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Abstract 

In this paper, we present an approximate analytical and numerical solutions for the 
differential equations with multiple delay using the extend differential transform method 
(DTM). This method is used to solve many linear and non linear problems. 
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Introduction  
In this paper, we extend the differential transform method (DTM) to solve the nth order 

differential equations with multiple delay of the form:  

y(n)(x) = f(x,y(x),y(x – r1), y(x – r2), …, y(x – rm)) , mℕ                               
…(1) 

where  y : I  ℝ, f: I ℝ2
  ℝ,

 

I  ℝ, r i > 0, i = 1,2, …, m 
 
The differential transform method was first applied in the engineering domain in [1]. In 

general, the DTM is applied to find the solution of electric circuit problems [2]. The DTM is 
numerical method based on Taylor series expansion, which is constructed as an analytical 
solution in the form of a polynomial. The traditional high order Taylor series method requires  
symbolic computation. However, the DTM obtains a polynomial series solution by means of 
an iterative procedure [3]. Recently the application of differential transform method is 
successfully extended to obtain approximate solutions to linear and nonlinear functional 
equations.  

 Delay differential equations are observed in many fields of science and technology, 
such as biology engineering and physics. Many dynamic population first order nonlinear 
scalar equation of the form  
y'(x) = g(y(x)) – g(y(x – L))                                  …(2) 
 
may be used as a model for certain population growth if individuals have a constant life span 
L, where y(x) is the population size at time t and g(y) is the birth rate. 

Recently, various methods such as, monotone iterative technique, a domain 
decomposition method and the spline functions method have been considered for approximate 
solutions of DDE [4]. 
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Hence, due to practical reasons and the papers mentioned above, we have been  

motivated to deal with DDE and develop DTM for both linear and nonlinear delay differential 
equations. According to the best of our knowledge, DTM has not been studied for DDE till 
now. With this technique, it is possible to obtain highly accurate numerical solution, 
analytical solution and as well as exact solutions.   

The aim this paper is to extend the method of differential transformation for solving 
differential equations with multiple delay of difference types as in equation (1). 

 
 

Differential Transform Method 
        The differential transform of a function y(x) is defined as, [2]: 

0

k

x xk

1 d
Y(k) [ y(x)] , k

k! dx
 �

                               

…(3) 

where Y(k) refers to the differential transform of a given function y(x), and 0x  is the  initial 

state. 
Throughout this paper, we use the small and capital letters to represent the original and 

transformed functions, respectively. 
The inverse of the differential transform Y(k) is defined by 

k
0

k 0

y(x) Y(k)(x x )




 
                                  

…(4) 

 
The automatic computation of DTM might be done. In this case, the following steps 

should be taken into consideration successively: 
i) The differential transform of each term in the DDE is computed ;  
ii)  The recurrence equation is obtained ; 
iii)Y(0), Y(1), Y(2), Y(3),… are calculated by the recurrence equation and given initial 
condition ; 
iv)Finally, these values are substituted back into eq. (4). 
 

Preliminaries of the DTM  
The following theorems give the properties of the DTM which can be easily derived 

from equations (3) and (4), for their proofs and more details (see [5], [6]).  
 

Theorem (1):- If y(x) = f(x)  g(x), then Y(k) = F(x)  G(x). 
 
Theorem (2):- If y(x) = c f(x), then Y(k) = c F(x) 
 

Theorem (3):- If
n

n

d f (x) (k n)!
y(x) , then Y(k) [ ] F(k n)

k!dx


   , k ℕ.  

Theorem (4):- If
1

k

1 1
k 0

y(x) f (x).g(x), thenY(k) F(k )G(k k )


   , k ℕ.  

 
Moreover, we need the following theorem (see [4], [5]) : 
 

Theorem (5):- If y(x) = f1(x)  f2(x) … fn – 1 (x)  fn(x), then 

n 1 n 2 2 1

k 3n 1 2

1 2 2 1 n 1 n 1 n 2 n 2 1
k 0 k 0 k 0 k 0

kk k
Y(k) ... F (k) F (k k )...F (k k ) F (k k )

 



  
   

        
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Main Result 
        The following theorems are proved to give the differential transform of given functions  
with constant delay. 
Theorem (6):- The differential transform of y(x) = f(x – r), r  1, is  

 1 1

1

N hh k h k1
1kh

Y(k) ( 1) r F(h ), N      

Proof: - Using the definition of the inverse DTM where the definition given by eq. (4), we 
get: 

k
0

k 0
y(x) F(k)(x r x )




  

          

        
0 1 2 3

0 0 0 0F(0)(x r x ) F(1)(x r x ) F(2)(x r x ) F(3)(x r x ) ...            
 

        

2 3 0 2 3
0

1 2 3 2
0 0

[F(0) rF(1) r F(2) r F(3) ...](x x ) [F(1) 2F(2) 3r F(3) 4r F(4) ...]

(x x ) [F(2) 3F(3) 6r F(4) 10r F(5) ...](x x ) ...

          

       
 

   
   

1 1 1 1

1 1

1 1 1 1
1 1

h hh h 0 h 1 h 1 11 1
1 0 1 0h 0 h 10 1

h hh 2 h 2 h 3 h 32 31 1
1 0 1 0h 2 h 32 3

( 1) r F(h )(x x ) ( 1) r F(h )(x x )

( 1) r F(h )(x x ) ( 1) r F(h )(x x ) ...

   
 

    
 

       

      

 

 1 1

1

hh k h k k1 h1 0kk 0 h k
y(x) ( 1) r F( )(x x )

 
 

 
                   …(5) 

Taking in to account eq. (4) and eq. (5), we have Y(k) as:  

 1 1

1

N hh k h k1
1kh

Y(k) ( 1) r F(h ), N    

 

 
Theorem (7):- The differential transform of y(x) = f1(x – r1)f2(x – r2), provided that r1 > 0 
and r2 > 0  is: 

       

1 1 2
1 2 1 2 1

1 11 1 2 1

h h hk N
h h k h k h k k

h h1 1 2 2
k k k kk h h k k

Y(x) ( 1) r r F ( )F ( ), for


    

 

   
      

   
N

 Proof: let the differential transforms of f1(x – r1) and f2(x – r2) at x = x0 be G1(k) and G2(k), 
respectively. 

  Using theorem (4), we have the differential transform of y(x) as: 
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1

k

1 2 1
k 0

Y(x) G(k)G (k k) ...(6)


 

               

 From theorem (6), we get: 

1
1 1

1
11 1

hN h k h k
h1

kh k

G (k) ( 1) r F( ), forN 



 
    

   

and 

2
2 1 2 1

2
11 1

hN
h k k h k k

h2 1
k kh k k

G (k k ) ( 1) r F( ), forN   

 

 
     

   
 

Substituting these values in to equation (6), we obtain :  

 

1 2
1 2 1 2 1

1 11 1 2 1

h hk N
1h h k h k h k k

1 1 2 2
k k kk h h k k

h
Y(x) ( 1) ( ) r r F (h )F (h ), N

k


    

 

  
       

    

The next remark shows that the DTM in DDES is generalization to the DTM in ODES. 
 
Remark:- If r1 = 0 and r2 = 0, then theorem (7) reduces to theorem (4). 

 
Similarly, as in theorem (7) we may generalize the result for the n-delays as in the next  

theorem: 

Theorem (8):- The differential transform of y(x) = f1(x – r1)f2(x – r2)…  fn(x – rn),  provided 
that ri 0,     i = 1, 2, …, n

  

is: 
 

h h hk kk k N N N N 1 2 n 13n 1 2 h h ... h k1 2 nY(k) ..... ..... ( 1) ..
k k k k kk 0h 0 k 0k 0h k h k k h k k h k k 1 2 1 n 1 n 2n 1 n 2 2 1 1 1 2 2 1 n 1 n 1 n 2 n n 1

hn h k h k k h1 2 1r r ....r1 2 n 1
k kn 1

                    
                           

     
   

k k h k kn 1 n 1 n 2 n n 1r F (h )F (h )...F (h )F (h ), for Nn 1 1 2 2 n 1 n 1 n n
         

  
                                                                                                                                                            
…(7) 
 

Illustrative Examples 

       In this section, some liner and nonlinear differential equations with multiple delay are 

considered .By using DTM , we obtain an approximate and exact solutions when the original 

problem has an exact solution in polynomial form. 

 

Example 1:- Let us consider the following initial value problem: 
dy

y(x 1) y(x 2) 2x 2,0 x 1 ...(8)
dx
          
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 with the initial condition  
y(0) = 0                                                     …(9) 
 

 

        By applying the DTM, we can get the exact solution for eq. (8) and eq. (9). 
Indeed, using theorems (2), (3) and (6) the differential transform for equation (8) is found as  
 

h hN N1 2h k h kh k h k1 21 2(k 1)Y(k 1) ( 1) 1 Y(h ) ( 1) 2 Y(h ) 2 (K 1) 2 (K)1 2
k kh k h k1 11 1 2

                   
       

…(10)                                                                           

where (k – n) is the differential transform of xn at x0 = 0 and it is easily show that:   

1,k n
(k n) ...(11)

0,k n,n 0,2


  

 

 

 
Considering, the differential transform of y(x) at x0 = 0, the initial conditions in equation (9) 
are transformed into Y(0) = 0 , respectively. 

Form equation(10), we obtain: 

 

Y(1) = 1, Y(k) = 0, for k  2 

        Then, by using the inverse transform defined by equation (4), we obtain the exact  

solution y(x) = x. 

 

Example 2:In this example, we consider the second order linear differential equation with 

multiple delay: 

 

2
2

2

d y
y(x 1) y(x 2) 2x 6x 7,0 x 1 ...(12)

dx
              

 and the following  initial condition:  
 
y(0) = 0, y'(0) = 0                                                                                                                               
…(13) 
 
Using theorem (3) and (6), the differential transform for eq. (12) is found as:  
 
 
 

h hN N1 2h k h kh k h k1 21 2(k 1)(k 2)Y(k 2) ( 1) 1 Y(h ) ( 1) 2 Y(h ) 2 (K 2) 6 (K 1) 7 (K)1 2
k kh k h k1 2

                       
       

                                                                                                                              
…(14) 

where (k – n) is defined in equation (11)  
 

Considering, the differential transform of y(x) at x0 = 0, the initial conditions in equation 
(13) are transformed into:  
Y(0) = 0, Y(1) = 0                                           …(15) 
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Taking N = 3 ,we obtain the following system of  linear algebraic equations by using 

equation (14) and eq.(15) for k = 0, 1. 

   7Y(2) – 9Y(3) = 7  

– 6Y(2) + 21Y(3) = – 6 

Solving this system, we obtain: 

Y(2) = 1, Y(3) = 0 
Similarly, we have Y(k) = 0, for k  4.  
Then, by using equation (4), we obtain the exact solution y(x) = x2. 

 

Example 3:- consider the linear differential equation of third order  
3

x 0.3x 0.3
3

dy
y(x) y( ) ,0 x 1 ...(16)e

dx
      

 and the following initial conditions  
y(0) = 1, y'(0) = – 1, y''(0) = 1                                         …(17) 

Using equation (3), the differential transform of x 0.3
e
   at x0 = 0 are obtained to be 

1 k 0.3( )( 1)
k! e .then because of theorems (3) and (6) the differential transform of  equation 

(16) is:  

1
hN 1h k h k k 0.31

kh k1

1
(k 1)(k 2)(k 3)Y(k 3) Y(k) ( 1) Y(h ) ( 1) e ...(18)(0.3) 1 k!

   
 

  

        

 Considering, the differential transform of y(x) at x0 = 0 the initial conditions in equation 
(17) are transformed into: 

 1Y(0) 0,Y(1) 1,Y(2) , ...(19)
2

  

 
Taking N = 6, we obtain the following linear algebraic equations system by using 

equation (18) and equation (19) for k = 0, 1, 2, 3. 

5.973Y(3) 0.0081Y(4) 0.00243Y(5) 0.000729Y(6) 0.995141192

0.27Y(3) 23.892Y(4) 0.0405Y(5) 0.01458Y(6) 0.950141192

0.9Y(3) 0.54Y(4) 59.73Y(5) 0.1215Y(6) 0.325070596

2Y(3) 1.2Y(4) 0.9Y(5) 119.46Y(6) 0.2

    

   

     

     24976468  

Solving this system, we obtain:  

 

Y(3) 0.1666666589, Y(4) 0.04166662168

Y(5) 0.008333153417, Y(6) 0.001388386354

  

    

 
Subsisting these value of Y(K) for k = 0, 1, 2, 3 into equation (4) we obtain the 

following approximate solution : 
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2 3 4 5y(x) 1 x 0.5x 0.1666666589x 0.04166662168x 0.008333153417x

60.001388386354x ...

      


 
For N=8, the approximate solution is given as: 

2 3 4 5y(x) 1 x 0.5x 0.1666666666x 0.04166666657x 0.0083333329417x

6 4 7 5 8 6 90.001388887387x 1.98084138 10 x 2.479261343 10 x 2.742273669 10 x

7 10 8 112.61716267 10 x 1.626927858 10 x ...

      

       

     

 

      Comparison between the numerical results for N = 6, N = 8 and the exact  

solution xy(x) e (see[3]) , are given in table (1).  
Example 4:- Consider the nonlinear DDE with multiple delays:  

2

x x x
2

d y 1
y(x ).y(x ) sin .cos cos ,0 x 1 ...(20)

4 4 2dx

 
       

 and the initial conditions  
y(0) = 1, y'(0) = 1,                                       …(21) 

           

 
Using theorem (3) and (7) the differential transform of equation (20) is obtained as  
 

1 2

1 1 1 2 1

k N N
h h k

k h k h k k
(k 1)(k 2)Y(k 2) Y(k) ( 1)  

  
       

h h h k h k k1 2 1 1 1
h h1 2

k k k1

Y( )Y( )( ) ( )
4 4

   
 
   

     
 

 

 
k k

x x x
k k

1 1 1d d[ (sin cos )] [ (cos )] (k) ...(22)
k! k! 2dx dx

 
  

 
where (k – n) is defined in eq. (11), with n = 0.   
The initial conditions in eq. (21) are transformed in to:  
Y(0) = 1, Y(1) = 0 
 
From eq. (22), we obtain: 

1 1
Y(2) , Y(3) 0, Y(4) , Y(5) 0

2! 4!


   

 

1 1
Y(6) , Y(3) 0,Y(8) , Y(9) 0

6! 8!

1 1
Y(10) , Y(11) 0, Y(12) , Y(13) 0,...

10! 12!


   


   

 

Substituting these values in to eq. (4), we obtain the following analytical solution,
 

2 4 6 8 10 121 1 1 1 1 1
y(x) 1 x x x x x x ...

2! 4! 6! 8! 10! 12!
       
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Which is formally the same as Maclaurin Series of cos x. In fact y(x) = cos x is the 

exact solution for eq. (20) and (21). 
 
 

Conclusions  
        In this paper the differential transform method is developed for solving differential 
equations with multiple constant delays. First, some new theorems are provided and then used 
to solve linear and nonlinear DDES. The obtained results are found to be very accurate in 
comparison with the exact solution. 
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            Table (1):Comparison of numerical results 
 

x N = 6 N = 8 Exact 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1 
0.90483734 
0.81873067 
0.74081810 
0.67320002 
0.60653066 
0.54881137 
0.49658521 
0.49328974 
0.40656969 
0.36787959 

1 
0.90483739 
0.81873073 
0.74081814 
0.67320001 
0.60653065 
0.54881161 
0.49653034 
0.44932890 
0.40656966 
0.36787946 

1 
0.90483741 
0.81873075 
0.74081822 
0.67032004 
0.60653065 
0.54881163 
0.49658530 
0.44932896 
0.40656965 
0.36787944 
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