
 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 

 

Proposed Methods To Prevent SQL Injection   

 

A. H. Mohmmed 
Department of Computer Science, College of Education, University of Al-
Mustansiriyah  
Received  in :  3, October , 2010 
Accepted  in :  8, February, 2011 
 

Abstract 
     In the last decade, the web has rapidly become an attractive platform, and an indispensable 
part of our lives. Unfortunately, as our dependency on the web increases so programmers  
focus more on functionality  and appearance than security, has resulted in the interest of 
attackers in exploiting serious security problems that target web applications and web-based 
information systems e.g. through an SQL injection attack.  
   SQL injection in simple terms, is the process of passing SQL code into interactive web 
applications that employ database services such applications accept user input  such as form  
and then include this input in database requests, typically SQL statements in a way that was 
not intended or anticipated by the application developer that attempts to subvert the 
relationship between a webpage and its supporting database, in order to trick the database into  
executing malicious code due to the poor design of the application.  
    The proposed system is based on protection website at run time, before inclusion of user 
input with database by validating, encoding, filtering the content, escaping single quotes, 
limiting the input character length, and filtering the exception messages. The proposed 
solution is effectiveness and scalability  in addition it is easily adopted by application 
programmers. For empirical analysis, we provide a case study of our solution and implement 
in Html, PHP, MySql , Apache Server and Jmeter application. 
 

Key words:web site security , Data Base Server, SQL Injestion attack 

Introduction 

      The Internet has brought about many changes in the way organizations and individuals  
conduct business, and it would be difficult to operate effectively without the added efficiency 
and communications brought about by  the internet [1].  In the last few years, the popularity of 
web-based applications has grown tremendously. A number of factors have led an increasing 
number of organizations and individuals to rely on web-based applications to provide access  
to a variety  of services. Today, web-based applications are routinely used in security critical 
environments, such as medical, financial, and military systems [2]. Because of the popularity 
of these types of applications many techniques to exploit their security vulnerabilities are 
potentially quite dangerous. One such technique is called SQL injection [3]. SQL Injection 
attack has been one of the major threats to the security of web applications and attackers can 
trick server into executing malicious SQL code which is [4]. occurs when user input is parsed 
as SQL tokens, thus changing the semantics of the underlying query [3]. SQL injection 
attacks have been used to extract customer and order information from e-commerce databases 
or bypass security mechanisms. The intuition behind such attacks is that predefined logical 
expressions within a predefined query can be altered simply by injecting operations that 
always result in true or false statements [5]. 
     



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 
 

   This paper, presents a runtime technique to prevent SQL injection observe that all SQL 
injections alter the structure of the query intended by the programmer and by capturing this 
structure at runtime, we can compare it to the parsed structure after inserting user-supplied 
input, and evaluate similarity . Evaluated the proposed system based on user input on a set of 
real-world applications without requiring a call to the database, thus lowering runtime costs 
and satisfy  the following three criteria: 

1. prevent the possibility of the attack 
2. Minimize  the effort required by the programmer 
3. Minimize the runtime overhead. 

  This paper is structured as follows: The next section reviews related work and section 3 
describe web server technology and section 4 SQL injection working while section 5 describe 
proposed approach that characterizes the sanitization process by modeling the way in which 
an application processes input values and provides details  about the implementation of 
system, section 6 presents the experimental results that show approach is feasible in practice, 
section 7 concludes the paper. 

-Web Server Technology 
   Web based systems are a composition of infrastructure components, web servers , 
databases, and of application specific code, such as HTML-embedded scripts and server-side 
CGI programs[2]. Nowadays, lots of websites are interactive, dynamic and database-driven, 
which run various web applications in servers with data stored in back-end database. Web 2.0 
technologies allow users to do more than just retrieve information. They can access and 
modify  the  content  and  distribute  their  information  in  websites  such  as  social 
networking  sites,  wikis  and  blogs.    In  other  words,  they  can  control  the  database 
information  via  a  web  browser [6]. 
    Web applications accept user input via forms in web pages. This input is posted to the 
server as name value pairs, both of which are strings. An alternate mechanism to pass 
information to the server is the query string. The query string is information appended to the 
end of the URL. On most web servers, a question mark separates the resource from the query 
string variables. Each name value pair in the query string is separated by an ampersand, and 
the user is free to edit this input as easily as form inputs. Because it is common for web 
servers can differentiate between variables passed in the query string and those posted in the 
form, then will consider both as user input [3].Web-based applications represent a serious 
security exposure. These applications are directly accessible through rewalls by design, in 
addition[7]. The infrastructure components are usually developed by experienced 
programmers with solid security  skills, the application specific code is often developed under 
strict time constraints by  programmers  with little security training as a result vulnerable web-
based applications are deployed and made available to the whole internet, creating easily 
exploitable entry  points for the compromise of entire networks [2]. 
    The Internet has brought about problems as the result of intruder attacks, both manual and 
automated, which can cost many organizations excessive amounts of money in damages and 
lost efficiency [1]. Web-based attacks aimed at either obtaining control of the host running the 
web server application (e.g., through a buffer overflow ) The first type of attack is caused by 
vulnerabilities in the web server software or in a server-side web-based application that allow 
one to compromise the security of the underlying host ,The second type of attack is [7] offer  
the vulnerabilities  of  unauthorized  database  control  and malicious  code  injection which 
attackers  can  take  advantage  of   attackers  are  trying  to  get  valuable  information held in 
database, this hack is a kind of application attack called SQL injection[6]. 

-SQL Injection Working 
     It is very hard to understand the conceptual idea of SQL injection without partially 
understanding the code that runs in the background [8]. A database computer  language 
designed for  the retrieval  and  management  of  data  in  relational  database  management   
systems (RDBMS) [6].  



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 
 

     Structured Query Language (SQL) is used for many database systems including Microsoft 
SQL Server, Oracle, MySQL and even Microsoft Access[8]. SQL injection is yet common 
vulnerability  that is the result of lax input validation. Unlike cross-site scripting 
vulnerabilities that are ultimately directed at site’s visitors, SQL injection is an attack on the 
site itself in particular its database [9].  
   In 2008, there was a significant increase in the number of websites affected by SQL 
injection attacks.This increase can be attributed in part to the development of automated tools 
that allowed attackers to test and compromise sites much faster than older manual 
methods.There are specific examples of SQL injection events that occurred in april 2008  
attacks against microsoft internet information services (IIS) that affected more than half a 
million websites and in december 2008 microsoft internet explorer 7 (IE7) that was leveraged 
via SQL injection attacks [10].  
    SQL injection attacks are a prime example of malicious input that changes the behavior of 
a program by introduction of query structure into the input strings. An application that does 
not perform input validation (or employs error-prone validation) is vulnerable to SQL 
injection attacks. Although useful as a first layer of defense, input validation often is hard to 
get right, The absence of proper input validation has been cited as the number one cause of 
vulnerabilities in web applications [11]. A  successful  SQL  injection  exploit  can  read  
confidential  data  from the database ,modify database data (INSERT/UPDATE/DELETE), 
execute  administration operations  on  the  database  such  as  shutdown  of  database  
management  system (DBMS) , recover the content of a given file present on the DBMS file 
system and in some  cases  issue  commands  to  the  operating  system,  It  may  also  lead  to  
many potential attacks in other forms[6]. 

-Proposed System 
      A web application is vulnerable to an SQL injection attack if an attacker is able to insert 

SQL statements into an existing SQL query of the application. This is usually achieved by 
injecting malicious input into user fields that are used to compose the query, login page 
prompts the user to enter her username and password into a form  typ ically used for checking 
the user login credentials therefore, are prime targets for an attacker. In this example, if the 
login application does not perform correct input validation of the form fields, the attacker can 
inject strings into the query that alter its semantics. For example, consider an hacker entering 
“OR 1=1”-- one of sql injection string as in the tabel(1), the “--” command indicates a 
comment in Transact-SQL. Hence, everything after the first “--” is ignored by the SQL 
database engine with the help of the first quote in the input string, the user name string is 
closed, while the “OR 1=1” adds a clause to the query which evaluates to true for every row 
in the table. When executing this query, the database returns all user rows, which applications 
often interpret as a valid login. So in the proposed system all client-supplied data needs to be 
cleansed of any characters or strings that could possibly be used maliciously as shown in the 
figure(1). 
  In this section list proposed methods can be applied to minimize the risk of a SQL injection 
attack . 

1. Validation Input  
     The first step in any form processing script should check the syntax of input for validity  to 
verify that the input is a valid input in the language. The validation could be anything such as 
checking whether the entered value for “password" is a number, and is 16 or over, or making 
sure the username column has only valid characters such as A to Z, a  to z and many classes 
of input have fixed languages such Email addresses, dates etc . 

2. Encoding Input  
    Sometimes input might contain some illegal characters, or it might not always be viable to 
validate all user input for example, in a search field the user could type anything that they are 
searching for, including script tags such as <script> ,encoding is the best way to neutralize  



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 
 

     harmful data from user input, since encoding translates the harmful characters into their 
display equivalents for example the < character will be translated into &lt; character. The 
HtmlEncode method of the server object can be used to encode the harmful characters. 
3. Filtering Input  
   If an application does not filter user input before it is used in a SQL query, then SQL 
injection vulnerability  occurs because server received incorrect input from an untrusted 
client.So  proposed system prevent SQL injection attacks by filtering user input using 
language-supplied input filtering functions before using untrusted input in a SQL query. For 
example, let's suppose to filter out special characters such as the following: [   ]    {   }   ;   &. 
to achieve this functionality  use the Replace method of the String object this code will replace 
all the unwanted characters from the users input. 

4. Limit the Length of User Input  
   Make use of the maxlength attribute of the textbox controls will be restricting the number of 
characters the hacker can type. In proposed system all text boxes and form fields should be 
always as short as possible for example, if the firstname textbox should only accept 40 
characters, then enforce the length in the maxLength attribute. This will restrict the hacker to 
send small set of commands back to the server  
<input type="text" id="txtFirstname" MaxLength="40" runat="server "/> 

5. Modify Error Reports 
     In situations where the attacker has no knowledge of the underlying SQL query or the 
contributing tables,  hacker try to tamper with the SQL statement in order to receive an error 
message and can gain more information about the SQL statement, and can start tampering 
with the SQL statement. The proposed system process error reports properly and configure in 
such a way that error cannot be shown to outside users and display of errors should be 
restricted to internal users only such as 

1. display_errors = Off 
2. display_startup_errors = Off 
3. log_errors = On 
4. log_errors_max_len = 0 
5. ignore_repeated_errors = Off 
6. ignore_repeated_source = Off 
7. track_errors = Off 
8. error_log = /var/log/php.log --OR—syslog 

6. Low privilege 
   Limit database permissions and segregate users and never allows to connect as a database 
administrator in web application will limit the damage potential. 
    The proposed system has three pages , the code of first page shown in figure(2) is an 
HTML page with a form element. The form asks the visitor to enter his MySQL user name 
and password.The name of this page is login.html as shown in figure(3) , when user full the 
data and click login button the data will send by post method to the second page that called 
validentry.php  which works in hide,code of this page shown in figure(4). 

 
-Evalution  
      Web-based applications have become a popular means of exposing functionality to large 
numbers of users by leveraging the services provided by web servers and databases. The wide 
proliferation of custom developed web-based applications suggests that a approach for 
providing early warning and real-time blocking of sql injection exploits. The proposed system 
composed of a number of methods used to prevent sql injection attack. The proposed system 
evaluated its applicability  with respect to several existing web-based applications according to 
four key metrics: 
 



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 
 

1- Safety - How well a technique resists being circumvented or defeated when faced with  
a competent attacker 

2- Speed - How high the performance overhead of a technique is 
3- Flexibility - How applicable a technique is to a range of different security flaws and 

vulnerabilities 
4- Practicality - How easy it is to apply a technique to modern software settings, where 

source code access may not be available and legacy code may be present. 
    The proposed system tested  at run time by Apache's JMeter testing,this application allows 
one to schedule walks through a web application, including detailed web form submission and 
thus database querying. JMeter can execute script with a configurable number of concurrent  
users. It also allows the tester to configure the delay between requests for the simulated 
users.Tabel(2) shows the response times to execute two type of query as in table(3) with 
number of users.  
 

Conculsion 
     A criminal can break into a system and wreak havoc on a network or computer system 
different ways. It is up to the web application developers to do their part in making sure the 
applications they design are not vulnerable to any known threats, In general proposed system 
is not limited to any specic platform since it does not rely on any particular language 
mechanism or technology. This strategy can be instantiated for any existing web application 
framework.  
 

References 
1. goheer,J. (2009), SQL Injection and Cros Site Scripting , Kualitatem Pvt Ltd. 
2. Cova, M.; Felmetsger,V. and Giovanni Vigna,(2007), Vulnerability  Analysis of Web-

based  Applications, University of California.  
3. Buehrer, G.; Weide,W.; Paolo,A. and Sivilotti, G. (2010), Using Parse Tree Validation to 

Prevent SQL Injection Attacks” ,Computer Science and Engineering of Ohio State 
University  . 

4. Xiang, F.; Qian,K. (2008), SAFELI – SQL Injection Scanner Using Symbolic 
Execution,School of Computing and Software Engineering Southern Polytechnic State 
University  . 

5. Stephen,W. and Keromytis, D. (2010), SQLrand: Preventing SQL Injection Attacks, 
Department of Computer Science Columbia University . 

6. Ronald,L. (2008), SQL Injection, Hong Kong Computer Emergency Response Team 
Coordination Centre.  

7. Kruegel ,K. ; Valeur ,F. and  Barbara,S. (2007), An Anomaly-driven Reverse Proxy for 
Web Applications, University  of California. 

8. Mrowton,K. ( 2005) , Introduction to SQL Injection, Lee Lawson . 
9. lia,I. (2005), SQL Injection, Ilia_Security.indb 
10. Finch,N. (2009), SQL Injection  , US-CERT government organization 
11. Bisht, P.; Prasad,A. and Venkatakrishnan, V. (2010), Automatically Preparing Safe SQL 

Queries, Department of Computer Science University  of Illinois, Chicago, USA.  
 
 

 

 

 



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabel (1): Example of sql Injection 

admin' -- ') or ('1'='1— 
admin' # ') or ('1'='1 
admin'/* "or "1"="1 
' or 1=1-- ' or '1'='1 
' or 1=1# Or 1=1-- 
' or 1=1/* " or 1=1-- 
') or '1'='1-- ' or 1=1-- 

Table (2): Compare between  Normal SQL Query & SQL 

Injection 

Number of 

User 

Query TYPE Response 

Time (ms) 

1 Normal SQL Query 70 

1 SQL Injection 75 

5 Normal SQL Query 387 

5 SQL Injection 399 

10 Normal SQL Query 792 

10 SQL Injection 810 

Table (3) : Example of normal sql query and sql injection attack 

Normal SQL Query 

 Select * from mytable where user name = `ahmed` and password =`12345`; 

SQL Injection 

Select * from mytable where user name = ``OR 1=1; --` and password=`dummy`; 



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 
Fig. (1): Proposed System 

Open DataBase 
 

N O 

Is name 
or pass 

null 
 

YE

fals

true 

IS  
PASS 

STR+NO 

numbe

IS NAME 

STRING 

IS 

NAME & 

PASS 

YE

N O 

Validate
Name & 

Pass 
 

true 

YOU HAVE PERMISSION ACCESS 

N O 

User_name: 

User_password 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 
  
  
 

<html> 

<head> 

<title>user Login </title> 

</head> 

<body> 

<form method="POST" action="validentry .php" name="Login"> 

<p >enter user name and password to enter the page</p> 

<p >user name :<input type="text" name=" user _name"  size="20"></p> 

<p>password:<input type="password" name=" user _password"  size="20"></p> 

<p><input type="submit" value="send" name="Login"></p> 

</form> 

</body> 

</html> 

 

 

  

 

        <? php 

If ($user_name=="") or ($user_password=="") header("location: login.html"); 

If not(is_string($ user_name )) header("location: Login.html"); 

if (!ctype_alnum($_POST[‘ user_password ’])) header("location:  Login.html "); 

Input_filtering($ user_name ) 

Input_filtering($ user_password ) 

$esc_name = mysql_real_escape_string($ user_name ); 

$esc_password = mysql_real_escape_string($ user_password ); 

mysql_connect("localhost", "", "") or die("Could not connect: " . mysql_error()); 

  mysql_select_db("p roject"); 

Fig.(2): Code of login 
page 

Fig.(3): login page 



 
 

IBN AL- HAITHAM J. FOR PURE & APPL. SCI.         VOL.24 (2) 2011 

 

 

$result = mysql_query("SELECT * FROM admin where name='$esc_name' && password='$esc_password 

‘"); 

$row = mysql_fetch_array($result, MYSQL_BOTH); 

if (($row["username"]==Null)or($row["userpassword"]==Null)) 

header("location: login.html"); 

function validate_string( input ) 

known_bad = array( "select", "insert", "update", "delete", "drop", "union, ";",”"--","xp_",”*”,"'" ) 

for i = lbound( known_bad ) to ubound( known_bad ) 

if ( instr( 1, input, known_bad(i), vbtextcompare ) <> 0 )  header("location: admin.php"); 

next  

end function 

?> 

 

 

 

 

 

 
 

  

 

 

Fig.(4): Code of validentry.php 
page 



 
 

 

 

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 

 

 

 



 
 

 2011 )2( 24مجلة ابن الهیثم للعلوم الصرفة والتطبیقیة               المجلد

  )SQLِ(حمایة تطبیقات الویبِ من هجومِ حقن 

 أحمد هاشم محمد  

 علوم الحاسبات ،كلیة التربیة،الجامعة المستنصریة 

2010تشرین الاول ، ،3: استلم البحث   

2011،شباط، 8:   قبل البحث  

 

 الخلاصة

ولكن لسوء الحظ،الاعتمادیة على الشبكة زادت من . في العقد الأخیر،أَصْبَحَ الویب جزءاً لا غنى عنهَ في حیاتِنا       

عدد المبرمجین الذین یُركّزونَ على تصامیم المواقع أكثرَ من التركیز على الوظیفةِ والحمایة مما أدّى إلى زیادة عدد 

التي تَستهدفُ تطبیقاتَ الویبِ وأنظمةِ المعلوماتِ على الإنترنتِ ومثال على ذلكِ  المهاجمین في إِسْتِغْلال مشاكلِ الحمایة

   (SQL injection). هجوم هو ال

تي ) SQL(هو عملیةُ تمریر رمزِ لغة الإستفسار البنائیةِ ) SQL injection( هجوم      إلى تطبیقاتِ الویبِ التفاعلیةِ ال

المخترق تَخریب العلاقةِ بین الموقع وقاعدة بیاناته المساندة، لكي یَخْدعَ قاعدةَ البیانات  تَستعمل قاعدةَ البیانات، اذ یُحاولُ 

 .إلى تَنفیذ الرمزِ الخبیثِ بسبب التصمیمِ السیّئِ للتطبیقِ 

تعمالِ طرائق إنّ النظامَ المُقتَرَحَ مستند الى التَدقیق في وقتِ التشغیل، قبل إدراجِ  الزبون المتصل بقاعدةِ البیانات باس  

تِ  عدیدة لجَعْل التضمین صالح للإستعمالِ وذلك من خلال المصادقة، التَشْفیر، تَرشیح المحتوى عن طریق الغاء الإقتباسا

ى . الوحیدةِ، تحدّیدُ طول الحرفَ المتضمنة، وتصفیة رسائل الخطاء  إنّ الحَلَّ المُقتَرَحَ فعال وقابل للتوسع فضلا عن انه یُتبنّ

في   Apache، و الخادم   MySqlقاعدة بیانات ,HTML PHP ن قِبل مبرمجي التطبیقِ اذ استعملت لغة بسهولة مِ 

  .تصمیم الموقع واختبار الحل المقترح

 SQLامنیة المواقع ، قواعد البیانات الخادم ، هجوم حقن :  الكلمات المفتاحیة


