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Abstract

Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a

proper submodule of M, N is called a coprime submodule if — is a coprime R-module,
N

M M M M

where — 1is a coprime R-module if for any » € R, either .~ _ Oy OF r—=="-
N

N = N N
N

In this paper we study coprime submodules and give many properties related with this
concept.
Key words: Coprime submodules, second submodule, second (coprime) module, secondary
module.

Introduction

Let R be a commutative ring with unity and let M be a unitary R-module. It is well-
known that a proper submodule N of an R-module M is called prime if whenever reR, xeM,
rxeN implies xeN or r € [N:M], where [N:M ]={reR: rMcN}. M is called a prime module if

agnM = agnN for all nonzero submodule N of M, equivalently M is a prime module iff (0)

is a prime submodule.

S.Yassem in [7], introduced the notions of second submodules and second modules,
where a submodule N of M is called second if for any » €R, the homothety »*€End M, is
either zero or surjective, where r*(m) = r m, V. m € M. It follows that N is a second
submodule iff for each » €R, either N = 0 or N =N. M is called a second module if M
is a second submodule of itself.

For an R-module M, the following statements are equivalent:

(1) M is a second module.
(2) Foreachr eR, eitherrM =0 or rM =M.

M
(3) ann M = ann — for all proper submodules N of M.
N

M
(4) ann M = ann — for all fully invariant sub3
N

(5) modules N of M.
(6) ann M = W(M), where W(M )={r eR:r*eEnd M, r* is not surjective}.

Notice (1) < (2) is clear, (1) < (5) [7,Jlemma 1.2], (1) < (3) [3, theorem 2.1.6], (3) <
(4) [6, theorem 1.3.2].

Notice that statement (3) and statement (4) are used to define coprime module by S.
Annin in [2] and I.E Wijayart in [6], respectively.
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Moreover Rasha in [3] studied coprime modules and give some generalizations of these
modules, (see [3]).
J.Abuhilail in [1], introduced the notion of coprime submodule, where a proper

M
submodule N of M is called coprime if ann — = W(—); that is N is a coprime submodule if

M . :
— is a coprime R-module.

Our aim in this paper is to study coprime submodules, we give the basic properties about
this concept. Also, we study coprime submodules in certain classes of modules.

1- Coprime Submodules

We give the basic properties related with coprime submodules. Also, we study their
behaviour in certain classes of modules.

Following J.Abuhilail in [1], a proper submodule N of an R-module M is called coprime

M
if — is a coprime R-module.
N

An ideal I of aring R is called coprime ideal iff T is a coprime R-module.

1.1 Remarks and Examples:

(1) N is coprime submodule iff for each » € R either ,. M_ Oy = N or , M_ M, that is N is
N = N N
N
a coprime submodule if for each » €R, either » € [N:M] or for any m € M, there
exists m' € M such that m —r m' € N.
(2) Z is a coprime submodule of the Z-module Q, since — is a coprime Z-module [4], [6].

Note that Z is not coprime Z-module, since when r=2 # 0,27 # Z.

(3) Every submodule N of the Z-module Z  is a coprime submodule, since Z /N=
p p
Z ., and Z _ is a coprime Z-module, hence Z /N is a coprime Z-module.
p p p
(4) Let M be a coprime R-module, then every proper submodule N of M is a coprime
submodule.
proof: Since M is a coprime R-module, then by [3,cor. 2.1.12], — 1is a coprime R-
N

module, for all N < M. I;;Ience N is a coprime submodule.
(5) If N is a maximal submodule of an R-module M, then N is a coprime submodule.

proof: Since N is maximal, — is a simple R-module, hence — is a coprime R-

module. Thus N is a coprime submodule.

(6) The converse of (4) is not true in general for example, Z is a coprime submodule of the Z-
module Q (see 1.1 (2)) but Z is not a maximal submodule of Q.

(7) Let M be an R-module, let I be an ideal of R suc_h that I < ann M, let N < M. Then Ii is a

coprime R-submodule of M <> N is a coprime R -submodule of M, where R =R /1.
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proof: (=) Let N be a coprime R-submodule. Then — is a coprime R-module and hence by
N

[3, cor. 2.1.9], — 1is coprime R -module. Thus N is a coprime R -module.
N

(<) The proof is similarly.

1.2 Proposition:
If N is a coprime submodule, then [N:M] is a prime ideal.

M
proof: Since N is a coprime submodule, — is coprime R-module. Hence ann — is a prime
N

M
ideal of R [3, note 2.1]. But ann — =[N:M], so [N:M] is a prime ideal.
N

Recall that an R-module M is called secondary if for each » € R, either rm=20 or
"M =M, forsomen € Z.. [7].

We have the following
1.3 Proposition:

Let M be a secondary R-module, let N <M. Thg_p N is a coprime submodule iff [N:M] is
a prime ideal of R.
proof: (=) It follows by prop. 1.2.

M
(<) Since M is a secondary R-module, then — 1s a secondary R-module. But [N:M] =
N

M
ann— 1is a prime ideal, so by [3,prop.1.2.6], — 1is a coprime R-module, hence N is a
N N

coprime submodule.
1.4 Proposition:

Let N be a proper submodule of an R-module M. Then N is a coprime submodule iff
[N:-M]=[W:M] for all W o N.

M M
proof: If N is a coprime submodule, then — is a coprime R-module. Hence ann — = ann
N
M
N M M .
W for all WoN. It follows that ann — =ann — ; that is [N:-M ]= [W:M].
— N W
N
M
M M M T
If [N:-M] = [W:M], for all W > N, then ann—=ann—. But —= W SO ann
N W w2
N

M
— =ann % and — is a coprime R-module. Thus N is a coprime submodule.
N —

N

1.5 Proposition:
Let W be a coprime submodule of M and let N < M gﬁuch that N > W. Then N is a

coprime submodule of M and W is a coprime submodule of —.
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proof: Since W is a coprime submodule, then W is a coprime R-module. Hence by [Rem

and Ex 1.1 (4)], W is a coprime submodule of — . Also W is a coprime R-module

implies (M/W) / (N/W) is a coprime R-module [3,cor. 2.1.12]. But (M/W) / (N/W) =
M /N, hence M / N is a coprime module by [3, Cor. 2.1.14]. Thus N is a coprime submodule
of M.

1.6 Proposition:

N
Let M be an R-module, let N, W be proper submodules of M, N > W such that —W isa
coprime submodule of — .Then N is a coprime submodule of M.

M
proof: Since — is a coprime submodule of W, we have (M/W) / (N/W) is a coprime

module. Thus M / N is a coprime module and so N is a coprime submodule of M.

The following results follow directly by proposition 1.5.
1.7 Corollary:

If N is a coprime submodule of an R-module M, I an ideal of R. Then [N : 1] is a
M

coprime submodule of M.
1.8 Corollary:

Let A, B be proper submodules of an R-module M. If A or B is a coprime submodule
and A+ B # M. Then A + B is a coprime submodule of M.

1.9 Proposition:

Let I be aproper ideal of aring R. Then I is a coprime ideal iff I is a maximal ideal of R.
proof: If I is a coprime ideal of R, then R/l is a coprime R-module. But R/I is a multiplication
R-module, so by [3,Rem. And Ex. 2.1.3(5)] R/I is simple R-module. Thus I is a maximal ideal
of R.

The converse follows by (Rem. And Ex. 1.1.(5)).

1.10 Corollary:

Let R be aring The following are equivalent:
(1) (0) is a coprime submodule of R.

(2) R/(0) LI R is a coprime ring (that is R is a field).
(3) (0) is a maximal ideal of R.
1.11 Corollary:

Let R be a PID, let I be anonzero proper ideal of R. Then the following are equivalent:

(1) Iis a coprime ideal of R.
(2) Iis a maximal ideal of R.
(3) lis aprime ideal of R.

1.12 Note:

If N is a coprime submodule of an R-module M. Then it is not necessary that [N:M]is a
coprime ideal of R, as the following example shows:

Z is a coprime submodule of the Z-module Q but [Z:Q] = (0) is not a maximal ideal of Z,
that is (0) is not coprime ideal of Z.

1.13 Proposition:

Let M be a multiplication R-module, let N be a proper submodule of M. Then N is a

coprime submodule iff [N:M] is a coprime ideal of R.
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M
proof: If N is a coprime submodule of M, then — is a coprime R-module. But M is a
N
multiplication R-module implies — is a multiplication R-module. Hence by [3,Rem. and Ex.
N

M
2.1.3(5)] — is a simple R-module. Thus N is a maximal submodule of M which implies that
N

[N:M] is a maximal ideal. Then by prop. 1.9, [N;M] is a coprime ideal.

Conversely, if [N:M] is a coprime ideal of R, then by prop. 1.9, [N:M] is a maximal ideal
of R. Now M is a multiplication module and [N;M] is a maximal ideal of R implies that
N=[N;M]M is a maximal submodule of M. Thus by Rem. and Ex. 1.1 (5), N is a coprime
submodule of M.

1.14 Corollary:

Let M be a multiplication R-module and let N < M. The following are equivalent:

(1) N is a coprime submodule of M.

(2) [N:M] is a coprime ideal of R.

(3) [N:M] is a maximal ideal of R.

(4) N is a maximal submodule of M.

proof: (1) < (2) it follows by prop. 1.13.

(2) & (3) it follows by prop. 1.9.

(4) = (1) by Rem. and Ex. 1.1 (5).

(3) = (4) Since M is multiplication, and [N:M] is a maximal ideal, then N is a maximal
submodule of M.

The following result shows that a homomorphic image of a coprime submodule is a
coprime submodule.
1.15 Theorem:

Let w:M——> M’ be an R-epimorphism, let N < M. If N is a coprime submodule of M,
then y(N) is a coprime submodule of M".

!

proof: To prove y(N) is a coprime submodule of M', we must prove

is a coprime R-

M’ M’ M’ ) M’
= for all » ¢ ann . First r ¢ ann ——,
y(N)  y(N) y(N) y(N)

means that r ¢[y(N):M']. It is easy to check that [N:M] < [w(N):M']. Hence

module, so we must show that r

re[N:MJ= annﬁ. On the other hand N is a coprime submodule, implies — is a coprime
N

M M | M M’
R-module. Hence » — = — since » ¢ ann — =[N :M]. Now, let y + y(N) € ——,
N N N y(N)
y(m) for some m € N, since y is an epimorphism. Thus y+ y(N) = y(m) + y(N)= y(m +
N). Hence there exists m' € M such that. m + N =rm +N, soy+ y(N)=y(rm' +N) = r
M’ M’ M’ M’
y(m')+ N =r (y(@m') + N) € r —. Thus r ——=—— and so
N y(N)  y(N) Y(N)
module. Hence y(N) is a coprime submodule of M".
Now, we turn our attention to direct sum of coprime submodules.

SOy =

is a coprime R-
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1.16 Theorem:

M M
Let M|, M, be R-modules, let N; < M, N, < M, such that ann—- = ann—2 . Then N =
Nl N2
N@N, is a coprime submodule of M iff N, is a coprime submodule of M, N, is a coprime
submodule of M ,.
proof: (=) Let p;:M @M, —> M, p:M M, —> M, be the natural projection. Hence

pi1(N1®N,) = Ny, p2(N;®N,) = N, and so by theorem 1.15, N; is a coprime submodule of My,
N, is a coprime submodule of M.

Conversely, to prove N;®N, is a coprime submodule of M ®M,. Since N;, N, are

M M
coprime submodules of M |, M, respectively, then —L and —2 are coprime R-module and
Nl N2
Ml MZ Ml M2
since ann— = ann —= it follows that — ® —= is a coprime R-module (see [7], [3,prop.
Ny N, N N,

M oM M M
2.3.3). But it is easy to check that 1 20l e 2 Hence by [3,cor. 2.1.14],

N N
N, ®N, 1 2
M, oM,
———= is a coprime R-module. Thus N;@N, is a coprime submodule of
M ®M,.
1.17 Remark:
Ml MZ
The condition ann—-=ann—= 1is necessary condition in Th. 14, as the following
N N
1 2

example shows:
Consider the Z-module Z. Let N, = 2Z, N, = 3Z, N,, N, are maximal submodules of Z,
so Ny, N, are coprime submodules of Z (see Rem. 1.1(5)). Let N=N, ®&N,=2Z ® 3Z

< Z@®Z. 1t is clear that ann£¢ann£. Now ZG_)—ZEE@ ED 22 (—BZ3 (] Z6'
N1 N2 N1 @NZ N1 N2

VA YA

But Z¢ is not a coprime Z-module, so T is not a coprime Z-module. Thus N; @ N, is
N N
1 2

not a coprime submodule of Z®Z.

The following property explains the behaviour of coprime submodules under
localization.
1.18 Proposition:

Let S be a multiplicative subset of a ring R. Let N be a proper submodule of an R-
module M such that S 'N# S 'M.If Nisa coprime submodule of M, then S~ 'Nis coprime
sbmodule of S 'M.

proof: N is a coprime submodule of M implies — is a coprime R-module, then by
N

M
[3,prop.2.1.38], S~ 1(_j is a coprime S 'R-module. But [5,lemma 9.12,p.173],
N
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-1 M S_IM S_IM . . — 1 — 1 . .
S| —|= =5 s0 —— is a coprime S R-module. Hence S° N is a coprime
N STN S™N
submodule of S 'M.
Recall that an R-module M is antihopfian if M = M/N for all N;M (4).
Hence we get the following result directly.
1.19 Remark:

Let M be an antihop fian R-module. Then every submodule of M is coprime submodule.

M M
proof: Since M [J —, ann M = ann—, that is M is coprime R-module. Then by (Rem. and

Ex. 1.1(4)) every proper submodule is coprime submodule.

1.20 Proposition:

Let M be a finitely generated R-module, let N<M. If N is aicoprime submodule, then N
is prime.
proof: Since N is a coprime submodule, M/N is a coprime R-module. But M is a finitely
generated R-module, so M / N is finitely generated. Hence by [3,Th. 2.4.8], M/N is a prime R-

M
module and hence Oy = N is a prime submodule of — . It follows that N is a prime
N

submodule of M.

1.21 Remark:

The condition M is finitely generated in prop. 2.1 is necessary condition, as the
following example shows.

Z is a coprime submodule of the Z-module Q and Q is not finitely generated. Also Z is
not a prime submodule of Q.
1.22 Corollary:

Let M be a Noetherian coprime R-module, then every proper submodule of M is prime.
proof: It follows directly by prop. 1.20.

1.23 Proposition:

Let M be an R-module such that yM m N = N for all » € R and for all N < M.
Then every prime submodule is a coprime submodule.
proqf)f: Let N be a prime submodule of M. Let W > N. We shall prove that:

M W \Y% M W
r— n—=r— as follows: let xe r — N —, so x =w + N=r (m + N) for some weW, m €
N N N N N

M. Hence r m — weNcW. Thus » m € W, which implies that rm erM "W=rW and hence r
W

m=r y for some yeW. Then rm + N=r y + N, thatis » (m + N) =r (y + N)er —. Thus
N

M W
r — N — =r — . On the other hand, N is a prime submodule of M implies — is a prime R-
N

N N N
M . . : .
module. Then by [3,prop. 2.4.1,p.54] — is a coprime R-module and hence N is a coprime
N

submodule.

1.24 Corollary:
Let R be a regular ring (in sence of Von Neumann), let M be an R-module. Then every
prime submodule of M is a coprime submodule of M.
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proof: Since R is a regular ring, implies Y/MN=rN for all » €R and for all N<M, then the
result is obtained by prop.1.23.
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