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Abstract

Some authors studied modules with annihilator of every nonzero submodule is prime,
primary or maximal. In this paper, we introduce and study annsemimaximal and
coannsemimaximal modules, where an R-module M is called annsemimaximal (resp.

coannsemimaximal) if anngN (resp. ann, N ) is semimaximal ideal of R for each nonzero

submodule N of M.
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Introduction
Let R be a commutative ring with unity and let M be an R-module. Muntaha A.R.H. in
[1] introduced and studied quasi-prime modules where an R-module M is quasi-prime if
anngN is a prime ideal of R for every nonzero submodule N of M. Adwia J.A.A. in [2]
introduced and studied quasi-primary modules, where an R-module M is called quasi-primary
if anngN is a primary ideal of R, for each nonzero submodule N of M. Adwia J.A.A. in [3]
introduced and studied max modules, where an R-module M is said to be max module if
anngN is a maximal ideal of R, for each nonzero submodule N of M.
1. Recall that an ideal I of R is called semimaximal if I is an intersection of finitely many
maximal ideals of R, [4].
2. In this paper, we introduced and studied annsemimaximal and coannsemimaximal
modules where an R-module M is called annsemimaximal (resp. coannsemimaximal)

M
if anngN (resp. ann, F) is a semimaximal ideal of R.

1- Annsemimaximal Modules

In this section, we introduce the concept of annsemimaximal modules. We give some
characterizations to this concept and establish some basic properties of this concept.

1.1 Definition:
Let M be an R-module. M is called annsemimaximal module if anngN is a semimaximal
ideal of R for each non-zero submodule N of M.
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1.2 Remarks and Examples:

(1) pr is not annsemimaximal Z-module.

(2) Z¢ as a Z-module is annsemimaximal module.

(3) Z as a Z-module is not annsemimaximal module.

(4) Q as a Z-module is not annsemimaximal module.

(5) Z, as a Z-module is annsemimaximal module.

(6) for each neZ., Z®Z, is not annsemimaximal Z-module.

(7) Every submodule N of an R-module M (where M is annsemimaximal module) is
annsemimaximal module.

Proof: Let K be a nonzero submodule of N. Then K be a non-zero submodule of M and so

that anngK is semimaximal ideal (since M is annsemimaximal module).

M
(8) Let M be annsemimaximal module and let N < M. Then N is annsemimaximal module.

Proof: Let mM——>M/N be the natural epimorphism and M is annsemimaximal module.
Then for each non-zero submodule W of M, anngW is semimaximal ideal of R. But

M
anngWcanngW/N. Hence anngW/N is semimaximal ideal by [5,prp.(1.2.11)]. Thus ~ is

annsemimaximal module.
(9) The homomorphic image of annsemimaximal module is annsemimaximal module.
Proof: Let f:M——>M' be an epimorphism such that M is annsemimaximal module. Then by

the first fundamental theorem of homomorphisim, - =~M'. But i1s annsemimaximal

ker ker

by (8). Hence M' is annsemimaximal module.
Now, we have the following characterization of annsemimaximal module.

1.3 Proposition:

Let M be an R-module. Then M is annsemimaximal module if and only if anngM 1is a
semimaximal ideal of R.
Proof: (=) It follows directly by definition (1.1).
(<) let (0) # N be a submodule of M. Then anngN D anngM. But anngM is semimaximal, so
by [5,prop. (1.2.11)], anngN issemimaximal. Thus M is annsemimaximal module.

1.4 Corollary:
An R-module M is annsemimaximal if and only if R/anngM is semisimple ring
Proof: By proposition (1.3) M is annsemimaximal module
<> anngM is a semimaximal ideal.
< R/anngM is semisimple ring
Now, we have the following theorem.

1.5 Theorem:

Let M be an R-module. Then (1) = (2), (2) = (3), 3) = (4), (4) = (1) if M is finitely
generated
(1) M is annsemimaximal module.

(2) [anngN : A] is a semimaximal for each non-zero submodule N of M and for each ideal A

of R such that A &z anngN.
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[annN : r] is a semimaximal ideal of R for each non-zero submodule N of M, reR such

that (r) & anngN.
(3) Anng(m) is a semimaximal ideal of R for each m=0, meM.
Proof: (1) = (2), suppose that M is annsemimaximal module. Let N be a non-zero
submodule of M. Then anngN is semimaximal ideal of R. Assume that A is an ideal of R such
that A zanmgN. It is clear that anngN < [anngN : A]. So, according to [5,coro.(1.2.12)],

[anngN : A] is semimaximal ideal of R.

(2) = (3), take A = (r) the ideal of R generated by r, the result follows by (2).
(3) = (4), let 0#m eM. Because 1¢anng(m). [anng(m):R] is semimaximal ideal of R by (3).
But [anng(m):R]=anng(m). So anng(m) is semimaximal ideal of R.

(4) = (1), since M is finitely generated, M= Z:Rxi , €M, anngM = Mannx; . But ann(x) for
i=1 =

all =1,...,n is semimaximal ideal. So, by [5,coro.(1.2.15)], anngM is semimaximal. Thus M is
ansemimaximal by prop. (1.3).

Recall that an R-module M is called semisimple if every submodule of M is a direct
summand of M. And a ring R is said to be semisimple ringif and only if R is a semisimple R-
module, [6].

1.6 Proposition:

Every semisimple R-module M is annsemimaximal.
Proof: By [6,prop.(1.1.46)], we get R/anngM 1is a semisimple ring Therefore anngM is a
semimaximal ideal by [4,prop.(1.2.5)]. Thus M is annsemimaximal by prop. (1.3).

The following corollary is an application of proposition (1.6).

1.7 Corollary:

Let R be a semisimple ring Then every R-module M is annsemimaximal.
Proof: It is known that if R is semisimple ring then M is semisimple module
[5,prop.(1.1.44)]. Hence M is annsemimaximal module by previous proposition. Next, we
have the following proposition.

1.8 Proposition:

If M is an Artinian and annsemimaximal R-module, then M is semisimple.
Proof: We have M is annseimmaximal, then anngM is semimaximal. Thus J(M)= 0 by
[5,coro,(1.3.6)]. But M is an artinian and J(M )=0, then M is semisimple, [5].

1.9 Example:
7,4 as a Z-module is not annsemimaximal module and Z,, is not semisimple.
The following result is consequence of proposition (1.8).

1.10 Corollary:
Let M is an Artinian R-module.Then M is semisimple module if and only if M is
annsemimaximal.

1.11 Proposition:
If M is annsemimaximal R-module, then every cyclic submodule of M is semisimple.
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Proof: If M is annsemimaximal R-module, then anng(x) is semimaximal ideal by
Th.((1.5),(4)), so by [5,prop.(2.3.15)], we get the result Now, we induced the following
corollary.

1.12 Corollary:
If M is finitely generated and annsemimaximal R-module, then M is semisimple

R-module.
Proof: Let M=Rx; + Rx, + ... + Rx, for some x, %, ..., X,. But Rx; is semisimple by

previous proposition. Therefore M= Zin is semisimple By combining corollary (1.12),
i=1

proposition (1.6), we get the following

1.13 Corollary:

Let M be a finitely generated R-module. Then M is annsemimaximal module if and only
if M is semisimple.

1.14 Corollary:
R is a semisimple ring if and only if R is annsemimaximal ring
Now, we turn our attention to direct sum of annsemimaximal modules.

1.15 Proposition:

Let M be a faithful R-module. Then R is semisimple if and only if M is
annsemimaximal.
Proof: (=) directly from [5,prop.(1.1.44)] and proposition (1.6).
(<) if M is annsemimaxi, then anngM is a semimaximal ideal; that is (0) is a semimaximal
ideal. Thus R/(0) U R is semisimple.

By combining corollary (1.13), proposition (1.15) and corollary (1.14), we get the
following:

1.16 Corollary:
Let M be a faithful finitely generated R-module. The following statements are
equivalent:
(1) M is annsemimaximal.
(2) M is semisimple.
(3) R is semisimple.
(4) R is annsemimaximal.
Now, we give the following proposition.

1.17 Proposition:

If R is a local ring and M is annsemimaximal R-module, then M is semisimple..
Proof: M is annsemimaximal module. Then anngM is semimaximal ideal. Thus the result
follows by [5,coro.(1.3.7)].

1.18 Proposition:
Let M|, M, be two R-modules, M=M ;&M ,. Then M is annsemimaximal if and only if
M, M, are annsemimaximal R-module.

Proof: (=) let p;:M —— M, p:M —— M, be the natural projections. Thus M | and M, are
annsemimaximal modules by remarks and examples ((1.2),(9)).

(<) we have anngM | is semimaximal ideal and anngM ; is semimaximal by proposition (1.3).
On the other hand anng(M @M ,) = anngM |~ anngM ,. But by [5, coro.(1.2.15)],
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anngM ;N anngM , is semimaximal. Therefore anng(M ®M,) is semimaximal. Thus M &M, is
annsemimaximal module, by prop.(1.3).

Recall that an R-module M is called semiprime if and only if anngN is a semiprime ideal
of R, for each non-zero R-submodule N of M, [7,Def.(4.1.1)]. By using this concept, we
have the following.

1.19 Proposition:

Every annsemimaximal R-module is semiprime R-module.
Proof: Let M be an annsemimaximal module. Then for each non-zero submodule N of M,
anngN is semimaximal ideal of R. Thus by [5,prop.(1.2.21)], anngN is semiprime and hence
M is a semiprime module.

The converse of this proposition is not true in general. For example:Z as a Z-module is
semiprime module, but it is not annsemimaximal module by remarks and examples ((1.2),(3)).

For our next corollary the following definitions are needed.

An R-module M is said to be serial (chain) R-module if the R-submodules of M are
linearly orderd with respect to inclusion, [6], [7].

An R-module M is said to be a prime module if anngpM=anngN for every non-zero
submodule N of M, [8], [9].

As an application of proposition (1.19), we give the following corollary.

1.20 Corollary:

Let M be a serial annsemimaximal module. Then M is prime R-module.
Proof: From proposition (1.19), M is semiprime module and from [7,prop.(4.2.1)], we get
the result.

Recall that an R-module M is said to be a max-module if ,/annRN is maximal ideal of R

for each non-zero submodule N of M, [3].
In the class of max-module. The two concept of annsemimaximal module and semiprime
module are equivalent.

1.21 Proposition:

Let M be a max-module. Then M is annsemimaximal module if and only if M is
semiprime module.
Proof: Suppose that M is semiprime R-module. Then for each a non-zero submodule N of M,

anngN is semiprime ideal of R, that is anngN=,fann, N for each non-zero submodule N of M.

But M is max-module which implies that JannRN is maximal ideal of R for each non-zero

submodule N of M and hence anngN is maximal ideal for each non-zero submodule N of M
by [5,Rem.(1.2.2),(2)], anngN is semimaximal ideal of R and hence M is annsemimaximal
module.
Conversely: It follows by proposition (1.19).

Now, the following results are other consequences of proposition (1.21), but first we
need to recall some definitions.

An R-module M is called Z-regular module if for all meM, there exists
feHomg(M,R)=M * such that f{m)m =m, [10].

An R-submodule N of M is called essential in M if for each non-zero R-submodule L
of M, NNnL=0, [6].And an R-module M is called uniform if every non-zero R-submodule of
M is essential.

M
An R-submodule N of M is called quasi-invertible if Hom( N ,M)=0. And an R-module M

is called quasi-Dedekind if every non-zero R-submodule of M is quasi-invertible, [11].
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Hence, we have the following consequences of (1.21).

1.22 Corollary:
If M is max-module and Z-regular module. Thus M is annsemimaximal module.
Proof: It follows directly from proposition (1.21) and [7,prop.(4.2.2)].

1.23 Corollary:

Let M be a uniform annsemimaximal R-module. Then M is quasi-Dedekind.
Proof: M is annsemimaximal module, then M is semiprime by proposition (1.21) and by
[7,prop.(4.2.4)], we get the result.

Now, we can give the following proposition.

1.24 Proposition:
Let M be a uniform max-R-module. Then the following statements are equivalent.
(1) M is annsemimaximal module.
(2) M is seiprime module.
(3) M is quasi-Dedekind.
(4) M is prime.
Proof: (1) = (2) by proposition (1.19).
(2) = (3) by [7,prop.(4.2.4)].
(3) = (4) by [11,prop.(1.7), ch.2].
(4) = (1) It is clear that every prime module is semiprime module and hence by proposition
(1.21) we get the result.

Recall that an R-module M is said to be regular module if R/anng(x) is regular ring for
all0=x e M, [5].
By using this concept, we have the following

1.25 Remark:

Every annsemimaximal module is regular module.
Proof: Let M be annsemimaximal R-module. Then anngM is semimaximal ideal and by

[5,prop.(1.3.5)], M is regular module.

1.26 Proposition:
If M is annsemimaximal R-module, then M/N is regular R-module for all submodules N
of M.

Proof: Let M is annsemimaximal module. Then anngM is semimaximal. But anngM <
[NI:{M] for all submodule N of M, so [NéM] i1s semimaximal ideal by [5,prop.(1.2.11)].

Hence M/N is regular R-module by [5,prop.(1.3.8)].

The Jacobson radical of an R-module M denoted by J(M), is defined to be the
intersection of all maximal submodules of M, in case M has maximal submodules and
J(M)=M in case M has no maximal submodule, [6].

1.27 Remark:
Let M be an annsemimaximal R-module. Then J(M )=0.

Proof: It is abvious according to [5,coro.(1.3.6)].

Recall that an R-module M is called F-regular if every submodule of M is pure [12,ch.2].
By using this concept, we give the following proposition.

1.28 Proposition:
If M is annsemimaximal R-module, then M is F-regular.
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Proof: We have M is annsemimaximal, then anngM is semimaximal. Thus every cyclic
submodule is pure by [5,prop.(1.3.9)]. Hence M is F-regular.

1.29 Proposition:

Let R be a PID, anngM #0, M is prime R-module. Then M is annsemimaximal module.
Proof: Since M is prime R-module. Then anngM 1is prime ideal which implies that anngM 1is
maximal ideal (since R is PID). Thus anngM is semimaximal ideal of R. Hence M is
annsemimaximal R-module, by proposition (1.3).

The converse of proposition (1.29) is not true, for example:Zs as Z-module is
annsemimaximal. But M is not prime.

Recall that an R-module M is flat if for each injective homomorphisim f: N'—— N from
one R-module into another, the homomorphisim 1,,&®f:M %)N'—) M (I?N is injective, where

Iy 1s the identity isomorphisim of M, [6].

1.30 Proposition:

If M is flat annsemimaximal R-module, then every homomorphic image of M is flat.
Proof: We have M is annsemimaximal, then anngkM 1is semimaximal ideal. Thus by
[5,prop.(1.3.10)], we get the result.

Next, we introduce the following definition.

1.31 Definition:
Let N be a proper submodule of an R-module M. N is called quasi-semimaximal if
[N : (m)] is a semimaximal ideal for each m ¢ N.

1.32 Remark:
Let M be a finitely generated R-module, N be semimaximal submodule of M. Then

[N : M is semimaximal ideal.

1.33 Remark:
Let M be a finitely generated R-module, N be semimaximal submodule of M. Then N is
quasi-semimaximal submodule.

Proof: By remark (1.32), [N : M] is semimaximal ideal. But for each mg¢N, [N : (m)] o
[Nsz]' Thus by [5,prop.(1.2.11)], we get [NI:{(m)] is semimaximal ideal of R. We end this

section by the following result.

1.34 Proposition:

Let M be a finitely generated R-module. Then M is annsemimaximal module if and only
if (0) is quasi-semimaximal submodule of M.
Proof: Suppose that M is annsemimaximal module. Then anng(m) is semimaximal ideal for

each meM. Thus [0 : m] is semimaximal ideal for each meM. Hence (0) is semimaximal

ideal.
Conversely: if (0) is quasi-semimaximal submodule of M, then [0 : m] is semimaximal ideal

for each meM. Therefore M is annsemmaximal by theorem ((1.5),(4)).
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2- Coannsemimaximal Modules:

In this section, we introduce the concept of coannsemimaximal module which is strongly
from the concept of annsemimaximal module in section one. We give some characterizations
about this concept and many results are studied.

We start with the following definition.

2.1 Definition:

An R-module M is called coannsemimaximal module if anng M 1s semimaximal ideal of
N

R for each non-zero proper submodule N of M. Equivalently, M is coannsemimaximal if M
N
is annsemimaximal module for each non-zero proper submodule N of M.

2.2 Examples:
(1) Z,, is not coannsemimaximal Z-module, since if N = <4>, then ann, ﬁz annyZ, = 47

which is not semimaximal ideal.
2) sz as a Z-module is coannsemimaximal, where p is a prime number.

Proof: Since <p> is only non-zero proper submodule of sz . Z 2 /<p>UZ,and anny;Z,=pZ

which is clear semimaximal ideal.
Next, we have the following proposition.

2.3 Proposition:
Let M be an R-module. Then every annsemimaximal module is coannsemimaximal
module.

M
Proof: Let M be an annsemimaximal module. Then NI is annsemimaximal module by

M
remarks and examples ((1.2),(9)). Thus annRﬁ is semimaximal which implies that M is

coannsemimaximal module.

The converse of proposition (2.3) is not true in general. For example: Let Z¢ be a Z-
module. Then Zy is coannsemimaximal module but not annsemimaximal. And Z4 as a Z-
module is coannsemimaximal module but it is not annsemimaximal module.

The following proposition proves that the converse of (2.3) is true under the condition
that M is coprime module, but first we need to recall the definition of coprime module.

M
An R-module M is called coprime module if anngM = annRﬁ for every proper

submodule N of M, [13].

2.4 Proposition:
Let M be a coprime and coannsemimaximal R-module. Then M is annsemimaximal
R-module.

M
Proof: Since M is coprime module. Then anngM =annRﬁ for every proper submodule N of

M
M. But annRﬁ is semimaximal ideal of R for each non-zero proper submodule N of M (since

M is coannsemimaximal). Thus annngM is semimaximal ideal of R and hence M is
annsemimaximal module by proposition (1.3).
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As an application of (2.4), we have the following,

2.5 Corollary:

Let M be a coannsemimaximal R-module and M is a coprime E-module, where
E=Endgr(M). Then M is annsemimaximal R-module.
Proof: M is coprime E-module, then M is coprime R-module by [14,coro.(2.2.3)] and from
proposition (2.4), we get the result.

Recall that a non-simple R-module M is called antihop fian if M=M/N for all proper

submodules N of M, [15].

By using this concept we get the following,

2.6 Proposition:
Let M be an antihopfian, N is semimaximal submodule of M. Then M is
coannsemimaximal R-module.

: L. M . ..
Proof: We have N is semimaximal submodule. Then N is semisimple by [5,Def.(2.1.1)].
M . . . M M
Thus N is annsemimaximal module by prop.(1.5). But W [ N for each proper submodule

M M
W of M, since M is antihopfian. That means M;F' Thus W 1s annsemimaximal for all

proper submodule W of M. Therefore M is coannsemimaximal module.
Now, we prove the following lemma.

2.7 Lemma:
Let M be an R-module. If N is a semimaximal submodule, then [N : M] is semimaximal

1deal.

M
Proof: Suppose that N is a semimaximal submodule. Then by [5,def.(2.1.1)], —is
N
M
semisimple R-module and hence by proposition (1.6), N is annsemimaximal module. Then

.. M . D M .
by proposition (1.3), anng N is semimaximal ideal. But [NliM] = annRF , thus [N I:{M] 1S a

semimaximal ideal.
The following result follows immediately by lemma (2.7).

2.8 Proposition:
If every submodule N of an R-module M is semimaximal, then M is coannsemimaximal.
..Next, we have the following remark.

2.9 Remark:

The direct sum of coannsemimaximal modules need not be coannsemimaximal. For
examp le:
Let M=Z,®Z; be a Z-module. Z, and Z; are two coannsemimaximal Z-modules. But M U Z,
which is not coannsemimaximal.
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