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Abstract

In this paper, the linear system of Fredholm integral equations is solving using Open
Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to
solve this system.

Compare the results of suggested method with the results of another method (closed
Newton-Cotes formula)

Finally, at the end of each method, algorithms and programs developed and written in
MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method.

Keyword: Open Newton — Cotes formula, Closed Newton-Cotes formula, System of linear
Fredholm integral equation.

Introduction

The problem of Newton-Cotes formula arises when the integration cannot be carried out
exactly or when the function is known only at a finite number of data. Furthermore, Newton-
Cotes rules are primary tool used by engineers and scientists to obtain approximate answers
for definite integrals that cannot be solved analytically. [ 1 ]

This paper is organized as follows: in Section 2, we introduce a brief introduction to the
Open Newton-Cotes and some basic definitions for integral equation. In Section 3, we
construct our methods to approximate the solution of linear system of Fredholm integral
equations. Numerical examples are given in Section 4.

1- Review and Background
1.1 Some definitions of integral equation
Definition 1-1: [ 2 ]

Integral equation is an equation in which the unknown function appears under an integral
sign.

A general form of linear integral equations may be written as follows:
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b(x)
h(x)u(x)= f(x)+ 4 Ik(x,t)u(t)dt a<x<b (1)
Where h(x) and f(x)are given function of x, k(x, t)is a function of two variables x and t
called kernel of integral equation which are also known, while u(X) is to be determined and

A is a scalar parameter [in this paper we take A=1 ].
Definition 1-2: [ 2 ]

If the function h(x) =1, then the linear integral equation (1) is said to be an equation of the
second kind (i.e.)

b(x)
u(x) = f(x)+ [k(x,0u()dt a<x<bhb )

Definition 1-3: [ 2 ]
The integral equation (1) is called Fredholm integral equation (FIE) if b(x) =b, where

b is constant such that b >a . Therefore, the integral equations

f(x):jk(x,t)u(t)dt a<x<b

IN
=

IA
S

u(x)= f(x)+ [k(x.0)u(n)dr a
Represent the one-dimensional Fredholm integral equation of the first and second kind

respectively.

1.2 Open Newton-Cotes formula

In numerical analysis, the Newton-Cotes (N-C) formulas are a group of formulas of
numerical integration based on evaluating the integrand at equally- spaced points. They are
named after [saac Newton and Roger Cotes [ 3 ]. There are two types of N-C formulas:

- The (closed) ty pe which uses the function value at all point in the domain.

- The (open) type which does not use the function value at the initial and end point of the
domain .

b X n
Numerical integration formulas of the form [ f(x)dx = J. f)dx=Y wf(x)+E(S)
a Xo i=0
where E(f) istheerror, x, =x,+i*h for i=0,l,.,n,x,=qa, x,=b and h = br’

and w, i=0,1,...,n arethe weights, is called closed Newton-Cotes formulas

Some of the common closed N-C formulas are as follows:

- Trapezoidal rule, Simpson 1/3 rule and Simpson 3/8 rule
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b Xl n
Numerical integration formulas of the form [ f(x)dx = I f(x)dx=Y wf(x)+E(S)

a X i=0

where E(f) is the error, x,=x,+(i+1)*h for i=-10,.,n+1, x_,=a ,x,. =i
h= :_’ and w, i=0,l...,n are the weights, is called open Newton-Cotes formulas.
Some of the common open N-C formulas with their error terms are a follows: [ 1 ]

-n=0 Midpoint rule _q[f(X)dXZ 2hf (x,) + %f"(é’) where { €(x ,x,)

~n=1 j f(x)dx == f(x )+ O]+ —f"(C) where & €(x.,x.)

-n=2 j f(x)dx === 2f(x) FG)+2/(x, >]+ f‘“(C) where ¢ €(x,,x,)
-n=3 ff(X)dX— —[llf(x )+ S () + f(x) +111(x)] + f”’(() where ¢ €(x,,x,)
-n=4 If(x)dx— _[1 11 (x,) —141(x) +26f (x,) =141 (x,)+11f(x,)]+ %f” (&) whereg e(x,x,)

2- Solutlon of a system of linear Fredholm integral equations of the second kind Using
Open N-C formulas

In this section, we use the common formula of Open N-C to solve the system of linear
Fredholm integral equations of the second kind.

Consider the sy stem of linear Fredholm integral equations of the second kind
n b

u,(x)=f.(x)+ ZJAkm (x,t)u (x)dt o r=12,...,n . 3)
s=1 4

where neN , f. .k, r,s =12,..,n are assumed to be continuous function.

rs 2

such

Suppose that the interval [a, b] is divided into n+2 equal subintervals of length 4 = b _3 ,
n+

that a=x ,b=x, with x, =a+i*h ,i=0,1,...,nthis implies that x,=a+h and
x,=b—hand u, (x,) for i=0,,.,n,r=12,.,n canbe determined by:

n b
u,(x;)=r(x) +2Jkrs (x,Hu,dt  ,i=01--,n ,r=12,--n @)
s=l 4

Thus, we are approximating each integral term by the open N-C formulas.
2.1 Using Open N-C: with n=0 (Midpoint Rule)

We replace the integral term that appeared in the right hand side of the above equation by the
comp osite midpoint rule which illustrate in the following theorem: [ 4 ]
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Theorem: Let feC?[a,b]. With h=(b—a)/(2m+2) and X, =a+(j+1)h
L i=-1,0,...2m+1

, the midpoint rule for n=2m subintervals is:

[ Gy =283 £(xy )+ Z%hzo £*(u) for some 1 € (a,b).

j=0
If the number of subinterval is even we apply open N-C with (n=1) rule. Therefore
u ,r=12---n ,i=0L---,m where m=n/2 are obtained by solving the equation:

" i

n/2

u",- :f’i +2h2[krs(x2i9x2_/)}'{sz_ ai :0919"',% = 1,2,"',}’1 ,§ = 1,2’-'-’]/1 ............ (5)
J=0 !

where u, denote the numerical solution at x,, ,i =0,1, ... , m=n/2,

Transform all the terms involving the solution u, r =12,---.n ,i=0]1,---m=n/2 to left
side of the equation (5) and f, to the right side.

1-2hk(x,%) —2hk(xx) -+ =2k (5,%,) -+ —2hk,(5.%) —2hk,(6,x) - =2k (%) ]
_2h]q l('xi- ,.X{]) 1_2hk1(x15x1) e _Qhkl(xuxm) T _2hkn('xl 9%) —2h]€1(x1,)q) e _%k1()q ’xm) u fu

2k (x,,%,) —2hk(x,x) -+ 1=2hk (x,.x,) - =2hk (x,,x) —2hk (x,.x) - 2k (x,.x) || :
: : : : : : u, f. (6)

_zhknl (xo 7x0) _2hl€1(xn ’xl) e _Qhknl(x;) 7xm) o '1_2}’]?"()%’)‘0) _%lgn(xﬂ ’xl) e _2hlgn(xn ’xm) . =
=2hk,(x,x,) —2hk (x,x) - —2hk(x.x,) - =2hk (x.x) 1-2hk (x x) - ——2hk(x,x) '

|2k, (5,%) =2k (x,,%) - =2k (x,,x,) - =2k (x, %) =2k (%) e 120K (%) | || S

u /.

Remark: equation (6) has unique solution if the determent of the matrix K not equal to zero

Also, if the number of subintervals is odd, we get combination between open N-C: n=1
and open N-C: n=0: Midpoint rules.

Therefore u, r=12--n ,i=12--,(n+2)—m where m=(n+1)/2 are obtained by

solving the equations:

(n+2)-m
3h 3h i

u =f +—k, —k u, +2h Yk _u,
i ‘frx 2 rsip S 2 rSi2 82 ; TS S
for  r=12,---n ,s=12,--n ,i=L2,---,(n+2)-m where m=(n+1)/2 (7)

Transform all the terms involving the solution u, r=12n i=12---,(n+2)—-m
wherem = (n+1)/2 to left side of the equation (7) and f, to the right side.
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Finally, each of system in equations (6) and (7) can be written in matrix form as KU = F
where K is the matrix of the coefficients, U is the matrix of solution and F is the matrix of

non-homogeneous part. To find the approximate solution u, ,r=12---n we find
U=K'F.

The Algorithm of Numerical Solution of a System of linear Fredholm Inte gral Equations
Using Open N-C: {n=0} (SONCn0)

Step 1: compute pobza ,neN
n+2

Step 2:

s Compute u,  Lr=L2-n i =0,L---,m=n/2 , using equation (6) when the number of
subintervals is even.

«» Compute u, =12 n ,i=12---,(n+2)-m where m=(n+1)/2 ,using equation
(7) when the number of subintervals is odd.

Step 3: solve the resulting sy stem by multiplication it with K.
2.2 Using Open N-C: n=1 Rule

By the same steps of condition on equation (4), use the open N-C where n=1 formula to
approximate each integral term in equation (4). If the number of subintervals is (a multiple of
three).

Therefore u, ,r=12---,n ,i=12,--,(n+2)—m where m=n+2)/3 are obtained by
solving the equations:

we apply open N-C with (n=1). Therefore u, ,r=12,--.n i=12-(+2)-m,

where m=(n+2)/3are obtained by solving the equations: where m = (n+ 2)/3

(n+2)—
ur,- :fri +3_;l z Jkrs(xz"xj)]us. ,i:1,2,-~-,(n+2)—m ,1”21,2,“‘,1’1 aS:Lz""an (8)
1

-

where u denote the numerical solution at ¥, =12 ,n | Z) m,

7

where m=(n+2)/3

Transform all the terms involving the solution u, r= L2, n, 1=1,2,..,(n+2)-m to left
side of the equation (8) and fr to the right side.
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F%Wmm-%MM%)m%M@%)m-?h@%%%%@%)~~%M@ﬁ) il

3 3 3 3 3 3

- 1—= . e —— — A U, .flz
k%) 15 AR ,x) - S hk(6,x,) - =5 hk (gx) —hk (x,x) 5k %)

—ghkn(x,,aX.) —%hlf.(x,,,,xz)' . l—gh/ﬁ(m, '-‘—ghk,(x,,, ) —;h/& () - —;h/& Ccox) | | S| (9)

3 3 3 3 3 3 : :
—_ — A cei]—= —_ —
2h1€1()q5x|) 2hl§1()q ’Xz) zhlﬁl()‘i 9xm) 2hkm,()ﬁ 7)‘;) 2h]gu ()qaxz) 2hkn()qaxm) Ml f""l

3 3 3 3 3 3
—=hk (x,x) —=hk (x,x)- —=hk(x,x) -~ —=hk (x,x) 1==hk (x,x,) --——=hk (x,x
S (r.3) 3 ) -+ Sk (x.6) - (5. 3) 1Sk G, -+ —3hE )

//////////

3 3 3 3 3 3 : :
__hkl Ko __hkm KXsX) " __hl% KXosX )t ._-hlgn Koo —h o (KXo X e 1==hk (x X,
B (. (3%, 5X) 5 (6,x,) 5 (5,-%,) 5 (%) 5 k. (x,,x,) 5 ( )_ s

Also, if the number of subintervals is (a multiple of three +1), we get combination between
open N-C : n=0 Midpoint and open N-C: n=1 rules.

Therefore u, r= L,2,--,n  ,i=12,---,(n+1)-m where  m=(n+1)/3 are obtained by
solving the equation:

3 (n+2)—m

h
= f +2hk +— k
u, = f, oilhs T s (10)

=
for  r=12,---n ,s=12,---,n ,i=12,---,(n+2)-m where m=n+1)/3

Transform all the terms involving the solution u, r=L2--n i=12--(n+)-m ,
where m=(n+1)/3 to left side of the equation (10) and f, to the right side.

if the number of subintervals is (a multiple of three +2), we get combination between open N-
C : n=0 (Midpoint method) and open N-C : n=1 rules.

Therefore u, =12 n ,i=12---,(n+1)—m, where m=n/3 are obtained by solving
the equation:

3 (n+2)—m
u, :ﬁ,- +2hkrs“us1 4—2}11;&_2%2 +? k_u

TS S

= (11)
for r=12---n ,s=12,--,n ,i=L2---,(n+1)-m where m=n/3

Transform all the terms involving the solution w, ,r=12,--.n ,i=12--,(n+1)-m Where
m=n/3 to left side of the equation (11) and f, to the right side.

Finally, each system in equations (9), (10) and (11) can be written in a matrix form as
KU =F where K is the matrix of the coefficients, U is the matrix of solution and F is the
matrix of non-homogeneous part. To find the approximate solution ur ,r=12---n  we find

U=K1F

The Algorithm of Open N-C {n=1} (SONCnl)



IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (2) 2011

Step 1: compute pobza ,neN
n+2

Step 2:

< Compute u, ,r= L2,---,n, 1=1,2,...(n+2)-m where m =(n+2)/3 , using equation
(9) when the number of subintervals is (a multiple of 3).

s Compute u, ,r=12-n ,i=12---(n+1)—m where m=(n+1)/3 , using equation
(10) when the number of subintervals is (a multiple of 3 +1).

s Compute u, ,r=12-n ,i=12---,(n+1)—m where m=n/3 ,usingequation (11)
when the number of subintervals is (a multiple of 3 +2).

Step 3: solve the resulting sy stem by multiplication it with K'.

2.3 Using Open N-C: n=2 Rule
The open N-C: n=2 formula can be used to approximate equation (4) such that:

If the number of subintervals is (a multiple of four), we apply the open N-C: n=2 formula to
each integral term in equation (4) as the form:

u=f+—\2% u -k u +2% u +2% u +--—k
n Si2 82 sz 83 r§4 s

TS st 7 Si(n+l)-m)  Sn+1)-m T§((n2)-m)  S(n+D-m
for  r=L2--n ,s=12--n ,i=12--,(n+2)—m where m=(n+2)/4
Transform all the terms involving the solution u, ,r=12--n, 1i=1,2,..,(n+2)-m where
m =(n+2)/4 to the left side of the equation (12) and f, to the right side.

Also, if the number of subintervals (n+2) is (a multiple of four +1), we get combination
between open N-C: n=0, open N-C: n=1 and open N-C: n=2 rules and
u, ,r=12--sm ,i=L2-(n+])—m where m=(n+1)/4 are obtained by solvingthe system of
equations:

u, =f, +2hk, u +%km2“s2 +3?hkm3 u +4;—h[2kmus4 -k, u, =k, u  +2k u ]

Sis S5 PSitn—my ~ Sn-m ISi(nty-m)  S(n+1y-m

for r=12,---,n ,5=12,---,n ,i=12,---,(n+l)—-m where m=(n+1)/4 (13)

Transform all the terms involving the solution u, r=12---,n, 1=1,2,..,(n+1)-m, where
m=(n+1)/4 to the left side of the equation (13) and f, to the right side.

If the number of subintervals (n+2) is (a multiple of four +2), we get combination between
open N-C: n=0 and open N-C: n=2 rules and u, Jg=12--sm ,i=12--3(n+1)—m , where

m=n/4 are obtained by solving the system of equations.

4

u, =f, +2hk u +?h[2k u, —k, u +2k, u =k o ou  +2k

ug, 1
7Sl S) r8i2 rs$3 r$a 54 TSi(n-m) " Sn-m ISi(nty-m) - S(n+l)-m

for r=12,--,n ,s=12,---.n ,i=12,---,(n+l)—-m where m=n/4 (14)

Transform all the terms involving the solution u, ,r=12--n, 1=12,..,(n+1)-m where
m =n/4 to the left side of the equation (14) and f, to the right side.
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]Also, if the number of subintervals (n+2) is (a multiple of four +3) we get combination
between open N-C: n=1 and open N-C: n=2 rules and u, Jg=12--sm i=12--y(n+1)—m,

where m=(n—1)/4 are obtained by solving the system of equations.

u, =f, +%hkm‘, u, +%km u, +ﬁ[2km_ u, —k, u -~k u_ +2k_ u, ]
i i 2 1 2 2 2 3 i3 3 i4 4 i(n—m) n-m i((n+)—m) (n+1)—m
for r=12,--n ,s=12,---.n ,i=12,---,(n+l)-m where m=mn-1)/4 e (15)

Transform all the terms involving the solution u, ,r=12---n, 1=1,2,..,(n+1)-m where
m=(n—1)/4 to the left side of the equation (15) and f, to the right side.

Finally, each system in equations (12), (13), (14) and (15) can be written in a matrix form as
KU=F where K is the matrix of the coefficients, U is the matrix of solution and F is the

matrix of non-homogeneous part. To find the approximate solution 4 ,r=12:-.n, we find

U=K'F

The Algorithm of Open N-C:{n=2} (SONCn2)

Step 1: compute h:b_a ,neN
n+?2

Step 2:

< Compute u, ,r= L2,---,n, 1=1,2,..,(n+2)-m where m =(n+2)/4 , using equation
(12) when the number of subintervals is (a multiple of 4).

s Compute u, r= L2,--,n  ,i=12---,(n+1)—m where m=(n+1)/4 , using equation
(13) when the number of subintervals is (a multiple of 4 +1).

s Compute u, 1 =12,---,n ,i=12,---,(n+1)—m where m=n/4 , using equation
(14) when the number of subintervals is (a multiple of 4 +2).

s Compute u, L1 =12,---,n ,i=12,---,(n+1)—m where m=(n-1)/4 , using equation

(15) when the number of subintervals is (a multiple of 4 +3).

Step 3: solve the resulting sy stem by multiplication it with K.
2.4 Using Open N-C: n=3 Rule
The open N-C: n=3 formula can be used to approximate equation (4) such that:
If the number of subintervals is (a multiple of five) we apply the open N-C: n=3 formula to

each integral term in equation (4) as the form:

Sh
un- :fn + ﬁ 1 lkrsﬂusl +kmz MSz +krsf3MS3 +1 ]krmu.u oot kr&'«mw—m) usmnfm +1 lkVSf((M) ) MS(»»ZM (16)

for r=12---n ,s=12,--.n ,i=L2---,(n+2)—m where m=(n+2)/5

Transform all the terms involving the solution u, ,r=12--n, 1=1,2,..,(n+2)-m, where
m=(n+2)/5 to the left side of the equation (16) and f, to the right side.
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Also, if the number of subintervals (n+2) is (a multiple of five +1) we get combination
between open N-C: n=1 and open N-C: n=3 rules and u, Jg=12--sm i=12--y(n+1)—m,

where m=(n+1)/5 are obtained by solving the system of equations.

3 3h 3 3h 5h
u, = fn_ +?hk u +—k_u +—k,33u53+31gmus4 +ﬁ[“k u +-+k. u +1]Igslwfm)uwﬂn]

r§181 2 Sp 82 2 ISis S5 TS(n-m) " Sn-m

for r=12--n s=12---n ,i=12,-(n+l)—m where m=(n+1)/5 (17)

Transform all the terms involving the solution u, ,r=12--n, 1=1,2,..,(n+1)-m, where
m =(n+1)/5 to the left side of the equation (17) and f, to the right side.

If the number of subintervals (n+2) is (a multiple of five +2) we get combination between
open N-C: n=0 and open N-C: n=3 rules and u, ,r=12--sm ,i=12-(n+])—m , where
m=n/5 are obtained by solvingthe system of equations.

Sh
u =f +2hk_u +—[1%k u +k_ u +k u_ --+k  u +1lk,_ u ]
i T 24 -m rs(( y-m

TSt S rSi2 82 rSi3 83 rSi4 S84 TSi(n-m) ~ Sn n+l)=-m)  S(n+

for r=12,---n ,s=12,---n ,i=12--- (n+1)—m where m=n/5 (18)

Transform all the terms involving the solution u, ,r=12--n, 1=12,..,(n+1)-m where
m=n/5 to the left side of the equation (18) and f, to the right side.

Also, if the number of subintervals (n+2) is (a multiple of five +3) we get combination
between open N-C: n=1 and open N-C: n=3 rules and u, r=12--sm i=12-(n+1)—m,

where m=(n—1)/5 are obtained by solving the system of equations.

3h 3h 5h
u, =f, +—hk u +?k u, +—[1k, u, +k, u, --+k,  u +l1k u ]

2 rSi1 S rSi2 24 rSi3 83 I'Si4 ~ 84 VSitn—m) ~ Sn-n ISi(n+)-m) — S(n+)-m

for r=12--n ,s=12,--.n ,i=12--- (n+1)—m where m=n-1)/5

Transform all the terms involving the solution u, r=12--,n, 1=1,2,..,(n+1)-m, where
m =(n—1)/5 to the left side of the equation (19) and f, to the right side.

And, if the number of subintervals (n+2) is (a multiple of five +4) we get combination
between open N-C: n=2 and open N-C: n=3 rules and u, Jg=12--sm i=12--y(n+1)—m,

where m=(n—2)/5 are obtained by solving the system of equations.

4h Sh
uri:ﬁj+?[2hk, u, =k u, +2k u J+—[1k u, +-+k  u -+l

ug ]
rSi1 - S1 rSi2 82 rsi3 83 24 rSia 84 m)  Sn—-m TSi((n+1)-m)  S(n+1)-m

for r=12,---,n ,s=12,---,n ,i=L2,---,(n+1)—-m where m=(n-2)/5 (20)

Transform all the terms involving the solution u, ,r=12--n, 1=1,2,..,(n+1)-m, where
m =(n—2)/5 to the left side of the equation (20) and f, to the right side.

Finally, each system in equations (16), (17), (18), (19) and (20) can be written in a matrix
form as KU =F where K is the matrix of the coefficients, U is the matrix of solution and F
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is the matrix of non-homogeneous part. To find the approximate solution u_,r=12--.n we
find U=K'F
The Algorithm of Open N-C {n=3} (SONCn3)

Step 1: compute pobza ,neN
n+2

Step 2:

s Compute w, ,r=L12--n, 1=12,.,(n+2)-m where m=(n+2)/5 , using equation
(16) when the number of subintervals is (a multiple of 5).

s Compute u, L =12,---,n ,i=12,---,(n+1)—m where m=(n+1)/5 , using equation
(17) when the number of subintervals is (a multiple of 5 +1).

s Compute u, r=12--n ,i=12--(n+1)—m where m=n/5 ,usingequation (18)
when the number of subintervals is (a multiple of 5 +2).

X/

s Compute u, L =12,---,n ,i=12,---,(n+1)—m where m=(n—-1)/5, using equation
(19) when the number of subintervals is (a multiple of 5 +3).

< Compute u, r=12-n ,i=12--(n+1)—m where m=m-2)/5 ,using equation
(20) when the number of subintervals is (a multiple of 5 +4).

Step 3: solve the resulting sy stem by multiplication it with K.
2.4 Using Open N-C: n=4 Rule
The open N-C: n=4 formula can be used to approximate equation (4) such that:

If the number of subintervals is (a multiple of six) we apply the open N-C: n=4 formula to
each integral term in equation (4) as the form:

3h
u, =/, +—1]k u 1Ak u +266 u 14 u +1k u + -—lélkm(( o )us(”+w+1 ]km“ ot ] e
for r=1,2,-~~, ,S$=12--sn i=12--s(n+2)—m where m=[n+2)/6

Transform all the terms involving the solution u, r= L2,--n, 1=1,2,.,(n+2)-m, where
m =(n+2)/6 to the left side of the equation (21) and f, to the right side.

Also, if the number of subintervals (n+2) is (a multiple of six +1) we get combination
between open N-C: n=0, open N-C: n=3, and open N-C: n=4 rules and

r=12--sm j=12--5(n+l)-m, where m=(n+1)/6 are obtained by solving the system of

r )

equations.
5h 3h
u, —f +2hk_u, +— [llkmu +k, u, +k U, +1]k)s U +— [llkm u —-—l1& u +1k_ u, ]
i1 S1 24 2 3 is S5 1 6 6 i(n-m)  Sn-m (e )-m)  S(ntl)—m
for r=12--sn ,s=12--sn i=12-- (n+1)-m where m=(n+1)/5 (22)

Transform all the terms involving the solution u, r=12--,n, 1i=1,2,..,(n+1)-m, where
m=(n+1)/6 to the left side of the equation (22) and f, to the right side.



IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (2) 2011

If the number of subintervals (n+2) is (a multiple of six +2) we get combination between open
N-C: n=0 and open N-C: n=4 rules and u, g=12--sm ,i=12--y(n+1)—m where m=n/6
are obtained by solvingthe system of equations.

u, = fr,» +2hkm“ u +f—z[1 lkmnusz —14k,‘% u, +2@‘m,.4“s4 ee—14k u  +11k u ]

ISi(n-my ~ Sp-m ISi(n+ly-m)  S(n+l)-m

for r=12,---,n ,s=12,--,n ,i=12,---,(n+1)—m where m=n/6 23)

Transform all the terms involving the solution u, r=12---,n, 1=1,2,..,(n+1)-m, where
m =n/6 to the left side of the equation (23) and f, to the right side.

Also, if the number of subintervals (n+2) is (a multiple of six +3) we get combination
between open N-C: n=1 and open N-C: n=4 rules and u r=12--sm i=12--5(n+l)-m,

where m=(n—1)/6 are obtained by solving the system of equations.

u, =fr,+%hk u +¥lk u +%[1]k u, 14, u --—14k  u +1k
i i 2 S

U, ]
TS S| 2 rsp TS 10 r§3s3 TSi4 FSitn-m)  Sn-m TSi((nl)-m)  Sn+)-m

for r=12---n ,s=12--n ,i=12,---,(n+l)—m where m=(n-1)/6 (24)

Transform all the terms involving the solution u, ,r=12---n, 1=1,2,..,(n+1)-m where
m=(n—1)/6 to the left side of the equation (24) and f, to the right side.

If the number of subintervals (n+2) is (a multiple of six +4) we get combination between open
N-C: n=2 and open N-C: n=4 rules and u, ,r=L2--sm ,i=12--(n+1)—m, where m=(n-2)/6
are obtained by solvingthe system of equations.

4
u, :fn+?h[2hk u, —k. u_+2k _u ]+zl[11k_ u, —-—4  u_ +11k

ug 1
TSt st 752”82 rs3 s 10 rSia S TSi(n-m)  Sn-m TSi(@ns1)-m) S (ntl)-m

for  r=12,--n ,s=12,--on ,i=12,---,(n+l)-m where m=(n-2)/6 (25)

Transform all the terms involving the solution u, ,r=12--n, 1=1,2,..,(n+1)-m, where
m =(n—2)/6 to the left side of the equation (25) and fr, to the right side.

Also, if the number of subintervals (n+2) is (a multiple of six +5) we get combination
between open N-C: n=3 and open N-C: n=4 rules and u, Jg=12--m i=12--y(n+1)—m,

where m=(n—3)/6 are obtained by solving the system of equations.

ur = f;: + %[1 1hkrs us + krsn ux +krs» us +1 ]krs» us ]+ %[1 ]krsn ux - ._14krs us +1 ]krsn ux
i i 24 il 1 i2 2 i3 3 4 4 10 i5 5 i(n—m) n—m i((n+1)—m) (n+1)-m
for  r=12---n ,5=12;-n ,i=12--(n+l)—m where m=mn-3)/6 (26)

Transform all the terms involving the solution u, r=12---,n, 1=1,2,..,(n+1)-m, where
m =(n—3)/6 to the left side of the equation (26) and f, to the right side.

Finally, each system in equations (21), (22), (23), (24), (25) and (26) can be written in a
matrix form as KU = F where K is the matrix of the coefficients, U is the matrix of solution
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and F is the matrix of non-homogeneous part. To find the approximate solution

u, ,r=12---n we find U=K'F

The Algorithm of Open N-C {n=4} (SONCn4)

Step 1: compute pobza ,neN
n+2

Step 2:

< Compute u, r= L2,---,n, 1=1,2,...(n+2)-m where m =(n+2)/6 , using equation
(21) when the number of subintervals is (a multiple of 6).

s Compute u, L =12,---,n ,i=12,---,(n+1)—m where m=(n+1)/6 , using equation
(22) when the number of subintervals is (a multiple of 6 +1).

s Compute u, r =12,---,n ,i=L2---,(n+1)—m where m=n/5 ,usingequation (23)
when the number of subintervals is (a multiple of 6 +2).

s Compute w, ,r=L2--n ,i=12--,(n+1)—m where m=(n-1)/6 ,using equation
(24) when the number of subintervals is (a multiple of 6 +3).

s Compute u, ,r=12n i=12---,(n+1)—m where m=@n-2)/6 , using equation
(25) when the number of subintervals is (a multiple of 6 +4).

s Compute u, LI =12,--,n ,i=12,---,(n+1)—m where m=(n-2)/6 , using equation

(26) when the number of subintervals is (a multiple of 6 +5).
Step 3: solve the resulting sy stem by multiplication it with K.

3- Numerical Examples

In this section, we test some of the numerical examples performed to solving this linear
sy stem of Fredholm integral equations. The exact solution is used only to show the accuracy
of the numerical solution which obtained with our method.

Example (1): Consider the problem:

w0 = 2 T TEE0 6 0w, (1))

18 36 3

u,(x)=x" - %x+l+_([xt(u] (t)+u2(t))dt

which is a sy stem of two linear FIE's, with exact solution is [5]:u,(x)=x+1 ,u,(x)=x"+1

Tables (1) and (2) present a comparison between the exact and numerical solution of four
types of Open Newton — Cotes and two types of Closed Newton — Cotes for u; and u,
respectively depending on least square error and running time with h=1/16.

Example (2): Consider the problem:

1 1 1
u,(x)=x2— ;“_— %+J(x+t)ul(t)dt + [euy(eyde + [ 12 us(ryde
0 0 0

U, (x) = %xz + g—x - %Jr [Gyu (nyde + [ @oyuy e + [ (—x) uy (1)ar

us(x) = —x° —I%x—%+£(x+1)ul(t)dt +£ 3u,(t)dt + J;(tx)us(t)dt
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which is a sy stem of three linear FIE's, with exact solution isu,(x)=x",1,(x) =x+x" ,u;(x) =1-x

Tables (3)- (5) present a comparison between the exact and numerical solution of four
types of Open Newton — Cotes and three types of Closed Newton — Cotes for uy, u, and u;
respectively depending on least square error and running time with h= 0.1

Example (3): Consider the problem:

5 , 25 ¢ c
u(x)==x"——x+1+ | x(0+)u ()dt + | x“tu,(t)dt
()= 207 - = j (1+1)u, (t) j , (1)

1 7 1
u,(x)=x"*- S—x2 - Ex + Jxlul(t)dt +‘[(x2 — xt)u,(t)dt
0 0

which is a sy stem of two linear FIE's, with exact solution is [6 ]: u,(x) =x"+1 ,u,(x)=x"

Tables (6) and (7) present a comparison between the exact and numerical solution of four
types of Open Newton — Cotes and two types of Closed Newton — Cotes for u; and u,
respectively depending on least square error and running time with h=1/18

Conclusion

In this paper we suggest open N-C formula to solve system of linear Fredholm integral
equations of the second kind and we obtain the following results:

1-The results obtained using open N-C formulas are more accurate than the results obtained
using closed N-C formulas in general.

2-Open N-C formulas are more efficient than closed N-C formulas since the open N-C
formulas have most results than closed N-C with fewer nodes in the open N-C formulas.
3-The results obtained in open N-C formula when n=4 or multiple of four is most of the
results in a short time in other open N-C formulas.

References

1.Mathews, J.H. and Fink, K.D. (1999), "Numerical M ethods UsingM ATLAB "; third edition,
Prenice-Hall, Inc.

2.Chambers, L.I.G. (1976), “Integral Equation: A Short Course”; International Textbook
Company Limited.

3. Lapidus, L. and Seinfeld, J. H. (1971) “Numerical Solution of Ordinary Differential
Equations”’; Academic Press New-York and London.

4.Burden, R. L. and Faires, J. D. (2006), “Numerical Analysis”; Eighth Edition, An
International Thomson Publishing Company.

5.Vahidi, A.S. R. and Mokhtari, M. (2008), “On the Decomposition Method for System of
Linear Fredholm Integral Equations of the Second Kind”; Applied M athematical Sciences,
Iran, 2 :(2) 57-62.

6.Al-Dulaimi, M. Y. (2008),”Some Modified Quadrature Rules for Solving System of
Fredholm Linear Integral Equations”; M.Sc. thesis, University of Baghdad, Ibn-Al-Haitham
College of Education.



IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (2) 2011

Table (1) A comparison between the exact and numerical solution of 4 types of Open N—
C and 2 types of Closed N— C for u,

X Exact u, Open N-C Open N-C Open N-C Open N-C Open N-C Closed N-C Cl(}sed N-C
n=0 n=1 n=2 n=3 n=4 Trap. Simp. 3/8
0.62500 | 1.0625000 | 1.05935926 | 1.05802317 1.06250000 | 1.06135355 1.0625000 | 1.06408126 | 1.06254649
0.12500 | 1.1250000 1.12500000 | 1.12376887 1.1250000 | 1.12668959 | 1.12505018
0.37500 | 1.3750000 1.36899583 1.37500000 1.3750000 | 1.31451459 | 1.31256126
0.50000 | 1.5000000 1.49338489 1.49826084 1.5000000 | 1.50233959 | 1.50007234
0.75000 | 1.7500000 1.74216302 1.74792216 1.7500000 | 1.75277293 1.75008711
0.87500 | 1.8750000 1.86655208 1.87275281 1.8750000 | 1.87798960 | 1.87509449
L.SE. | 3.789-005 7.662¢-005 1.972e-031 5.437e-006 | 1.972e-031 1.028e-005 1.038¢-008
Time 0.07800 0.12500 0.203000 0.172000 | 0.18800 0.31200 0.297000

Table (2) A comparison between the exact and numerical solution of 4 types of Open N—
C and 2 types of Closed N- C for u,

N Exact u, Open N-C Open N-C Open N-C Open N-C Open N-C Closed N-C Cl?sed N-C
n=0 n=1 n=2 n=3 n=4 Trap. Simp. 3/8
0.62500 | 1.0039062 | 1.00335774 | 1.00312412 1.00390625 | 1.00370716 | 1.00390625 1.00418242 | 1.00391427
0.12500 | 1.0156250 1.01562500 | 1.01522683 1.0156250 | 1.01617734 | 1.01564105
0.37500 | 1.1406250 1.13593222 1.14062500 1.1406250 | 1.14228204 | 1.14067315
0.50000 | 1.2500000 1.24374297 1.24840733 1.2500000 | 1.25220939 | 1.25006420
0.75000 | 1.5625000 1.55311445 1.56011100 1.5625000 | 1.56581408 | 1.56259630
0.87500 | 1.7656250 1.75467520 1.76562500 1.76283783 1.7656250 1.76949143 1.76573735
LSE. | 6.769e-005 1.376e-004 | 4.930e-032 | 8.917e-006 | 0 1.952e-005 1.648¢-008
Time 0.07800 0.12500 0.203000 0.172000 | 0.18800 0.31200 0.297000
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Table (3) A comparison between the exact and numerical solution of 4 types of Open N—
C and 2 types of Closed N— C for u,

X Exact u Open N-C Open N-C Open N-C Open N-C Open N-C Closed N-C Cl(‘)sed N-C
n=0 n=1 n=2 n=3 n=4 Trap. Simp. 3/8
0.1 ] 0.010000 | 0.05805579 | 0.07564343 | 0.01634641 | 0.00939200 | 0.00985664 | -0.0123549 | 0.00853472
0.3 ] 0.090000 | 0.15296328 | 0.17608013 | 0.09823966 | 0.08918933 | 0.08980885 | 0.06074898 | 0.08810184
0.5 ] 0.250000 | 0.32787077 | 0.35651683 | 0.26013291 0.24976106 | 0.21385289 | 0.24766898
0.7 0.490000 | 0.58277826 0.50202615 | 0.48878400 | 0.48971327 | 0.44695676 | 0.48723610
0.9 ] 0.810000 | 091768575 | 0.95739024 | 0.82391940 | 0.80858133 | 0.80966549 | 0.76006071 | 0.80680323
L.SE. | 0.01159622 | 0.02172388 | 1.937¢-004 | 2.012e-006 | 1.118e-007 | 0.00285 1.16e-005
Time | 0.078000 0.110000 0.110000 0.1710000 0.15600 1.188 1.172

Table (4) A comparison between the exact and numerical solution of 4 types of Open N—
C and 2 types of Closed N- C for u,

Open N-C Open N-C Open N-C Open N-C Open N-C Closed N-C | Closed N-C
x| Exactu n=0 n=1 n=2 n=3 n=4 Trap. Simp. 3/8
0.1 0.11000 | 0.06875521 | 0.05300473 | 0.10543206 | 0.11036142 | 0.11008521 | 0.12946933 | 0.11102031
0.3 0.39000 | 0.34870102 | 0.33304139 | 0.38528876 | 0.39043235 | 0.39010194 | 0.40942113 | 0.39105674
0.5 0.75000 | 0.71460984 | 0.70125273 | 0.74590276 0.75009955 | 0.76661449 | 0.75092003
0.7 1.19000 | 1.16648165 1.18727406 | 1.19033102 1.19007805 1.20104942 | 1.19061016
0.9 1.71000 | 1.70431646 | 1.70219946 | 1.70940265 | 1.71015875 1.71003743 1.71272591 1.71012715
L.SE. | 3.230¢-005 | 6.084¢-005 | 3.568 ¢-007 | 2.520¢-008 | 1.401 e-009 | 6.102e-006 3.214e-008
Time | 0.078000 0.110000 0.110000 0.1710000 0.15600 1.188 1.172
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Table (5) A comparison between the exact and numerical solution of 4 types of Open N—
C and 2 types of Closed N— C for u;

X Exact u; Open N-C Open N-C Open N-C Open N-C Open N-C Closed N-C Cl(‘)sed N-C
n=0 n=1 n=2 n=3 n=4 Trap. Simp. 3/8
0.1 0.99000 | 0.99000000 | 0.97099871 | 0.98878499 | 0.98984800 | 0.98996416 | 0.99687951 | 0.99026659
0.3 0.91000 | 0.91000000 | 0.91867773 | 0.91131067 | 0.90954400 | 0.90989248 | 0.90749750 | 0.90969268
0.5 0.75000 [ 0.75000000 | 0.78635675 | 0.75383634 0.74982080 | 0.73811548 | 0.74911876
0.7 0.51000 | 0.51000000 0.51636201 | 0.50893600 | 0.50974912 | 0.51000000 | 0.50854484
0.9 0.19000 | 0.19000000 | 0.28171479 | 0.19888768 | 0.18863200 | 0.18967744 | 0.19000000 | 0.18797093
L.S.E. | 0.00450909 | 0.00841160 | 7.899¢-005 | 1.871¢-006 | 1.040e-007 | 0.0012 5.36e-006
Time | 0.07800 0.1100 0.11000 0.17100 0.15600 1.188 1.172

Table (6) A comparison between the exact and numerical solution of 4 types of Open N—
C and 2 types of Closed N- C for u,

Open N-C Open N-C Open N-C Open N-C Open N-C Closed N-C | Closed N-C

x| Exactu n=0 n=1 n=2 n=3 n=4 Trap. Simp. 3/8
0.05556 | 1.0030864 | 1.00056628 | 0.99935102 1.00299173 | 1.00286469 | 1.00308641 1.00439048 | 1.00308849
0.22222 | 1.0493827 1.03397239 | 1.04899455 | 1.04847428 1.04938271 1.05476199 | 1.04939139
0.38889 | 1.1512345 1.13248750 | 1.12344622 1.15053877 | 1.14960709 | 1.15123456 | 1.16093361 1.15125043
0.55556 | 1.3086419 1.26777251 1.30626312 1.30864197 1.32290534 | 1.30866561
0.72222 | 1.5216049 | 1.48473476 | 1.46695127 1.52025143 1.52160493 1.54067718 | 1.52163693
0.88889 | 1.7901234 1.72098248 1.78841988 | 1.78614486 | 1.79012345 1.81424913 1.79016439

L.SE. | 0.00250056 | 0.00549471 3.324e-006 | 1.812e-005 | 4.146e-029 7.634e-004 | 2.229e-009

Time 0.11000 0.157000 0.188000 0.203000 | 0.281000 0.359000 0.391000
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Table (7) A comparison between the exact and numerical solution of 4 types of Open N—
C and 2 types of Closed N— C for u,

X Exact u, Open N-C Open N-C Open N-C Open N-C Open N-C Closed N-C C19sed N-C
n=0 n=1 n=2 n=3 n=4 Trap. Simp. 3/8
0.05556 0.0000095 | -0.0005813 | —0.00086507 | —0.00001319 | —0.00004540 | 0.00000952 | 0.00031686 | 0.00000979
0.22222 0.0024386 -0.00164220 | 0.00233587 | 0.00219055 | 0.00243865 | 0.00387053 | 0.00243999
0.38889 0.0228718 | 0.01736184 | 0.01471108 | 0.02267126 | 0.02238811 | 0.02287189 | 0.02573211 | 0.02287473
0.55556 0.0952598 0.08214541 0.09449787 | 0.09525986 | 0.09985221 | 0.09526463
0.72222 0.2720717 | 0.25928723 | 0.25312991 | 0.27162193 0.27207171 | 0.27869997 | 0.27207881
0.88889 0.6242950 0.59865224 | 0.62369401 | 0.62284907 | 0.62429507 | 0.63326303 | 0.62430494
L.SE. | 3.588e-004 | 7.879e-004 | 4.296e-007 | 2.485e-006 | 8.985e-030 1.144¢-004 1.425e-010
Time 0.094000 0.157000 0.188000 0.203000 | 0.281000 0.359000 0.391000
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