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Abstract

In this work, some of numerical methods for solving first order linear Volterra Integro-
Differential Equations are presented.
The numerical solution of these equations is obtained by using Open Newton Cotes
formula.
The Open Newton Cotes formula is applied to find the optimum solution for this equation.
The computer program is written in (M ATLAB) language (version 6)
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Introduction
In this search we first present the most familiar formula of numerical integration: the

Open Newton Cotes formula (O-N). and then we illustrate primarily the use of these rules for
evaluating integrals and show how the linear VIDEs of first order is reduced to system of (n)
equations in the (n) unknowns of the solution sample values u(x, ), i=0,1,2,...n.
The procedure of the previous technique is called the Open Newton Cotes formula.
In addition a computer program is written, examp les with satisfactory results are given.
1. Classification of Integral Equations:

Any functional equation in which the unknown function appears under the sign of
integrations is called an integral equation [1].

The general non-linear integral equation can be presented in the form.
b(x)

h(x)u(x) = f(x)+ A [k(x,t,u(t)dt ~(L.1)

and if

k(Cx,t,u(t)) = k(x,0)u(r)

Then (1.1) is called linear integral equation having the form
b(x)

h(xu(x) = f(x)+ A [k(x,t)u(t)dt .. (1.2)
Here the function h(x), f(x) and the kernel function k(x,t) are prescribed, while u(x) is

the unknown function to be determined and A is a scalar parameter[2,3]

If in equation (1.1) and equation (1.2), f(x)=0 the integral equations are said to be
homogeneous integral equations otherwise, they are non homogeneous [4].

In the classical theory of integral equations one distinguishes between Volterra equations and
Fredholm equations In a Fredholm integral equation the region of integration is fixed i.e.
b(x)=b, where as in Volterra integral equation the region is variable [5].

Thus, the equation

h(x)u(x) = f(x)+ i.lfk(x,t)u(t)dt , as<x<b - (L3)

is an example of a linear Fredholm integral equation and the equation
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h(x)u(x) = f(x)+/1ifk(x,t)u(t)dtaa§x -.(1.4)

is an example of a linear Volterra integral equation.
1.1 Voltera Integral Equations:

A linear Volterra integral equation of the first and second kind is defined as in equation
(1.4) by letting h(x)=0 and h(x)=1, [6,1]

F(x) = ATk (eOu(nyde » aSx . (15)
w(x) = £(x)+ A k(x, Ou(tydi A< ..(1.6)

A Volterra equation can be looked at as an important special case of a Fredholm
equation which arises when k(x,t)=0 for t >x. The distinction between Fredholm and Volterra
equation is analogous to the distinction between boundary and initial value problems in
ordinary differential equations [6,1].

Definition 1.1:

An integral equation is termed linear if it involves the integral operator
b(x)
L=2 [k(x,t)dt

which satisfies the linearity condition

Llcu,(t) + cyuy ()] = ¢\ L[u, ()] + ¢, L[u, )]
where L[u(t)]:ib(fl)c(x 1)dt and ¢, ¢, are constants [1,7].

Definition 1.2:
The equation (1.1) is said to be linear integral equation of the first kind , if the unknown
function is present under the integral sign only, i.e. A(x) =0 ; linear integral equation of the

second kind also has the unknown function outside the integral, i.e.2(x) # 0 for a <x<b
and if h(x) vanishes somewhere but not identically, the equation is of third kind [8].

1.2 Singular and Weakly Singular Equations:
An integral equation may be called singular if either
(a) its kernel k(xy) is not bounded
(b) the range of integration is infinite e.g, Q<x<ocor —00<x <00,
And it is said to be Weakly-singular if the kernel becomes infinite at y=x. [9,10]
2.3 Structure of kernel:
(a) Linear integral equation with a kernel k(x,t)=k(t,x) is said to be Symmetric. This
property plays a key role in the theory of Fredholm integral equations.
(b) If k(x, t)=k(a+ b- x,at+ b- t) in linear integral equation, the kernel is called conter-
sy mmetric.
() If k(x,t) in (1.1)and (1.2) depends only on the difference (x-t) i.e. if the kernel is of
the form k(x,t)=k(x-t).Such a kernel is called difference kernel and the integral equation is

called integral equation of convolution ty pe which has the form [1,11]:
b(x)

h(xu(x) = f(x) + A [k(x—tu()dt - (L7)

(d) In equation (1.1), k(xt) is called Separable or Degenerate kernel of rank n if it is of
the form:

k() = 3, (0)b, (1)
r=l1

where n is finite, it is assumed that the functions {a,} and {b,} are sufficiently smooth
functions of these arguments [11].
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Hence, in many cases a non degenerate kernel k(x,t) may be approximated by a degenerate
kernel as a partial sum of Taylor series expansion of k(x;t) [11]. For example, consider the
kernel f(x,7) = —1+ ¢ which may be approximated to be finite number of terms of its
Taylor’s series about x5 =0,y9 =0 i.e.
2.2 X3t3

+ + ]
2! 3!

Hence, if only 3-terms of the series are considered, we have a degenerate kernel:

x2t2 x3t3 3
2! + T+ ......... =~ & ar (_x)br (t)

—1+e" =—1+[1+xt+

k(x,t)=xt+

where
aj(x) = x, a(x)=x* a(x)=x>

b & a

t)= t, = —_— = —
1 (1) b, (1) 5 b0 = 5
Definition 1.3:

An ordinary differential equation is an equation that involves at most the »" derivative
of an unknown function [13]. i.e. if the unknown function u is a function of x then we write
the differential equation of order n as:

d"u(x)
dx"
where gis a given function of variable x,u,u’,u’,......., u (n=1)
1.4 Integro-Differential Equation: [14,15]
An integro-differential equation is an equation involving one (or more) unknown

functions u(x), together with both differential and integral operations on x.
A linear integro-differential equation of order n is an equation of the form

u™ (x) + ’ilp,. (u(x) = f(x)+ zb(jxi)c(x,z)u(z)dz
i=0 a

Here,k(x,¢t), f(x), p.(x)@ =0,1,.....,n—1)are known functions, u(x) is the unknown

-1
=g(x,u,u’,u",.... L ul” ))

function, and A is a scalar parameter[11].
2. Numerical Solution of VIDE Using Open Newton Cotes formula(O-N).

In this search, we use Open Newton Cotes formula (O-N) to find the numerical solution
of 1" order linear VIDE, in the form:

u'(x)+ p(x)u(x) = f(x)+ jk(x,y)u(y)dy,x el=[ab] - (1.8)

with the initial condition u(a)=u,, where the functions f and p are assumed to be
continuous on I and k denotes given continuous functions.

Were the interval [a, b] is divided in to n equal subintervals, where h=(b-a)/n, y,=a,y, =b
and yy=atj*hj=0L..,n. we set x, =y,i=0L...nu(x)=u,px)=p.f(x)=f;, u(x;)=u, and
k(x;,y;)=ki.

2.1 Open Newton Cotes formula(O-N).

Open Newton Cotes formula is used with n-subinterval to approximate the integral in
equation (1.6), hence

If n=0 Midpoint M ethod
Let h = (b-a)/(2m+2) and x; =a + (j + 1)h for j = 1,....,2m+1 for n = 2m subinterval is
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{ L b-a,, ., ..(1.9)
I FX)dx=2hYf (x,,) +Th (M)  forsomMe(a,b)
a 0
W +pu=fi+20ku,+ 2k +....+2k u_ +ku] ... (1.10)
since
u;(x)zui(x)_hui—l(x) .. (1.11)
Substituting equation (1.11) into equation (1.9) we have
| . (1.12)

(1+hp —%kﬁ)ul, —u =hf+201 [k, + 2k + ...+ 2k, u, ]

which are (n+1) equation in u; that represents the approximate solution to equation (1.8) at
x=a+i*h(i=0,1,..,n).

.
[14+hp —20k, 0 0 0 e 0] [hfl+2h2kmu0+u01
-2k, V+hp ik, 0 0 e 0| | nf+ 2k,
_2h2k31 _1_2]12]%2 1+hp3_2h2k33 0 e 0 u hjg+2h2k30uo

The Algorithm (AQ)
The numerical solution of (1* order VIDEs), by using Open Newton Cotes formula (O-
N), is obtained as follows:

Step 1:

Put h=(b-a)/n, neN

Step 2:

Set u, = u(a) (which is the initial condition) is given.

Step 3:
Compute U] by using u| = “i —

Step 4:
Use step —1, -2 and -3 in equation (1.10) to find U;, (i =1,2,..... , n) we get
(+hp -2k Yu —u_ =hf+ 20" [k +2ku +....+ 2%k u ]

ii—1""i-1
3. Numerical Examples:
Example 4.1:
Consider the following VIDE:

.u'(x)z—%—gx +j(xt+1)u(t)dt, 0<x <1
0

The exact solution is u(x) =1 +x, [16].

Take n=10 h=0.1 and x; =a+ih, i=0, 1, ...., n.

Table (1) illustrates the comparison between the exact and numerical solution depending on
the least square error and running time.
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Example 4.2:

Consider the following Voltera integro-differential equation:
5 X
x20y'(x)=2x - gx4 + j (x + 2t )u(t)dt
0

Table (2) presents results from a computer program that solves this problem over the interval
x=0 to x=1 with u(x) = x* for which the analytical solution is h=0.1, [16].
4. Discussion and Conclusion.

The approximate solution of linear Voltera integro-differential equation (1.8) is given
using the Open Newton Cotes formula. A computer program was written and several
examples were solved using these method. We have the option that the result of the O-N
formula is better than the results of Homotopy Perturbation method.

Relying on our work the following notes are drawn:

1.The number of subintervals n is restricted to be even for Open Newton Cotes formula.
2.Through the solution of linear Voltera integro-differential equations of the first order, we
see that
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Table (1) Results of (O-N) Formula for example 1

X EXACT [ O-N lexact— (0 — N)|
0.0 1.0 1.00000000000 0.00000000000
0.1 1.1 -0.059535959719 1.040464040280
0.2 1.2 -0.130123733624 1.069876266376
0.3 1.3 -0.213768960894 1.086231039105
0.4 1.4 -0.313206121581 1.086793878418
0.5 1.5 —-0.432225024164 1.067774975835
0.6 1.6 -0.576122808453 1.023877191546
0.7 1.7 -0.752340013843 0.947659986156
0.8 1.8 -0.971371157918 0.828628842081
0.9 1.9 -1.248090330516 0.651909669483
1.0 2.0 -1.603711691947 0.396288308052
L.S.E. 53.40100881831022 53.401008818
R.Time. 0.33000000000000 0.3300000000

VOL.24 (2) 2011

Table (1.a) comparison between (O-N) formula and Homotopy Perturbation Method of

example (1).

ETHOD O-N Homotopy Perturbation SIMPSONS1/3 SIMPSONS13/8
Nodes
0.0 1.00000000000 1.00000000000 1.00000000000 1.00000000000
0.1 -0.059535959719 -0.059535959719 -0.058629411863 -0.058629411863
0.2 -0.130123733624 -0.130123733624 -0.126532083085 -0.126532083085
0.3 -0.213768960894 -0.213768960894 -0.204566898710 -0.204556471062
0.4 -0.313206121581 -0.313206121581 -0.293815208714 -0.293816208897
0.5 -0.432225024164 -0.432225024164 -0.395769114158 -0.395757665364
0.6 -0.576122808453 -0.576122808453 -0.512372661710 -0.512361184126
0.7 -0.752340013843 -0.752340013843 -0.646289429429 -0.646277987576
0.8 -0.971371157918 -0.971371157900 -0.801011403831 -0.800999920591
0.9 -1.248090330516 -1.248090330516 -0.981254168189 -0.981226479926
1.0 -1.603711691947 -1.603711691947 -1.193202937519 -1.193192880315
L.S.E 53.40100881831 53.400975910829 47.059404783003 47.0589476850
R.T. 0.330000000000 0.550000000000 0.440000000000 0.440000000000
Table (2) Results of (O-N) Formula for example 2
X | EXACT Open Newton Cotes |exa ct— (O _ N)l
formula.
0.0 0.00 0.000000000000 0.00000000000
0.1 0.01 0.020112340710 1.079887659290
0.2 0.04 0.060870350306 1.139129649694
0.3 0.09 0.123471139122 1.176528860878
0.4 0.16 0.210064039206 1.189935960794
0.5 0.25 0.324135025802 1.175864974198
0.6 0.36 0.471049431039 1.128950568961
0.7 0.49 0.658846458868 1.041153541132
0.8 0.64 0.899428134734 0.900571865266
0.9 0.81 1.210363739718 0.689636260282
1.0 1.00 1.617657119881 0.382342880119
L.S.E 0.659596059903
R.T. 0.330000000000
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Table (2.2) comparison between (O-N) formula and Homotopy Perturbation Method of

example (2).

VOL.24 (2) 2011

ETHOD O-N Homotopy SIMPSONS1/3 SIMPSONS13/8
Perturbation
Nodes

0.0 0.00000000000 0.00000000000 0.00000000000 0.00000000000
0.1 0.020112340710 0.020112340710 0.020021699215 0.020021699215
0.2 0.060870350306 0.060870350306 0.060115379036 0.060115379036
0.3 0.123471139122 0.12347113912 0.120446218308 0.120432870642
0.4 0.210064039206 0.210064039206 0.201204441266 0.201205986374
0.5 0.324135025802 0.324135025802 0.302718695118 0.302703459057
0.6 0.471049431039 0.471049431039 0.425348164531 0.425332499117

0.7 0.658846458868 0.658846458868 0.569633374553 0.569617082912
0.8 0.899428134734 0.899428134734 0.736177654792 0.736160153872
0.9 1.210363739718 1.210363739718 0.925843695363 0.925801402953
1.0 1.617657119881 1.617657119881 1.139636574700 1.139616212933
LS.E 0.659596059903 0.659596059903 0.058689234914 0.058663452819

R.T. 0.330000000000 0.980000000000 0.820000000000 0.380000000000
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