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Abstract

Let R be a commutative ring with identity . In this paper we study the concepts of
essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a
generalization of quasi-invertible submodules and quasi-Dedekind modules . Among the
results that we obtain is the following : M is an essentially quasi-Dedekind module if and
only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each

feEnd,(M) Kerf <.M implies £f=0.

Kew words : Essentially quasi-invertible submodules , Essentially quasi-Dedekind
Modules .

Introduction

The concepts of a quasi-invertible submodule of an R-module and quasi-Dedekind
module were introduced in [5] .Where a submodule N of an R-module M is called quasi-
invertible if Hom (M /N, M) =0, and an R-module M is called quasi-Dedekind if each
nonzero submodule of M is quasi-invertible . As a generalizations to these concepts we
introduce the following concepts : We call a submodule N of M is essentially quasi-
invertible if , N <, M and N is quasi-invertible .And an R-module M is called
essentially quasi-Dedekind if every essential submodule N of M is quasi-invertible ; (
ie Hom(M [N,M)=0).This paper consists of two sections, §, is devoted to study
essentially quasi-invertible submodules , in § we study and give the basic properties of
essentially quasi-Dedekind modules .

This paper represents a part of the M . Sc. thesis written by the second author under the
supervision of the first author and was submitted to the college of education — Ibn AL-
Haitham , University of Baghdad, 2010 .
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1. Essentially Quasi-Invertible Submodules

In this section we introduce the concept of essentially quasi-invertible submodules. We
develop basic properties of essentially quasi-invertible submodule .

We start with the following definition :

Definition (1.1)

Let M be an R-moduleand N <<, M , then N iscalled an essentially quasi-invertible
submodule of M if, Hom(M /N,M)=0 ;thatis N is essentially quasi-invertible if,
N <,M and N is quasi-invertible . An ideal J ina ring R is called an essentially
quasi-invertible ideal of R if, J is an essentially quasi-invertible R-submodule of R .

Remarks and Examples (1.2)
1) It is clear that every essentially quasi-invertible submodule is quasi-invertible
submodule .
Recall that an R-module M is called a semisimple if every submodule of M is a
direct summand of M, [3,p.189] .

2) If M is asemisimple R-module ,then M is the only essentially
quasi-invertible submodule of M .

3) Consider Z, as aZ-module , N =(2) <.Z, , but Hom(Z“/(E),Z“);Z2 #0, so
N 2(5) is not essentially quasi-invertible submodule of Z, , similarly in the Z-module

Zy , N = (5) <.Zy , but itis not quasi-invertible .

4) If N is an essentially quasi-invertible R-submodule of an R-module M ,
then ann,M =anny N .

Proof : TItisclear .[]
The converse of (Rem.and.Ex. 1.2(4) )is not true in general , for example : Let

M =7 ®Z, considered as a Z-module and let N=Z®(0)<M , then itis clear that

ann,M = ann, N = (0),but N is not essentially quasi-invertible submodule of M , since

N < M and also N isnot quasi-invertible .
5) Let J be anideal of aring R.Then J is an essentially quasi- invertible

if and only if ann,(J)=0 .

Proof : It is easy .

6) Let J be anideal of aring R . The followingstatements are
equivalent :

a) J is an essentially quasi- invertible ideal of R.

b) J is a quasi-invertible ideal of R .

c) anny(J)=0.

Proof :

(a) < (¢) : 1t follows by (Rem.and.Ex. 1.2(5)) .

(b) < (¢) :1t follows by [5,prop.2.2]. [

7) Let R be aring . The following statements are equivalent :
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a) R is an integral domain .
b) R is quasi-Dedekind .

Proof ; It follows by (Rem.and.Ex. 1.2(6)) . [

8) If M =M, ®M, is an R-module, and K be an essentially quasi- invertible
submodule in M; for some i= 1,2, then it is not necessarily that K is an essentially
quasi-invertible submodule of M , for example :

Let M =Z®Z, as Z-module , then K = Z, is an essentially quasi- invertible
submodule of Z, as Z-module ,but Z, = (0)® Z, which is not essentially quasi-invertible
of M =Z®Z, ,since (0002Z,% £DZ,.

Proposition (1.3)
Let M be an R-module , and let N; , N, be an essentially quasi- invertible R-
submodules of M , then N, " N, is an essentially quasi-invertible R-submodule of M.

Proof :

Since N <. M , N, <. M then HOWI(M/NI,M)=O and
HOM(M/NQ,M)ZO. Also Ny <M ,N,<.M imply N, NN,<.,M . But
Hom(M[N, " N,,M) c Hom(M|N,,M)+ Hom(M |[N,, M) Hence

Hom(M [N, "N,,M) =0 and so that N, NN, is an essentially quasi- invertible R-
submoduleof M . I

The following lemma is needed for the next proposition .

Lemma (1.4)
Let M be an R-module such that for each nonzero submodule K of M ,0, # K, <M,

for each maximal ideal P of R. If Np <. M, implies N<.M .
Proof :

Suppose that there exists 0 # U < M such that UNN =0 .Hence (UNN), =0,
which implies that U, "N, =0, ,but 0, # U, <M, by hypothesis, so that Np<,

M, which is acontradiction. [l

Proposition (1.5)

Let M be an R-module , N < M . If Np is an essentially quasi-invertible Rp -
submodule of Rp-module Mp (for each maximal ideal P of R ), then N is an
essentially quasi-invertible submodule of an R-module M.

Proof :
Since Np is an essentially quasi-invertible Rp-submodule of Mp

Hom(M , [N,,M,)=0 .But by [4,Ex3,p.75],
(Hom(M /N,M)), < Hom(M , [N ,,M ,) =0 ,thus (Hom(M[N,M)), =0
and by [4, Prop.3.13,p.70] ,Hom (M [N, M) =0 ; that is N is a quasi-invertible



submodule of M . Beside this , by (Lemma (1.4 )) , N <. M .Thus N is an essentially

quasi-invertible submodule of M . [J
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Recall that an R-submodule N of an R-module M is called a SQI-submodule if, for

each f € HOm(M/N,M) , f{(M/N) is a small submodulein M , [6, p.44]. And an
R-submodule N of an R-module M is called a small submodule of M (N < M, for
short ) if , for all K <M with N+K=M implies K =M, [3, P.106] .

Remark (1.6)
It is clear that every quasi-invertible submodule is an SQI-submodule and hence every
essentially quasi-invertible submodule is an SQI-submodule .
The converse of (Remark 1.6) is not true in general, consider the following
example .

Example (1.7)
Consider the Z-module Z,, N = (2) ,then N is an SQI-submodule of Z,, since for

all fe Hom(Z, /(2_),24) ,then f(Z, /(5) s Z4,and every proper submodule of Z, is a

smallin Z,, so f(Z, /(5) < Z, ,but itis known that N =(2) is not essentially quasi-
invertible in Z,,( see Rem.and.Ex. 1.2(3)) .

2. Essentially Quasi-Dedekind Modules

In this section we give the definition of essentially quasi-Dedekind module with
some examples . We prove that essentially quasi-Dedekind module and K-nonsingular
module which is introduced by [8] are equivalent .We give conditions under which

submodule (resp. quotient module) of essentially quasi-Dedekind is essentially quasi-
Dedekind .

Definition (2.1)
An R-module M is called essentially quasi-Dedekind if, Hom(M /N,M) =0 for all

N <. M . Aring R isessentially quasi-Dedekind if R is an essentially quasi-
Dedekind R-module .

Remarks and Examples (2.2)

1) It is clear that every quasi-Dedekind module is an essentially quasi- Dedekind
module, but the converse is not true in general , for example :
Each of Z,y,Z,s areessentially quasi-Dedekind as a Z-module , but it is not
quasi-Dedekind .

2) Every integral domain R is an essentially quasi-Dedekind R-module, by
[5.Ex1.4,p.24] and (Rem.and.Ex 2.2(1)).

3) Z4 as aZ-module is not essentially quasi-Dedekind , since (2)<.Z,,
but Hom(Z,[(2),Z,)=Z, #0 .
4) Let M=Z," as aZ-module . Then M is not essentially quasi- Dedekind ,
but End, (M) (1is the ring of P-adic integers) is a commutative domain
[see Ex4.1.2 ,8],s0 End, (M) is essentially quasi-Dedekind , by (Rem.and.Ex
2.2(2)) .
5) Let M be auniform R-module. Then M is a quasi-Dedekind R-module if and
only if M is an essentially quasi-Dedekind R-module .
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Proof: It is clear . [J
Roman C.S in [§] , introduce the following : " An R-module M is called K-nonsingular if ,

foreach f € Endy(M),Kerf <. M implies f=0 ".However we prove the following:

Theorem (2.3)
Let M be an R-module . Then M is an essentially quasi-Dedekind R-module if and
only if M is a K-nonsingular R-module .

Proof : =) Let fe€End, (M), f=0.Suppose that Kerf <, M , defined

g IM/Kel”f—>M by g(m+Kerf)=f(m) forall m € M _Itis easy toseethat g is
well-defined and g is a nonzero homomorphism . Thus Hom (M [Kerf,M )# 0 whichis a
contradiction , since M is an essentially quasi-Dedekind R-module .

<) N <.M .Suppose that there exists f:M/N—)M and f # 0 . we have

M—”%M/N—f—)M,where  is the canonical projection .Let v = for € End,(M).
N c Kery and N< M implies Kery <M , w(M ) =for(M)=f (M /N)#0 whichis a
contradiction with M is a K-nonsingular R-module . []

Although the concepts of essentially quasi-Dedekind module and  K-nonsingular

module are equivalent ,but we see that it is convenient to use the notion essentially quasi-
Dedekind in this paper.

Proposition (2.4)
Every semisimple R-module is an essentially quasi-Dedekind R-module.

Proof :_ It iseasy . [J
The converse of (Prop 2.4) is not true in general, consider the following example .

Example (2.5)
It is known that Z as a Z-module is essentially quasi-Dedekind , but it is not
semisimple .

Recall that anideal I of aring R is semiprime if, forall » € R with r*el
implies # € I [or, for all ideal A of R with A* cl implies A < 1] .And a
ringR is called semiprime if (0)is a semiprime ideal of R ;i.e R does not contain nonzero
nilpotent ideals , [2] .

Proposition (2.6 )

Let R be aring. The following statements are equivalent :
1) R is anessentially quasi-Dedekind ring.

2) R is asemiprime ring.

3) Z(R)=0 (R is anonsingular ring) .

Proof :

(2) < (3) : 1tis follows by [2,Prop 1.27,p.35]

2)=(1) : Let f € End, (R) such that Kerf <. R . Toprove f=0.

Suppose that f # 0 , thereexists 0 #7 € R suchthat f(a)=ra for all a € R . Since Kerf
<.R and 0#7reR ,thenthere exists 0#¢ e R such that 0 # rt € Kerf  hence 0=



f(rt) = rf(t) = r’t . This implies (rt)> =0 and since R is semiprime , rt = 0 which is a
contradiction . Thus f=0 and R is essentially quasi-Dedekind .
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(I) = (3) : Supposethat Z(R) # 0 . Then there exists 0 #a € Z(R) and hence
ann ,(a)<, R ,this implies ann ,(a) is a quasi-invertible ideal and so that by (5,

Prop 2.2), ann,(ann,(a))= 0 ,but (a) < ann,(ann,(a)) ,hence a=0 which is a
contradiction . [
Proposition (2.7 )

Let R be aring. Then R is essentially quasi-Dedekind if and only if R[x] is essentially
quasi-Dedekind , where R[x] is the ring of polynomials with one indeterminate x.

Proof :

=) Suppose that R is essentially quasi-Dedekind , so by (Prop 2.6) R is a
nonsingular ring, and hence by [2, Ex. 13, p.37], R[x] is a nonsingular ring . Thus R[x]
is essentially quasi-Dedekind , by ( Prop 2.6) .
<) Suppose that R isnot essentially quasi-Dedekind , so by (Prop 2.6),R is not a
semiprime ring ; that is there exists @ € L(R) and a # o, where
L(R)={xeR:x" =0, forsome n € N} ,then a"=0, forsome n € N .Define
f(x)=a#0,s0 f(x)e R[x] ,and R[X] is asemiprime ring, by (Prop 2.6) . On the
other hand [f(x)]"=a"=0, implies f(x)e L(R[X])=0. It follows that =0
which is a contradiction . Thus R is essentially quasi-Dedekind . [

Proposition (2.8 )
Let M be a faithful R-module . Then R is essentially quasi- Dedekind if and only if

N® % is a faithful R-module , forall N < M .
Proof :

=) Suppose that R is essentially quasi-Dedekind , so by ((Prop 2.6), R is semiprime
.Let r eanny (N @ %) ,then r € ann, (N) mannR(%) ; thatis rN=0 and
rMcN ,sor’McrN=0 implies #*> €ann,(M)=0 then r> =0 ,thus r=0,
since R is asemiprime ring . Therefore N C—B% is a faithful R-module for all
N<M .
<) Suppose that N (—B% is a faithful R-module, forall N <M . Toprove that R is

essentially quasi- Dedekind . We shall prove that R is a semiprime ring.Let 7 € R with
r? =0, supposethat # # 0 ,so € ann,(M) | since M is a faithful R-module, then
rM#0Let N=rM <M , hence ™N =M =0 ,so reann,(N) , but

M
reannR(W) (since rtM crM =N) | so



M M
reann,(N)Nann, (W) = ann,(N @ ﬁ) =0, thus r=0 which is a contradiction.

Hence R is essentially quasi-Dedekind . [
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Proposition (2.9)
Let M be an R-module and let R= R/J , where J is an ideal of R such that
J canny,(M) . Then M is an essentially quasi-Dedekind R-module if and only if M is

an essentially quasi-Dedekind R -module.

Proof :

By [3, p.51] , we have HOmR(M/N,M) = Homﬁ(M/N,M) forall N<M .
Suppose that M is an essentially quasi-Dedekind R-module , then
Hom_(M[N,M) = Hom,(M [N,M)=0 forall N<.M, implies M is an essentially
quasi-Dedekind R -module .

The converse follows similarly . [

Let R be an integral domain , and let M be an R-module . An element xe€ M s
called atorsion element of M if, ann R(x) # 0 . The set of all torsion elements of M
denoted by T(M) and it is a submodule of M . If T(M)=0 the R-module M is said to
be torsion-free, [1, p.45] .

The following result shows that essentially quasi-Dedekind preserves under
isomorphism .

Proposition (2.10)
Let M, ,M, be R-modules such that M 1 = M » . Then M, is an essentially quasi-
Dedekind R-module if and only if M, is an essentially quasi-Dedekind R-module
Proof :
=) Suppose that M; is an essentially quasi-Dedekind R-module . Let
¢p:M,——>M, ¢ is an isomorphism . To prove that M, is an essentially quasi-

Dedekind R-module . Let fekEnd,(M,), f#0 . We have
M, — M, — L >M,—* M, ,let h=¢ 'ofopeEnd ,(M,)  andhence h#0
then Kerh L M, . To prove Kerf £ M, , we cliam that

Kerf ={yeM, :¢~'(y) € Kerh} ,to prove our asseration.Let yeKerf, f(y)=0,
W™ () =4 ofod) (@ (M= o= ¢ (f())=¢"(0)=0 .Then  for all

y € Kerf ,¢7" () € Kerh so ¢~ (Kerf) c Kerh £, M, which implies ¢ (Kerf)<. M, ,
so Kerf £, M,.Thus M, is an essentially quasi-Dedekind R-module .

<) The proof issimilarly . [
Remark (2.11)
Let M be an R-module and let N <M .1If M /N is an essentially quasi- Dedekind

R-module . Then M is not necessarily an essentially quasi-Dedekind R-module, as we
can see by the following example .



Example (2.12)

Let M =27, as aZ-module ,and N = (5)5 Z, ,then Z4/(§)522 is an essentially
quasi-Dedekind Z-module ,but M =Z, is not an essentially quasi-Dedekind Z-module .

Now, we turn our attention to a submodule of essentially quasi-Dedekind. First consider
the following remark :

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

Remark (2.13)

Let M be an essentially quasi- Dedekind R-module , N <M . Then it is not
necessarily that N be an essentially quasi-Dedekind R-module .To show this , consider
the following example which appeared in [7].

Let M =0®Z , as a Z-module is essentially quasi-Dedekind .
Take N=Z@Z, <QDZ, as aZ-module ,then N is not essentially quasi-
Dedekind as a Z-module , since if f:N——>N define by f(x,)_/) = (0, ;) ,

xXeZ, ;eZz , then f#0 and
Kerf={(x,y)e N: f(x,3)=(0,0)}={(x,y) e N:x=0} =2Z®Z, . Hence Kerf
<.N .Thus N=Z@®Z, is not an essentially quasi-Dedekind as a Z-module.

Now , in the next proposition we give acondition which makes R-submodule of an
essentially quasi-Dedekind R-module is essentially quasi-Dedekind .

Proposition (2.14)
Let M be an essentially quasi-Dedekind R-module, and M is quasi — injective. If
N <.M then N isan essentially quasi-Dedekind R-module.

Proof :
Let f € End, (N) , f#0 ,toprove that Kerf {,N . Assume that Kerf <,

N .Since M is quasi—injective , then thereexists & € El’ldR (M ) such that goi = iof, (
where 1 is the inclusion mapping) .

N—— s
f //

/
v ‘

It follows that € #0 | and this implies Kerg€,M ,since M is essentially quasi-
Dedekind . But Ker f c Kerg ,so Kerf £.M . On the other hand N <., M and by
assumption Kerf <., N imply Kerf <. M . To show this, since N <.M then for all
U<M ,U#0 then NNU#0 and NNUSZXN But Kerf <. N , hence
Kerf "(NNU)#0; that is (Kerf "U)NN=#0 which implies that

Ker f MU #0 which is a contradiction . Thus Kerf . N and hence N is an
essentially quasi-Dedekind R-module. [
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Corollary (2.15)

Let M be an R-module . If M is an essentially quasi-Dedekind R-module then M s
an essentially quasi-Dedekind R-module .

Proof : Suppose that M is an essentially quasi-Dedekind R-module , and since M is a

quasi —injective R-module and M <. M ,so by (Prop 2.14), M is an essentially quasi-
Dedekind R-module . [

Corollary (2.16)
Let M be an R-module . If E(M) is an essentially quasi-Dedekind R-module then M
is an essentially quasi-Dedekind R-module .

Proof : Itisclear. [
The converse of (Coro2.16) is not true in general, consider the following example .

Example (2.17)

Let M =7, as a Z-module . M is an essentially quasi-Dedekind Z-module. But E(Z,) =
Z," is not an essentially quasi-Dedekind Z-module , (see Rem.and.Ex 2.2(4)) .

Now we prove the following proposition :

Proposition (2.18)

Let M be an R-module such that for each [f € Hom(M,E(M)), f #0 implies
Kerf .M .Then M is essentially quasi-Dedekind .
Proof : Let geEnd,(M), & #0 . Then iog € Hom(M,E(M)) ,and iog #0 ,
where i is the inclusion mapping. Hence Ker(iog) {. M . But Kerg=Ker(iog) . Thus

Kerg {.M and M is essentially quasi-Dedekind . [
Next we study the behavior of the quotient module of essentially quasi-Dedekind
module . First we have the following .

Remark (2.19)
Let M be an R-module , N <M _If M is an essentially quasi- Dedekind R-module ,

then M / N is not necessarily essentially quasi- Dedekind R-module , consider the
following example .

Example(2.20)
It is well-known that Z as a Z-module is essentially quasi- Dedekind .

Let N=(@4)<Z , Z[N =Z [(4) =Z, is not essentially quasi-Dedekind as a Z-module
, (see Rem.and.Ex2.2(3)) .

We need to recall that an R-module P is projective if and only if , for any R-
modules A, B and for any epimorphism f :A—> B and for any homomorphism

g:P—>B | there exists a homomorphism h:P——> A such that foh = g (ie
the following diagram is a commutative) , [3,p.117]
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P
h g
x'/
A 7 » B > ()

Now , in the next proposition we give a condition under which the (Remark 2.19) is
true .
Proposition (2.21)

Let M be an R-module such that M /K is a projective R-module for all K <. M.
If M is an essentially quasi-Dedekind R-module , then

M/N s an essentially quasi-Dedekind R-module forall N <M
proof :

Let U /N SeM/N .Then U<.M and hence by hypothesis M /U is a

MIN M
projective R-module . Suppose that there exists S e HOm(La—)» S #0 But
U/N N
M|IN M M M
m L,—) ~ Hom(—,—) and since M /U is projective , so there exists
UIN N U N
g:U——>M such that mog=1f , where m is the canonical projection mapping.
M
U
Jf
x M
M > — >()
T N

M
Since f#0 then 2#0 | thus Hom(U,M);tO ,U<.M ;that is M is not an

essentially quasi-Dedekind R-module ,which is a contradiction. Thus M / N is an
essentially quasi-Dedekind R-module forall N <M . [
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