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Abstract

In this paper, we introduce and discuss an algorithm for the numerical solution of two-
dimensional fractional partial differential equation with parameter. The algorithm for the
numerical solution of this equation is based on implicit and an explicit difference method.
Finally, numerical example is provided to illustrate that the numerical method for solving this
equation is an effective solution method.
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Introduction

In recent years there has been a great deal of interest in fractional partial differential
equations [1, 2, 3, 4, 5]. These equations arise quite naturally in continuous time random walk
with spatial and temporal memories.

More and more works by researchers from various fields of science and engineering deal with
dynamical systems described by fractional partial differential equations, which have been used to
represent many natural processes inphysics[6], finance[7,8], and  hydrology[9,10].

In this paper, we find the numerical solution of two-dimensional fractional partial differential
equation with parameter of the form:

ou(x,y,t) _ O'u(x, y,t) 0 u(x, y,1) 1
py = ﬂ{a(x,y) o +b(x,y) 57 )
subject to the initial condition
u(xy,0)=fxy), for xy<x<x and yo<y<yr 2)

and the boundary conditions
u (X,y,t) =0, for yo<y<yg and 0<t<T
u(xyot)=0, for x<x<xg and 0<t<T N )
u (Xg,y,t) = g(y,t), for yo<y<yr and 0£t<T
u (xygr.t) =k(x,t), forxg < x<xgand 0<t<T
where a, band f are known functions of x and y, gis a known function of y andt, k is a
knwon function of xand t. y and f are given fractional number. A is a scalar parameters.
We use a variation on the classical explicit and implicit Euler method. We prove that these

methods by using a novel shifted version of the usual grunwaled finite difference an
approximation for the non-local fractional derivative operator.
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1. Two Finite Difference Methods for Solving Two-Dimensional Fractional Partial
Differential Equation with Parameter
In this section, we propose two finite difference methods, i.e., an implicit finite difference
method and explicit finite difference method for solving two-dimensional fractional partial
differential equation with parameter (1)-(3).

The finite difference method starts by dividing the x-interval [Xy, xg] into n subintervals to get
the grid points x= Xy + 1Ax, where Ax = (xR —xo)/n and 1=0,1,...,n. And the y-interval [y, yg]
into m subintervals to get the grid points y;= y, + jAy, where Ay = (yR -V )/m and j=0,1,...,m.

Also, the t-interval [0,T] 1s divided into M subintervals to get the grid points t;= sAt,
s=0,...,.M, where At=T/M .

The problem here is to find the eigenpair (A,u) which satisfy eq.(1)-(3).

This equation can be written as an eigenvalue problem Au=ABu, where

0 o7 o’
A=—,B = ,t +b(x,y) —-
Y a(x )8x, (x,») Y

Firstly, present the following implicit finite difference method for the initial-boundary value
problem of the two-dimensional fractional partial differential equation with parameter. By the
shifted Grunwald estimate to the y, S - the fractional derivative, [11]:

0 u(x, y,t) 1 &
= o7 ;) g, u(x —(k —1)Ax, y, 1)+ O(Ax)
.......... 4)
%u(x, y,t) 1 &
= gpiu(x,y—(k—1)Ay, 1)+ O(Ay)
o’ () § 7
to reduce eq.(1) as the following form
At i+l At J+l
s+ s+l s+l K}
ui,j - j“|:ai,j y;g%kuhkﬂ,/’ +bi,j Ayﬁ kzolgﬂ,kui,jkﬂ:| +ui,j
i=l..n-1,j=1,..m-1,s=0,...M L (5)

Whereuzj zu(xiayjats)aa,j za(xiayj)abi,j zb(xiayj)ag%k:(—l)k YD (—k+D ,k=0,1,2,... and

k!
(PBDBok+D) 012,
k!

8pk = (-1

Secondly, present the following explicit finite difference method for solving the two-
dimensional fractional partial differential equation with parameter eq.(1) with the boundary
conditions eq.(3), and the initial condition (2), also by usimgthe shifted Grunwald estimate to the
7, p -th fractional derivative given by eq.(4) to reduce as the following form:

_u<

u't! s a. . itl b ]
1, ] L, ] — /’L 1, ] g l/ls + 1, ] g u5
kT ik 41, KOG -k +1 >
At Aqu:H Ayﬂ;”

i=lL..n-1,j=1,..m-1,s=0,...M . (6)
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Where u, =ulx,y,.t,), a ;=a(x,y,), b, =Nx,y), g, :(_1)kw, k=0,1,2,...
y s > . 4 i

andgﬂ,k :(_1)kw k=0,1,2,...

After evaluating eq.(5) and eq.(6) at i=1,...,n-1, j=1,...,m-1 and s=0,...,M one can get a
sy stem of algebraic equations which can be solved.
Usingany suitable method to get the eigenpair can solve (4, {u },_, ) -
l,.., m —1
M

j=
s=0,..,
Also, from the initial and boundary conditions one can get:
0 _ L
u,, =f;» =0,..,n

wy; =0, j=0,.,m and s=1,..M
uy,=0, i=0,..,n and s=1,..M
uy,; =g, j=0,..,m and s=1,...M
ul, =k, i=0,...,n and s=1,...M

Wherefi,j = f(x, yj:ts)a g; :g(yjats) and k' =(x,,t,)

2. Numerical example

In this section, present numerical example which confirm our theoretical results.

Example: Consider the two-dimensional fractional partial differential equation with parameter:
au(x.p.t) _ F2.5x" 0"ux 3,1 T(1.2)y" 0 u(x.p,1)
ot - 6 oS 2 ayl 8

subject to the initial condition
u(x,y,0)=x3y2,0<x< 1,0<y<l1

and the boundary conditions
u(0,yt)=0,0<y<1,0<t<0.025
u(x0,t)=0,0<x<1,0<t<0.025
u(lyp)=ey’ 0<y<1,0<t<0.025
ux1,t)=ex,0<x<1,0<t<0.025

This fractional partial differential equation together with the above initial and boundary

condition is constructed such that the exact solution is u(x,y,t) = e'x’ yz.
Tablel, 2, 3 and 4 give the numerical solution using the two finite difference methods. From

table 1, 2, 3 and 4, it can be seen that there isa good agreement between the numerical solution
and exact solution.

3. Conclusions
In this paper, a numerical method for solving the two-dimensional fractional partial differential

equation with parameter has been described and demonstrated. Furthermore numerical example is
presented to illustrate that good agreement between the numerical solution and exact solution has

been noted.
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Table (1) The numerical solution of example using the implicit finite

difference method for Ax=02,Ay=0.2 and Az =0.0125

Numerical Solution | Exact Solution Error
0.46300 0.50000 3.70000 E -2
3.61100E-4 3.24025E -4 -3.70749 E -5
0.01100 1.03688 E -2 -6.31197E -4
0.08200 7.87381 E -2 -3.26190 E -3
0.30700 0.33180 E -2 -0.30368
4.01100E-4 3.28101 E-4 -7.29992 E -5
0.01100 1.04992 E -2 -5.00773 E -4
0.07900 7.97285 E -2 7.28504 E -4
0.28800 0.33596 479753 E -2

Table (2) The numerical solution of example using the implicit finite

difference method for Ax = 0.25,Ay =0.25 and A7 =0.0125

Numerical Solution | Exact Solution Error
0.39600 0.50000 0.04000
1.31700E-3 9.88846 E -4 -3.28154 E-4
0.03300 3.16431 E -2 -1.35692 E-3
0.22900 0.24029 1.12896 E-2
1.41900E-3 1.00128 E -3 -4.17716 E-4
0.03300 3.20411 E-2 -9.58902 E-4
0.22100 0.24331 2.23121 E-2
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Table (3) The numerical solution of example using the explicit finite
difference method for Ax =0.2,Ay = 0.2 and Az =0.0125

Numerical Solution | Exact Solution Error
0.50000 0.50000 0.00000
3.20000E-4 3.24025E -4 4.02510 E -6
0.01000 1.03688 E -2 3.68803 E -4
0.07800 7.87381 E -2 7.38100 E -4
0.32800 0.33180 3.80171 E-3
2.96300E-4 328101 E -4 3.18008 E -5
0.01000 1.04992 E -2 499227 E -4
0.07700 7.97285E -2 2.72850 E -3
0.30400 0.33598 3.19753 E-2

Table(4) The numerical solution of example using the explidt finite
difference method for Ax=0.25,Ay =0.25 and Az = 0.0125

Numerical Solution | Exact Solution Error
0.50000 0.50000 0.00000
9.76600E-4 9.88846 E -4 1.22461 E-5
0.03100 3.16431 E -2 6.43077 E-4
0.23700 0.24029 3.28961 E-3
9.73200E-4 1.00128 E -3 2.80843 E-5
0.03100 3.20411 E-2 1.04110 E-3
0.22600 0.24331 1.73121 E-2
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