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Abstract

This paper includes studying (dynamic of double chaos) in two steps:
First Step:- Applying ordinary differential equation have behaved chaotically such as
(Duffing's equation) on (double pendulum) equation system to get new system of ordinary
differential equations depend on it next step.
Second Step:- We demonstrate existence of a dynamics of double chaos in Duffing's equation
by relying on graphical result of Poincare's map from numerical simulation.
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Introduction

Dynamical system defined as a map ¢ such that ¢:KxX——>X where X is a nonempty set
and entire K = [J or K= [J which satisfies the following conditions
$(0,x) =x
O(5,0(6,%)) = d(s+,%)
for all s,t € K, xe X, [1] chaotic dynamic is a study of such systems behavior and dispite the
unpredictability of chaotic motion.
1.1 Definition:
Let f:J —— J be any function where J is an open set then f has (sensitive dependence on
initial condition)
(Vxel) if (3yel)) and (nell ) such that
If |x — y| <& then | fV(x) — f(y)| >e.
Raughly speaking the iterates of neighboring points separate from one another, [2].
1.2 Definition:
Let J be a boundary open set, and f:J] —— J be a continuous differentiable function on J
(Vxel), Mx) = y_{l}o(l/n) In|f™(x)| and the limite exists, A(x) is the (Lyapunov exponent) of

fat x, [2].
1.3 Definition:
A function f is chaotic if it satisfies at least one of the following conditions:
i. fhas positive Lyaponov exponent at each point of its domain (i.e. eventually periodic).
ii. f has sensitive dependence on initial condition of its domain, [2].
2- Poincare's Map:
Let P a map which is defined as the following:-
P:>——>> such that > is a two dimensional cross with coordinates x and y the time
dimension t of this map which takes the path orbits of the point xo lies on X onto its image
Py(x0) by the map P.
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m
Therefore Poincare map treats the non autonomous ordinary differential equation system x

0 7dx U dy ) 0
=f(x, x,t) for X=E=y and y=a=f(x,y,z) where z = t with z=1 and for the

autonomous system of ordinary differential equation

m 0 dX 0
=f(x,x) for —=x=
x =1(x,Xx) @ X=y

dy ;
and a X=y= f(X,X,O) = f(Xa Y. 0) = f(X’ y)

where z=t=0, [1].
Duffing's Equation:-
Duffing's equation was first given in 1918 is a non linear oscillator differential equation

of second order non-autonomous type, take the form:

m 0
X +hx —Bx + ax’ = C cos(wt) (D)

for a, B, h> 0.

Its significance comes from representing chaotic behavior of non linear ordinary
differential equation, [3].

According to equation (1) we first let

X = X
0 0

X=X, =X,
m m 0
X=X, =X,

Then we have the system
]
X, =X,

(2)

0
x, =PBx, —hx, —ax; + Ccos(wt)
In [4] obtained that for Ce(1.08,2.45).
The average results fail completely and the solution behave in a complex and erratic

manner, i.e. chaotic, these results came out by examining successive iterates of Poincare map
m 0
with non-autonomous ordinary differential equation system x =x, = f(x,x,,t).

While in [5] obtained chaotic behavior of system (2) for different values of the

parameters h and c with B =0, a. = 1.
Double Pendulume Problem: [5]

The problem is a direct application of Newton's law to the motion of simple systems and
in this paper it is about the following simple system:

m g m
26+2T9+¢=0
W m ...(3)
¢+e+%¢=0

where ¢, 0 are the angles of the first and second pendulum respectively.
3- Double Duffing's Oscillators:
For the ordinary differential equation in (3) if both of the first and the second pendulum
correspond to the motion of Duffing equation). By letting
db=x=x
0=x=x;



0 0 0 M M
then y =x=x, = y =x=Xx,
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and z =t -

N o N=

Zr =1t d =1

The above assumption would give us the following ordinary differential equation system.
0

X, =[(a+2%)xl—2%xl—2%x2—xf +Ccos(wz,)]/b

0

yl :2%X2_2§X1

0

z, =1

0 ...(4)
X, Z[(a+2%)xz —%xl —x; +Ccos(wz,)]/b

y :—2%x2 +%x1

z, =1
with boundary conditions:
x1(0) =0, x2(0) =0

yi(0)=1,y2(0)=1
21(0) = 0, z2(0) = 0.

Graphical Results

The results come out by examining the successive iterates of Pioncare map for (4) which

m m
treat both of x =f(x,,x,,t) and y=f(x,,x,). Using the track hold device the computer

record the values of (x2,y2) represent the chaotic motion of second one, therefore the next
phaseplane plots show double chaos for eight different cases.

In table (1) each line shows a chaotic case defer from one to another depending on the
value of I, a and b, in order to distinguish between the phase plan plotes of the points (x,y1)
as a solution values of the second pendulum which appear as a solid line and the values of the
first one for (X»,y2) which appear as a dotted line.
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Table (1) Parameters of chaotic behavior cases for equation (4)

| a b c d

20110 |1 0.3 1

20| 1 1 0.3 1

20110 |10 | 0.3 1

20| 1 10 | 0.3 1

20| 1 25 103 1

5 |10 |10 |0.3 1

5 |2 10 0.3 1

5 |3 4 0.3 1
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Fig. (1) Chaotic casel fora=10,b=1,¢=.3,d=1,=20
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Fig. (2) Chaotic Case 2 fora=1,b=1,¢=.3,d=1,{=20
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Fig. (3) Chaotic case 3 fora=10,b=10,c¢=.3,d=1,0=20
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Fig (8) Chaotic case8 fora=3,b=4,c=.3,d =1,
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