soaerm =0,soar cannZ . .
p p P

ar=0,butr¢0soa=0soananpw = (. Then ann pr=ananpw.

2- Weakly Quasi-Prime Module

In this section we introduce the concept of weakly quasi-prime module and give several
results about it.

2.1 Definition:

An R-module M is called weakly quasi-prime module (briefly W.q.p) if
anngM = anngrM for every r gann M.

Recall that if R is an integral domain, an R-module M is said to be divisible iff yM =M
for every nonzero element » in R, [4,p.35].

2.2 Examples and Remarks:
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1. If M is divisible over integral domain then M is W.q.p.

2. Every quasi-prime is W.q.p but the converse is not true (see the example in the

introduction).

Z as Z-module is W.q.p module since anngZ = 0 = anng rZ, V r¢ anngZ.

4. Z, as Z-module is not W.q.p module Since anngZ, = 4Z and anng2Z = anng(2) = 2Z. Thus
Z4 as Z-module is not W.q.p module.

5. Z¢ as Z-module is not W.q.p module since annZg = 6Z and ann2Z¢ = ann(2) = 3Z, so
annZg# ann 2Z.

6. Z, as Z-module is W.q.p module iff # is prime.

7. Let M = Z®Z,; p is prime number is W.q.p module since annM = ann *M = 0 for each
r & ann(Z® Z,).

8. pr 1s W.q.p module since ann me = ann eroo =0.

(98]

2.3 Note:

Let M be W.q.p over integral domain in R. Then every divisible submodule of W.q.p
module. Recall that a proper submodule N of M is called semi-prime submodule if every » €
R, x e M, k € Z., such that #*x e N, thenrx € N, [4,p.50].

2.4 Proposition:

Let M be divisible and (0) submodule of M is semi-prime submodule, then the following
statements are equivalent
1. M is prime module,
2. M is q.p module,
3. M is W.q.p module.
Proof :(1) — (2), by [2,p10]
(2) > (3), by [2,p20]
(3) — (1) To prove M is prime module, i.e. to show that (0) is prime submodule.
Let rm = 0, r € R, m € M, to prove either m =0 or r € anngM. Suppose r ¢ anngM, so we
must prove that m = 0. Since ¢ anngM, rM # 0. Hence M = M, because M is divisible.
Thus m = rm; for some m; € M. Since rm = r(rm;) = 0, that is r2m1 = 0 which implies that
rm; = 0, since (0) submodule of M is semi-prime. Thus m = 0.

2.5 Remark:
The condition in proposition 2.4 is necessary as the following example shows:

pr is not g.p since if N = Lz + Z then ann N = pzz is not prime ideal, but pr 1s

p
W.q.p module (see the example in the introduction).

2.6 Theorem:

Let M be a module over an integral domain R and every submodule of M is divisible
then ann (rm) =ann (m), for each » ¢ ann (m).
Proof: Since (rm) < (m), so
ann(m) < ann (rm) ..(D)
To prove ann (rm) < ann (m)
Let x € ann (rm) so x (rm) = 0. Since every submodule of M is divisible, (rm) = (m) and so
xm = 0 which implies x € ann (m). Thus
ann(rm) < ann(m) ...(2)
From (1) and (2), we have ann (m) = ann(rm), for each » ¢ ann (m).
Recall that an R-module M is called multiplication R-module if for every submodule N of M,
there exists an ideal I of R such that IM = N.
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2.7 Theorem:

Let M be multiplication W.q.p R-module. Then every submodule of M is W,.q.p module.
Proof: Let N be submodule of M, since M is multiplication R-module, so N = IM; I be ideal
of ringR. To prove N is W.q.p module.

To prove anngN = anngrN, V r¢ anngN since ¥N < N so

anngN C anngrN ...(D)
To prove anngzN < anngN. Let x € anng#N so x¥N = 0. Since M is multiplication so there
exists an ideal I of R such that N =IM. Thus x#IM = 0; that is xI < anngrM = annzgM, hence
xIM = 0; so xN = 0 which implies x € anngN. Thus

anng#N < anngN ...(2)
From (1) and (2) we have anngN = anng7N so N-is W.q.p module.

2.8 Prop osition:
Let M be cyclic W.q.p R-module. Then M is q.p module.

Proof: Let M be cyclic so there exist x € M; M = (x), let y € M, to prove anngy is prime ideal,
soy=rx;r € R, let a, b € anngy, to prove either a € anngy or b € anngy. Since ab €
anngy = anngrx, so abrx = 0. Suppose b ¢ anngy = anngrx, i.e brx # 0, so
ab € anng(rx) = anng(x), since M is W.q.p module, so abx = 0 which implies that a eanngbx=
anng(x) (since M is W.q.p). Thus ax = 0 which implies rax = .0 = 0 so a € ann (rx) which
means @ € anngy.

2.9 Theorem:
Let M be cyclic R-module then the following statements are equivalent
1. M is prime module

2. anngM = anngIM; I £ anngN

3. M is W.q.p module.

Proof: To prove (1) — (2)

It is clear by definition of prime submodules.

(2) = (3) it is obvious.

To prove (3) = (1), to prove M is prime module.

By proposition (2.8) we have M is q.p module which implies that anngM is prime ideal, see
[3,p.14] and by [3,p.8] we get M is a prime module.

2.10 Theorem:
The direct sum of two W.q.p R-module is also W.q.p R-module.
Proof: Let M = M; @ M, where M| and M, are two W.q.p module, to prove M is W.q.p
module, i.e to prove anngM = anngrM, for all » ¢ anngM.
anngr’M = anngr(M | @ M»)

=anng(rM; @ rM,) , see [2, p.80]

=anngrM | N anngrM, , see [2, p.83]

= anngM | N anngM , , since M| and M, are W.q.p
=anng(M; ® M»,)

= anngM

2.11 Corollary:
Let M be an R-module if M is W.q.p module then for any positive integer n, M" is W.q.p
module where M" is the direct sum of n copies of M.

2.12 Remark:
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A direct summand of W.q.p module is need not be W.q.p module.

For example: Let M =Z @ Z, so anngM = anngrM V r ¢ anngM. But Z, is not W.q.p module,
(see remarks and examples (2.2(4)).

2.13 Theorem:

Let M;; M,then M, is W.q.p iff M, is W.q.p.
Proof: = Let f: M; — M, be 1-1 and onto and homomorphisim and M, is W.q.p. To prove
M, =f"'(M,) is W.q.p module, that is to prove anngrf (M) < anngf ™ '(M,); reanngf ' (M»),
let x e anng r 1(Mz) so xrf 1(Mz) =0 and since f'is homomorphisimso 1(er 2) = fl(O)
and since f ' is 1-1 so x*M, = 0 which mean x € anngrM, but M, is W.q.p module and
reanngM, then xM, = 0 which implies f 1(xMz) =f ! (0), but f s homomorphisim so
xf 1(Mz =0 implies x € anngf 1(Mz) SO
anngr f (M) < anng fﬁl(Mz) ..(D)
and since 7 f 1(Mz) at , 1(Mz ), SO
anngf ™ '(M,) C anngr £ '(M,) (2
From (1) and (2) we have anngf 1(M ) = anngrf 1(M 2)-Sof 1(M 2) 1s W.q.p module.
&< clearly.

2.14 Note:
The condition "isomorphism" in theorem 2.13 is necessary as the following example
shows

Example: Let t: Z—— Z/(4) ; Z4, where Z is W.q.p, but Z4 is not W.q.p.

It is known that, if M is an R-module and I is an ideal of R which is contained in annRM
then M is R/I-module, by taking (» + 1)x =rx Vx € M, r € R, see [5,p.40].

Now, we give the following result.

2.15 Theorem:

Let M be an R-module and let I be an ideal of R, which is contained in anngM . Then M
is W.q.p R-module iff M is W.q.p R/I-module.
Proof: = To prove M is W.q.p R/I-module, i.e. to prove anng;M = anng,(» + 1)M. Since
(r+1)M < M so
anng;M C anng,(r + 1)M ..(1)
To prove anng,(» + 1)M < anng;M
Let x € anngg(r + 1)M so x(r + )M = 0, which implies (x» + 1)M = 0 so (x¥r)M = 0
(by definition), so x € anngrM = anngM (since M 1s W.q.p R-module).
x € anng;M (since I < anng;M), so
anng;(r + 1)M < anng;M ...(2)
From (1) and (2) we have anngsM = anng,(» + 1)M.
< If M is W.q.p R/I-module then M is W.q.p R-module, i.e. to prove anngM = anngrM,
YV r ¢ anngM. Since YM < M so
anngM < anngrM ..(1)
To prove anngrM < anngM
Let x € anngrM so (x»)M = 0 implies that (xr + 1)M = 0, so x(r + 1)M = 0, hence
x € anngy(r + )M = anng;M (since M is W.q.p R/I-module). Thus x € anng;M, which
implies that x € anngM (since I < anngM), so
anngrM < anngM ...(2)
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From (1) and (2) we have anngM = anngrM.
So M is W.q.p module.

Recall that a subset S of a ring R is called multiplicatively closed if 1 € Sand a:b € S
for every a, b € S. We know that every proper ideal P in R is prime if and only if R-P is
multiplicatively closed, see [4,p.42].

Let M be a module on the ring R and S be a multiplicatively closed on R such that S # 0
and let Rg be the set of all fractional »/s where » € R and s € S and Mg be the set of all
fractional x/s where x € M, s € S; xi/s; = xp/s, if and only if there exists ¢ € S such that
{(s1x, — spx1) = 0. So, can make Mg into Rg¢-module by setting x/s + y/t = (tx + sy )/st,
r/tx/s = rx/ts for every x, y € M and for every » € R, s, t € S. If S=R-P where P is a prime
ideal we use Mp instead of Mg and Rp instead of Rg. A ring in which there is only one
maximal ideal is called local ring, see [4,p.50],-hence Ry is often called the localization of R,
similar Mp is the localization of M at P. So we can define the two maps y:R —— Rg, such
that y(r) = r /1, VreR, M —— Mg, such that ¢&(m) = m /1, VmeM, see [5,p.69].
Through this paper S - 'RandS 'M represent Rg and Mg respectively.

2.16 Prop osition:
Let M be W.q.p R-module then S 'M is W.aqp S 'R-module for each multiplicatively
closed set S of R.

Proof: To prove anng', S '™ = anng', ¥/t S 'M v ;E anng'x S 'M, since r/tS”'M =S 'M

50 anng'y ST'M C anng' 7t S~ 'M (1)
To prove anng', 7/t S~ '™ ¢ anng'y S 'M

Let y/t ' € anng' 7/t S 'M so yit"rlt S~ 'M = 0 which implies that yr/tt 'S~ 'M = 0 where
yr e M, tt' e Ssoyr/ tt'S" 'M = 0 which implies that yr/ ¢t 'M/S = 0 so yrM = 0. Hence
y € anngrM = anngM.

Since y € anngM so yM = 0. Thus yM/ts =0 so y/t-S "M =0, y/t-€ anngS 'M, hence

anng'y 768" M C anng', ST'M .2

From (1) and (2) we have anng', S '™ = anng'g 7/t S 'M, s0S 'M is W.q.p module.
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