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Abstract

The purpose of this paper is to evaluate the error of the approximation of an entire
function by some discrete operators in locally global quasi-norms (Lg,-space), we intend to
establish new theorems concerning that Jackson polynomial and Valee-Poussin operator
remain within the same bounds as bounded and periodic entire function in locally global
norms (Ls,), (0<p < 1).
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Introduction and Preliminaries

Al-Abdulla, A. [1], Al-Saidy, S.K. [2] and E.S.Bhayah [3] gave estimation for
approximation of bounded measurable functions with some discrete operators in L;,-norm

O<p<.

Here, we give an estimation for approximation of entire functions in Lg,-space.

Let X = [-m,m] we denote the set of all 2n-periodic bounded measurable function with
usual sup-norm by L, such that
L.(X) = {f: fis 2n-periodic bounded measurable function} with norm

If ], =sup{|f(x)|vxeX} <o ..(1.1)
and the Ly-norm (1 <p <) of fe L, by |f| ,such that

1
-
L,(X) :{f NE ] = (o[ dx)” <oo}; 1], =11 ..(12)
X
Now let us consider the Dirich let kernel of degree n, [4]
1 n
D, (u)= 5+;cos(vu)3 ueR, n=0,1,... ...(1.3)
Let
1
K, () = —{Dy(1) + D, (W) +...+ D, (] (1.4)

be the Fejer kernel of degree not grater than n.

2 n
J (£,x)= me(xk,n K, (X-X,,) ...(1.5)

2K
where X, = —?,(K =0,1,2,...,n), be the so called Jackson polynomial of function f € L,..
Ton+
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1
V,,(t) = ——[D, (t)+ D,,, (1) + D,, (1)] ...(1.6)
n+l1
2y . .
Let X, = TR j=0,1,....,3n. Then we define the following operator.
n-+

2 3n
V. f.X)=——> f(X)V, (X-X. (1.
pnan (£,X) 3n+1j:ZO (X)Va, ( ) (1.7)

be the valee-poussin discrete operator of 2n-periodic bounded measurable function.

The unique linear trigonometric polynomial which is interpolating a given function
f eL,(X) at the point Xj is denote by I,(t) which has the representation:

In(f,X)zﬁﬁf(Xj)Dn(X—xj) ..(1.8)

Now let B, be the set of all entire functions, since the derivative of polynomial exists
every where, then we get that every polynomial is an entire function [5], so we consider that
f eB, and J(f) €B,, Vouaa(f) €B,.

Let n, k be positive integers, (0 <p < 1) and (3 > 0) are fixed numbers which will be
used for the degree of approximating polynomial, for the rate order of modulus and for the
space L, respectively.

We consider the locally global norm for (6 > 0), (0 <p < )

1

s s )
_ N _ .(19)
||f||57p usup{|f(}’)|,}’e{x 2,X—i- 2}} dx} , Xe[-m,n].

Now the k™ average modulus of smoothness for f € L;, are defined by the following
respectively, [6], [7]

1 1
atn =[]
" " (1.10)
| | (L
o (f,=)s, =Wt —)
n n’fl,
where the k™ modulus of smoothness for f e Lsp, k € U is defined by
1 ko ko
W, (f,x,—) :sup{|A§f(t)|: t,t+ kh €|:X—7,X+7:|FNX} .(1.11)
n

k k
. D (=D f(t+ mh) iftort+kheX
Now, we set A f(t) =155 m .

0 otherwise
In the following we recall some theorems which are needed:-

Theorem 1.1: [6]
If f € B, then for (0 <p < 1) and (6> 0), we have,

Il < (P +n5)" (ns)]? IF], -
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Theorem 1.2: [3]
If f € 2n-periodic bounded measurable functions, then for (0 <p <1)

If-3.0], < Coyr, (1.2,
n

Theorem 1.3: [3]
If f € 2n-periodic bounded measurable function, then for (0 <p < 1)

1

||f —V2n,3n(f)||p < C(p,k,0)z, (f,2—)p , where n=1,2,... and (p.k,0) is a constant depends on p,
n

k and €.

Theorem 1.4: [3]
Let f be 2n-periodic bounded measurable function, then for (0 <p < 1), we have

1
IIf - In(f)|L < C(p,k,0)z, (f,;)p , where p k.0 is a constant depends on p, k and (.

Main Results

We shall prove direct inequality to find the degree of approximation of 2n-periodic entire
function by some discrete operators in (L) spaces, (0 <p < 1).

Lemma 2.1:
Let f be 2n-periodic entire function, then for (0 <p < 1), we have

1 1
2-k (fj _)p < 2-k (f’ _)5,p :
n n

Proof:
1 1
Tx (f, _)p = |‘Vk (f,,_)hp
n n
— [kup |Agf(t)|;t,t+khe[x_ﬁ,mﬁ}mx
2n 2n A
= [sup Z( 1)‘*k f(t+1h) tt+khe{x—£x+£}mX
2n 2n
P P
i+k . k k
= Z( i+ f(t+1h) ;t,t+khe{x— x+—}mX dx
, 2n’ 2n
1
k i Kk Kk ’
sup |su ik f(t +ih)|| ;t,t+khe|y——, y+ — |[NnX}ye|x——,x+ — ||| dx
PP Z( ‘ [j( ) {y 2ny Zn} }y [ 2n ZnN)
k k
= )sup{lA:f(t)l;t,t+kh E[X—Z,X+Zj| mX}l
0.p
1
a'a_)L
n P
1
:Tk(f:_)a‘,p
n
Theorem 2.2:

Let f be 2n-periodic bounded measurable entire function, (f € Lsp), (0 <p < 1), we have
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1 .
If -7, (f )||§,p <C(p)z,(f, H) sp» Where C(p) is a constant depends only on p.

Proof:
By theorem (1.1), we get

1
||f — Jn(f)"&p <C(p)[l+(1 _né’)l’p(né')p]'_’ ||f - Jn(f)"p .
Now since (6> 0), then
If =7, O, <C.Mf I, O -
Then by using theorem (1.2) and lemma (2.1), we get that

1
"f - Jn(f)"(s,p < C2 (p) 4 (fa H)p
1
<CEI(E ),

Theorem 2.3:
Let f be 2n-periodic bounded measurable entire function, (f € Ls,), (0 <p < 1), we have

1 )
||f - V2n’3n(f)||§’p <C(p,k,0) z, (£, Z)é’p ,where p,k,{ is a constant depends on p, k and €.

Proof:
By using theorem (1.1), we get

1

If = Varaa )], SCLOL+ A+ 08T @S T [[f = Vs (D) -

1
Since 6 = —, then
n

[f = Vausu )], <C: @ = Vausa (D -
Now by using theorem (1.3) and lemma (2.1), we have

It = Vausu ), <CpkO 7, ;—n>p

1
< C(pokaé)rk (fa E)ﬁ,p .

Theorem 2.4:
Let f be 2n-periodic bounded measurable entire function, (f € Lsp), (0 <p < 1), we have
1
[If -1, (f)||§p <C(p,k, O)z, (f,2—)5 ,» Where p.k,{ is a constant depends on p, k and €.
B n >

Proof:
By using theorem (1.1), we get

If -L.O;, <C.@[1+1+n8)" )y I|f -1, (D) -
Since 6 = 1— , then

n
If - L.O;, <C.@|f -LO)| -
Then by using theorem (1.4) and lemma (2.1), we get
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1
If - 1., <Clp.k. 07 (f, okt

1
<C(p.k,0)r (f, H)z?,p :

Conclusion

We found the degree of approximation of entire functions by using Jackson, Vallee

Pouson and interpolation polynomials in locally quasi-norms Ls, (0 <p <1).
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