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Abstract
In this paper ,we introduce a concept of Max— module as follows: M is called a Max-
module if .fann , N is a maximal ideal of R, for each non— zero submodule N of M;

In other words, M is a Max- module iff (0) is a =« submodule, where
a proper submodule N of M is called a - submodule if f5 k] is a maximal ideal of R, for

each submodule K contains N properly.

In this paper, some properties and characterizations of max— modules and
«- submodules are given. Also, various basic results a bout Max— modules are considered.
M oreover, some relations between max- modules and other types of modules are considered.
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Introduction

Every ring considered in this paper will be assumed to be commutative with identity and
every module is unitary. We introduce the followingg An R— module M is called a max-
module if \fann , N is a maximal ideal of R, for every non-zero submodule No f M, where
anng N = {r:r €R and r N=0}.

Our concern in this paper is to study max-modules and to look for any relation between
max— modules and certain types of well- Known modules sp ecially with primary modules.

This paper consists of three sections. Our main concern in §1, is to define and study -
submodules. Also we study the properties of a multiplication module that contains x-
submodules. In §2, we study max— modules, and we give some characterizations for this
concept. Also other basic results about this concept are given.

In §3, we study the relation between max— modules and primary modules. It is clear that
every max-module is primary module, but the converse is not true in general. We give in
(3.2), (3.3) conditions under which the two concepts are equivalent. Next we investigate the
relationships between max, prime, semi— primary, quasi-primary finitely generated and
uniform modules, see (3.4), (3.12).

1. SUBMODULES

In this section, we introduce the concept of - submodule and we give some
characterizations for this concept. And we end this section by studying the properties of a
multiplication module that contains «- submodules.

Definition 1.1:

A proper submodule N of an R-module M is said to be a «- submodule if [k is a
maximal ideal of R for each submodule Ko f M such that K N. 5
Where [Nr K] = {r € R: 1K & N}. #

Specially, an ideal I is a « ideal of R if and only if I is a « R— submodule of
R— module R.
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Examples and Remarks (1.2)

1- Recall that an R— submodule N of M is a quasi— primary submodule of M if [Ny K] is a
primary ideal of R for each submodule K of M such that K N,[2]. It is
well- Known that if [ x| is a maximal ideal of R, then [NgK] i a primary ideal of

R, [1, prop. 4.9, P. 64]. Thus every «- R-submodule of M is a quasi— primary submodule .
2- The submodule Z of the Z-module Q 1is not a « submodule since

,JZZ:Z +(1/6) = \/6Z =6Zis not a maximal ideal of Z .

3- The intersection of any two =« submodules of an R— module need not be

«-submodule for example. The Z— module Z¢ has two « submodules, N, =(2) and

N, = (5) ,but N, (NN, =(0)is not a «- submodule of Zg, since 1,[(0)226 =\/6Z =6Zis
not a maximal ideal of Z .
4- Every «- submodule is a semi-primary submodule.
Proof : Suppose N is a « submodule of an R-module M. Hence _fy k] I8
a maximal ideal of R. Therefore  fn k71 is a prime ideal of R, which implies that N is a

semi— primary submodule of M by [ 2, definition 1.1 ].
However the converse is not true in general as the following example shows :
Let M =Z @ Z, as a Z— module and N=(0)=(0) @ (0). It is clear that N is a semi—primary

submodule of M, since 1/[(0)Z:M] =J0=0is a prime ideal of Z. But (0) © (0) is not a «-

submodule of M, since J[(O) @ (0),(0)® Z,,] =/12Z = 6Z which is not a maximal ideal of
Z.

By using (1.2, (1)) and [2, Th. (3.1.3), chapter 3] we can give the following
characterization for «- submodule.
Theorem 1.3

Let N be a proper submodule of an R-module M. If N is a - submodule of M, then
VN KT = N ok ] for each submodule K of M such that K N, rK N and reR.

By using (1.2, (1)) and [2, prop.(3.1.4), chapter 3] we can give the f6H0w1ng result
Corollary 1.4

Let N be a proper submodule of an R- module M . If N is a «- submodule of M, then

VN, (7m)] = [N, (m)] for each m € MIN, r € R and r & [Ng(m)].
The converse of corollary (1.4) is not true in general for example: Let M = Z as a Z—

module, let N = 6Z, r =5, 5 ¢ [6Z,(1)] = 6Z and 1/[622:(5.1)] =J6Z = 67 = ,,[622:(1)] . But

N is not a «- submodule of z.

Recall that an R-module M is called a multiplication module, if for every submodule N of
M, there exists an ideal I of R such that IM =N, equivalenty; for every submodule N of M,
N= [NgyM] M, see [3].
An R- submodule N of M is called a prime R— submodule if and only if N~#M and whenever r
e N ,forr e Rand x e M, either r € [NyM] or x € N, [10]. The prime radical P(N) of N in
M is defined to be the intersection of all prime submodules P of M such that N € P i.e. P(N)
=M {P € M: Pis prime and N € P}.

It is Known that if M is multiplication module and N is a submodule of M, then

P(N) =[Ny MM, [3,Th. 2. 12].

The following remark shows that a multiplication R-module which has a finitely generated «-
submodule is finitely generated R— module.

Remark 1.5

Let M be a multiplication R-module. If M contains a finitely generated
«- submodule N, then M is a finitely generated R— module.
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Proof : Since N is a «- submodule, so N is a semi- primary submodule of M by
(1.2, (3)). Therefore, M is finitely generated by [2, proposition 3.4, P. 135] .

Corollary 1.6

If N is a «- submodule of a multiplication R— module M, then rad (N) is a prime submodule of
M.

Proof :Suppose that N is a «- submodule. Hence, N is a quasi— primary submodule by (1.2,
(1)). But M is a multiplication R— module, so N is a primary submodule of M by [2,
propostion (3.1.5), chapter 3]. Therefore, rad (N) is a prime submodule by [4, corollary 2.13,
chapter 2] .

2. Basic Properties of Max-Modules

In this section, we introduce the concept of a max— module and give some characterizations
and properties of this concept, we end the section by studying the relationships between max-

rings and max-modules.
Definition 2.1

An R— module M is said to be a max— module if .Jfann, N is a maximal ideal of R, for

each non— zero submodule N of M. Specially, a ring R is called a max—ringif and only if R is
max— R—module. We give some examples and remarks:
Remarks and Examples 2.2

1- Z 0as Z— module is a max— module.
N = IM for some ideal I of R. But M is faithful, anngN = anngIM = anngl and so

Janny N = \Jann IM = \Jann,] which is a maximal ideal of R. Therefore M is a max-

module.

Proof: We know that every submodule of Z % is of the form (1— + z) , where n be a non-

P
negative integer, so /annz(% +7Z) = \'P”Z = PZ is a maximal ideal of Z.
P

2- 7 as a Z— module is not a max— module, since ,,/annZZ = \/6 =(01s not a maximal ideal of
Z.
3- Consider, the Z— module M = Z, & Z,, and the Z— submodule N =(0)®(2). Then,

Jann,N = \[Z6Z = J6Z = 6Z , which is not a maximal ideal of Z. Therefore, M is not
a max— module .

4- Q as a Z— module is not a max— module .

5- Every non— zero submodule of a max— module is a max- R-module.

6- Let M be a max— module, then 1/ann »M 1s a maximal ideal of R.

The following theorem gives a characterization for max— modules.
Theorem 2.3

Let M be an R-module, then M is a max~ module if and only if (0) is a
*- submodule.
Proof : Suppose that M is a max— module, to prove (0) is a «- submodule. Since M is a max,

then .fann,N is a maximal ideal of R, for each non- zero submodule N of M.

But .,/ann <N = w/[(O) » N1, for each non— zero submodule N of M so by definition (1.1) ,(0) is

a - submodule of M.
Conversely, if (0) is a «- submodule of M, to prove M is a max— module. Since (0) is a «

submodule,then definition (1.1) implies that 1/[(0) » N1 is a maximal ideal , for each non-zero
submodule N of M. But 1,[(0)R:N] = 1'annRN , S0 M is a max— module.
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By using (1.2, (1)) and [2, theorem (3.3.6), chapter 3], we can give the following
characterization for max-module.
Theorem 2.4

Let M be an R-module, if M is a max— module then .fann, N = \Jann rN for each non—
zero submodule N of M such that IN # (0), r e R..

By using (1.2, (1)) and [2, corollary (3.3.7), chapter 3], we can give the following

result:
Corollary 2.5

Let M be an R-module, if M is a max— module then .fann, (m) = \Jann, (rm) for each 0 #
m € M such thatrm#0, r € R.
Now, we state and prove the following result.
Proposition 2.6
Zm as a Z— module is a max— module if and only if m = p” for some prime number p and n €
7+,
Proof : If Z,, is a max— Z-module, to show that m = p” for some prime number p andn € Z+.

By (2.2, [5]), .,/annZZ = fmz = PZ is a maximal ideal of z, therefore m = p” for some

prime number p and n € Z+.
Conversely, if m=p” for some p (prime number) and n € Z+, to show that Zm a Z— module
a max— module. Let N be anon— zero submodule of Zm. Since N € Zm,

JannZN - \/annZZm =—\/m_= NP"Z =PZ which is a maximal ideal, then .,/annZN = PZ,
and by definition (2.1), Zm as a Z- module is a max— module.

In the following result, we show that the converse of (2.2. [5]) is true.
Proposition 2.7

Let M be an R-module that satisfies @ ,then M is max- module if and only if .fann, M
is a maximal ideal of R.

Where &: ann, M [N , M1, for each non- zero submodule N of M .

Proof : If M is a max— module, then by (2.2,[5]) W is a maximal ideal of R.
Conversely, if .Jann,M is a maximal ideal of R, to prove that M is a max— module,
(yJann; N is a maximal ideal of R,V0#NE M).
It is clear that .fann, N 2 \Jann, M .....(1).

Let re ,/annRN ,s0 "N =0 forsomen € Z+ . By @, thereexists a € R, a # 0 such
that aM # 0 and aM < N. Hence t'aM c "N = 0.

It follows that r"a e .,/annRM. But .,/annRM i1s a maximal ideal, so .,/annRM is

a primary ideal by (1, proposition 4.6, P. 64), and a ¢ anngM (since aM # 0), so (r")k eanngM
for some K € Z+ and hence r € /annRM .

Thus, JannRN C JannRM cen(2).

Therefore, by (1) and (2) we get JannRM = \/annRN .

Thus .,/annRN 1s a maximal ideal and so by definition (2.1), M is a max— module.

We note that if M is a max— module, then it is not necessary that R is a max- ring, for
example: the Z— module Z, is max— module, but Z is not max— ring Moreover , if R is a
max— ring and M is an R— module, then M is not necessarily max— module, for example:
Consider the Z,— module Zg, Z, is a max— ring, but Zg, is not max— module.

Recall that an R— module M is called faithful R— module if anngM = 0.
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However, in the class of faithful multiplication module, they are equivalent as the following
result shows .
Proposition 2.8

If M is a faithful multiplication R— module, then M is a max— module if and only ifR is a
max— ring
Proof : If M is a max— module. To prove R is a max— ring Let I be a non— zero ideal of R.

Then N = IM is a non— zero submodule of M. Hence 1/annRN i1s a maximal ideal of R
because M is a max— module. On the other hand, since M is a faithful multiplication R—

module, then anngN = anngl, so fann, N = \Jann,I . Thus .fann,I is a maximal ideal and R
is a max— ring

Conversely, if R is a max— ring, to prove M is a max— module.
Let N be a non—zero submodule of M. Since M is a multiplication R— module,
3. Some Relations Between Max— Modules And Other Modules

In this section, we study the relationships between max-modules and primary modules and
prime modules, semi-primary, quasi-primary, finitely generated and uniform modules.
We start with the following definitions which are needed.
Recall that an R-module M is said to be a primary module if (0) is a primary R— submodule of
M, [2].
Where a submodule N of an R-— module M is called a primary submodule if
N # M and whenever rx € N for r € R and x € M we have either x € N or r" € [NgyM] for
some n € Z+, where [NgM]= {rr e R"tM e N}, [8].
By using this concept, we have the following:
Remark 3.1

Every max— module is a primary module.
Proof : Let N be a non— zero submodule of an R— module M. Suppose that M is a max—

module, to prove M is a primary module. Since M is a max— module, then .,/annRN is
a maximal ideal of R, for each non— zero submodule N of M by definition (2.1) and so

.,/annRM 1s a maximal ideal of R by (2.2,6).

But JannRN ) JannRM S0 JannRN = \IannRM.

Therefore M is a primary R— module by (2,Theorem (2.1.3), chapter 2).

Note that, the converse of (3.1) is not true in general. For example, the Z—module M
=7 @ Z is a primary by [2, (2.1.2, (2)), Chapter 2], but it is not a max— module.
In the following proposition, we give a sufficient condition under which the converse of (3.1)
is true.
Proposition 3.2

Let M is a module over a PID, and 0 # anngM 1is a primary ideal of R. If M is a primary

R— module, then M is a max— module.

Proof': Let N be a non-zero R— submodule of M, to prove .,/annRN is a maximal ideal. Since
M is a module over a PID, then the only primary ideals in R are (0) and <P"> for some a

prime element P and n € z+.
But 0 # anngM is a primary ideal, so anngM = <P"> and this implies

.,/annRM = «/<P" > =< P> which is a maximal ideal.
But M is a primary, then JannRN = \/annRM by [2, Theorem (2.1.3), chapter 2]. Hence

1/armRN is a maximal ideal and so by definition (2.1) M is a max— module.

In the following result, we give another condition for which a primary module be a max—
module. But first we need the following definition.




The dimension of R, denoted by dim R, is defined to be: sup {n € N: there exists a chain of
prime ideals of R of length n, if the supremum exists, and o, otherwise}, [1].
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Proposition 3.3
Let R be a 0— dimensional ring Then a primary R— module M is a max— module.
Proof : Since M is a primary module, so anngM is a primary ideal of R by (2, corollary

2.1.7, chapter 2) and hence P= ,,/annRM is a prime ideal. But dim R = 0 implies that p is a

maximal ideal. On the other hand, JannRM = \/ann N for every non—zero submodule N of

M (since M is a primary module), so that .,/annRN is a maximal ideal. Therefore M is a max—

module.
Now, we study the relation between max-modules and prime modules. But first we need the
following definitions:
Recall an R— module M is said to be a prime module if (0) is a prime
R—submodule of M, see [9] .
We notice that not every max— module is a prime— module, for example: The
Z—module Z, is max by proposition (2.6), but it is not a prime Z-module by [5, (1.1.3 (3)),
chapter 1].
The following proposition shows that (anngM is a semi- prime ideal) is
a sufficient condition for max— module to be prime.
Proposition 3.4

If M is a max-module and anngM is a semi— prime ideal of R, then M is a prime R-—
module.
Proof: Since M is a max— module, then M is a primary R— module by (3.1). But anngM is a
semi- prime ideal of R, hence by [2, proposition (2.3.2), chapter 2], M is a prime R— module.
Next, a proper submodule N of M is called semi— prime submodule if for every r € R, x € M,
K € Z+, such that ' x e N, thanrx € N, see[7] .

By using this concept, we have the following

Corollary 3.5

If M is a max— module and (0) is a semi— prime submodule , then M is a prime R-module.
Proof : Since (0) is a semi-prime submodule, so anngM is a semi— prime ideal by [8,
proposition (1-5), chapter 2], hence the result follows by (3.4).
Recall an R— module M is said to be a semi— primary if (0) is a semi— primary R— submodule,
(2).
It is well known that every primary R— module is a semi— primary module [2, (3.5.3, (2)),
chapter 3]. So that following result follows immediately from (3.1).
Corollary 3.6

Every max-module is a semi— primary R— module.
Note that the converse of (3.6) is not true in general. For example, the
Z—module M =Z @ Z,, is a semi— primary, but not a max— module.

Recall that an R-module M is said to be a quasi— primary module if anngN is
a primary ideal of R, for each non— zero submodule N of M, [2] .
However, we have the following :

Remark 3.7

Every max-module is a quasi— primary module.

proof : Since M is a max— module, then ,,/annRN is a maximal ideal of R for each non—zero

submodule N of M. Hence anngN is a primary ideal by [1, proposition 4.9, P. 64], and so M is
a quasi— primary.

Note that, the converse of (3.7) is not true in general, for example, the
Z—module Z is a quasi— primary since anngz(N) = 0 is a prime ideal, for each non— zero N of
Z,so it is a primary ideal. But it is not a max— module by [2.2, (2)].

We notice that not every max-module is finitely generated, for example: Z as a Z-module is a
max— module but not finitely generated.
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However, we have the following proposition :
Proposition 3.8
If M is a multiplication max-module, then M is a finitely generated module.

Proof : Since M is a max— module, then .,/annRM is a maximal ideal by [2.2, (6)] and so
anngM 1is a primary ideal by [1, prop. 4.9, P. 64]. On the other hand M is a multiplication
imply , M is a finitely generated by [5, prop.(2.7), chapter 2] .

Now, we study the relation between max-modules and uniform modules . But first we need
the following definition:

Recall that an R— module M is said to be uniform module if every non— zero submodule of M
is essential, [11] .

Where a submodule N of an R- module M is called essential proved that
N N K # 0 for every non— zero submodule K of M, [11].
Note that, it is not necessary that every uniform R— module is a max— module for example =
Q as a Z— module is uniform. But it is not a max— module by [2.2, (4)] .

However, we have the following result.

Proposition 3.9

If M is a max— module such that annR(N N U) = anngN + anngU, for every non—zero

submodules N and U of M, then uniform.

Proof : Since M is a max— module, so M is a primary module by (3.1), hence the result
follows by [2, proposition (2.3.7), chapter 2] .
Now we can give the following result :

Proposition 3.10

Let M be an R-module and let 0 # x € M such that:
1. Rx is an essential submodule of M.

2. ,Janny(x) 1s a maximal ideal of R, and
3. JannRM = JannR(x) .
Then M is a max— module.

Proof: Let N be a non— zero submodule of M. Since Rx is an essential submodule of M, there
exists 0 # t € R such that 0 # tx € N and hence (tx) < N. This implies that

anngN < anng(tx) and so , fann, N < \Jann  (tx) .
But N c M, then .fann,M < ,Jann N and hence Jann,(x) < \Jann,N (by condition 3).

Thus, W cannyN C W ...... (1).

Let re \/W , then r"tx =0 for somen € Z+ and r't € anny(x).

But tx # 0; that is t ¢ anng(x) and by condition (2) m is a maximal ideal of R, so
anng(x) is a primary ideal of R, by [1, proposition 4.9, P. 64] .

Then r e m and hence +/ann, N(tx) C \fJanng(x) .....(2).

Thus by (1) and (2), JannR (x) = \/annR (x) and so JannRN = \IannR(x). Therefore (by
condition 2) W is a maximal ideal of R and M is a max— module by definition (2.1).

The following result is a consequence of proposition (3.10).
Corollary 3.11

Let M be uniform R-module such that ,,/annR(x) is a maximal ideal of R and
Janng M = \Jann,(x) for some x# 0.
Then M is a max— module.

In the following corollary, we give a condition under which the converse of proposition (3.9)
is true.
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Corollary 3.12

If M is a uniform R— module such that 1/a!nn (%) 1s a maximal ideal of R for some x € M.

Then the following statements are equivalent.

1. Jann,M = [Jann(x) for some x € M.
2. M is a max- module.

References

1.

2.

3.

Sharp, R.Y. (1990) Steps in commutative algebra London M athematical Society Student
Texts No 19 (Cambridge University Press) .

Mijbass, A.S.(2000) "Semi— Primary Submodules", Scince journal, University of Tikrit,
J.6.No.1

El- Bast, Z.A. and Smith, P.F.(1988) Multiplication modules, Comm. in Algebra, 16: 755-
779 .

colang dasela ¢ rivale Al dddilan OY¥s50 A A3 OV 5350 Jsa (1992) 2eal 35 Gas )l ac 4
Abdul- Razak, H.M, Quasi-prime Modules and 'Quasi-prime Submodules' M. D. Thesis,
Univ. of Baghdad.

Dauns, J. (1980) Prime modules and one— sided ideals in "Ring theory and Algebra III",
(Proceedings of Third Oklahoma Conference), B. R. Mc¢ Donald (editor), Dekker, New
York, 301-344.

aloi Rala ¢ fiale ALy AdY) 4ad Aad ¥ psally AgY) Adiad gl (1996) wiie e ol 7

8.
9.

Lu, C.P.(1989) M -radicals of submodules in modules, math. Japon, 34: 211-219.
Saymach, S.A. (1979) On prime submodules, University Noc. Tucumare. Ser. A. 29: 121-
136.

10. Ahmed Abdul- Rahman, A. and Al-Hashimi, B. (1994) "On Submodules of

Multiplication M odules", Iraqi. J. Sci., 35: 4.



2011 (2) 24 Alaal) Al Aipual) aglall oisgl) oyl Alna

abel (ulia Jga

G ae aula dggee
de Ual) (alldll Lalas ) — ) ﬁ.\a:d\—:\*)ﬂ\ )T

2009 Jg¥) oS (15 b Gyl aliu)
2010, ohiae 17 18 &al) 3@
LAY

Max gsill (e (ulia asgie Liedd ciad i 3.R e Lolal Lulie M oS3y calae <3 A0 Al R ol
s oslie USR8 Ladae§ Wle Rad (ann ;N ) = Jann N 08 1Y (Max) Llie M e @l : b LS
e T b allal sy * g i) e Lilia (0) oS 1Y (Max) Lilie MopsSs 23818 3las (M AN (ghan
s M AK a lie JUR & Lebael Wlie [y kT OS 13 * g5l g Wlia M AN Jad S5
O Dlaliall Ja ) il e aaedl Ciyd GBS aall 5 Galal) (any culael e s 8. 4d N
sy oY) il L lliall (e yal g lsal s 4 DAY [y Ciuyd i (e Slad L(Max) g5l
tagde Gl L adle

Max —>: Primary — -, Semi-Primary

=

Quasi-Primary

Jsase ¢ S ¢ dpgall cdilall dalidal) clalsl



