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Abstract

In this paper we give definitions, properties and examples of the notion of type N-
topological space. Throughout this paper N is a finite positive number, N = 2. The task of
this paper is to study and investigate some properties of such spaces with the existence of a
relation between this space and artificial Neural Networks (ANN'S), that is we applied the
definition of this space in computer field and specially in parallel processing

Introduction

Finite spaces were first studied by P.A. Alexandroff in 1937. Actually, finite spaces had
been more earlier investigated by many authors under the name of simplicial complexes.
There were several other contributions by Flachasmeyer in 1961, Stongin 1966 and L.Lotz in
1970, in this paper we define and study the notion of N- topological space and discuss some
properties of finite spaces. However, the subject has never been considered as a main field of
topology.

With the progress of computer technology, finite spaces have become more important.
Herman in1990, Khalimsky and et. al. in 1990, kong and Kopperman in 1991 and [1] have
applied them to model the computer screen.

In this paper we focus on N- topological space, The main importance of study is to offer new
formulations for separation axioms in N- topological sp ace.

We present and study comparisons between N- topological space and Ann'a in the case of
finite spaces.

2. Basic Definition of V- topological space and their properties

In this section we introduce the notion of N- topological space, and give its properties.
Several of the classical results [2] are extended by defining appropriate substructures on the
N- topological space. Examples are given to illustrate these structures.

Definition 2.1
Let ( X, T-+T5: ..., Ty ) be a non empty space with N different topology. {X, T- i T2, ... Ty} is
called " N-topological space " if there exists N proper subspace X;, .., X, of Xsuch that:
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1LX =% W g U By
2.7y =X 11T, 1s a subspace of (X T;] , where i=1,2,....N .

Example 2.2

Let ( {1, 2,3}, T.,T-. T3 ) be 3 — topological space where t;={X, @ when X= {1,2,3},
T,={X, {1}, @} and T5={X,{2},2}

Let ®y={1}, ¥;={2} and X;={3}.It clear that X=X; WX, VX; and 7, = {{l}, @},
T ={{ 2,0}, T = {{31,0).

It is clear that (i, T+, Jis a topological space of (X 7;] fori=1,2,3.

Now, we give the definition of open set in N- topological space.

Definition 2.3
A subset U of N-topological space ( X, T-, T2, ..., Ty; ) is said to be an ""/V- open set " if

and only if it is open in T,, for some i=1,2,...,N.
Definition 2.4

The complement of N- open set in N- topological space ( X , T, T4, ... Ty ) 1s said to be
an " N-closed set ".

Remark 2.5
1- Every open set in topological space (X .7;] is N- open set, foralli=1,2,...,N,

But the converse is not true, (see the following Example 2.6).
2- Every closed set in topological space (X .7; is N- closed set, for all i=1,2,..,.N
But the converse is not true, (see the following Example 2.6).

3- Every open set in subspace :J'l,_. T j for all = 1,2,...,N need not to be N- open set in N-
topological space ( X, T, T3, ... Ty ), only if the subspace X; is open in (X .7; ], ( see the
following Example 2.6 ).

Example 2.6

Let (H,T.,T-.T3. T, ) be 4-topological space (where B is the set of natural numbers)
such that 7y — {M, [1]. @}, 1, — W, [2]. @}, 73 — {M.[3.1]. 2}, 7, — {4.[5]. D}

And let X, X,, X3, X4 be four subspace of X such that:

X= {1} implies 7 ={[1], @]

Xy= {2} implies 7 ={[2], @]

X5= {3} implies 1'.;_1::{{'_'-}, iy

X,={4,5,6,7, ...} implies t,.suzéjq_. b6, 4, L L fuh o

It is clear that X= X U X,u X350 X4

Now, to show the converse of part (1) is not true, let {1} is N- open set in
"M.T..T-,Ty T, ) but it is not open set in each (X .7;J; i= 1,2,...,N.

Also, to show the converse of part (2) is not true, let {2, 3,4, 5, ...} is N- closed set
"M,T.,T-. Ty, T, ) but it is not closed set in each (X .7;}; i= 1,2,...,N. And also notice that the
subspace X;= {1} is open in (M,t.} implies that each open set in [¥;, T, }is N- open set in
' H.T-,T5,T5, T, 1. But in the other hand notice that the subspace X;= {3} is not open in (Xj,
T, ) implies that each open set in (X3 T3 ) need not to be N- open set in {H,T-, T4, T3, Ty v

Next, we give a definition about sub N- topological space.

Definition 2.7
Let ( X, T-, T3, ... Ty ) be N- topological space (¥ = Z) . The subspace Y(# &)

of Xis called a sub N- topological space of X if and only if
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( 1) There exists N proper subspace ¥j,¥i,..., ¥ of Y such that
Y EXL, Y-V UuY-1.UYy and (Y, T4 T-, ..o Ty | is sub-N-topological space of ( X,
TyTaee Ty ), thatis ;=Y N1,

(i) 7= ¥; N 1" issubspace of (Y, 7, J .1 = L2, IV
Eexample 2.8

Let (X, T..T-. T3 ) is 3 — topological space where X={1,2,3,4,5,6,7}, 1,={X, @ .

7,={X, @, {2,4,6}},and 1,={ X, @, {3,7}} and let X, — {1.2,3}, X, —{45L %, — {67 -

Let Y ={2,3,56},17," =YN Ty ={Y, T}, .. =Yni1,= {Y, I, {2,6}}, 13=Yn 13 = {Y,

3, {3}}.

It is clear that (Y, 7y .7, . Ty ) is sub 3- topological space of (X, T-,T-. Ty ) Where

¥ ?1 A 1[:2 L Tg 5 1:|r1={2,3} — .-‘:1, 1:Ir:={5} - :!':.-_-_-. &?g={6} — :‘:g and 'T'||r;=
.‘Ir.' [-IT.lII = ['::".l N . ]_. T = -'f-;- ri 'T_-_-I EI:"-' _.--'f-q : : F'JEZTE i Tgl :{Q, .':Irg :.

I

Now, we introduce definitions and examples about separation axioms in N- topological
space.

Definition 2.9

An N- topological space ( X, T-, T, ..., Ty ) is said to be an "/NV-T, -space " if and only if
for each pair of distinct points x, y X, there exists N- open set U of X such that xeU and
yeU.

Proposition 2.10

An N- topological space ( X, T-, T4, ... Ty ) is N-T, —space if (X .7, is T, —space for
somei=1,2,...,N.
Proof

Toprove ( X, T-, Ta, ... Ty ) 1S N - T.- space, we must prove for any x, y €X such that x#
y, there exists N-open set U of X such that xeU and y ¢U.

Now, let x, yeX; x# y since there exists iel,2,...,N such that (X 7,} is T, —space,
implies there exists open set U in T, such that xeU and y ¢U, therefore 3 N-open set U of X
such that xeU and y ¢U(by Definition 2.3). Thus ( X, T- s T4, ... Ty ) is N- .- space. m
Remark 2.11

The converse of (Proposition 2.10) is not true, to see this, let ({1, 2, 3}, T4, Ts.T5 ;be 3-
topological space in (Example 2.2) , then the space ({1,2,3}, Ty, T1, T | is 3-T, — space, but
each (X , 7y 1,/% 72} (& .75 is not T,- space.

Remark 2.12

If (X, T-Tys Ty ) is N - T,- space then [ %, 7, ) need not to be T,- space for all i=
1,2,....,N, only if (X .1,}is T, —space.

Theorem 2.13

Let ( X, T-yTqs s Ty ) is N- T.- space and (Y, T-", T3 v T ) is a sub N- topological
space of the N- topological space ( X, T- s Tas .. Ty ). Then(Y,
T- W Ta v Ty | s also N- T.- space.

Proof

To prove (Y, T- T3 vwn Ty | is N- T.- space, we must prove :VX, y €Y, x£ ¥,

JUer;’ for some i, such that xeU and y ¢U.
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Now, let x, y €Y, x#y implies X, y €X. Then, there exists Wet, for some i, such that
xeW Ay eW)or (x W Ay eW)since ( X, T-Ts, ... Ty ) 1S N — T - space.

Then YN Wet;' for some i (by definition of 7, ]

So, xeYAW = x e YN Wand ygW=y¢ YN'W

Or xgW=x¢ Y"nWandy eYAW=y e YnW

Then (Y, t;') is T.- space. Then (Y, T-"+ T3 v . Ty} iS N- T.- space. m
Example 2.14

Let ( {1, 2, 3, 4}, T-,T-,Ty ) is 3-T,- space where t={X, &[2]], 7.={X, @, {2},
{4},{2,4}} and -={ X, &, {2,4},{3.4},{4}.{2,3,4}}.

Andlet Y ={1,3,4}cX , Then (Y, 7,71, Ty ) is sub 3-T.- space where T, ={Y, &},
T, =Y, D443}, 13 =Y, D,145, {34} ).

Definition 2.15

An N- topological space ( X, T-,T3: ..., Ty ) 1is said to be an "N-T; -space " if and if
for each pair of distinct points x, y €X, there exists two N- open sets U and V of X such that
xeU Ay¢U and xgV AyeV.

Proposition 2.16

An N- topological space ( X, T-, T4, ... Ty ) is N-Ty -space if (X .7,] is Iy —space for
somei=1,2,...,N.
Proof

To prove ( X, Ty Ta, ... Ty ) 1S N - Ty- space, we must prove for any x, y €X such that x#
y, there exists two N-open sets U and V of X such that xeU Ay¢U and x¢V AyeV.

Now, let x, yeX; x# y since there exists i€l,2,...,N such that (X .7} is T; — space,
implies there exists two open sets U and V in 7, such that xeU A y¢U and xgV Ay€V,
therefore there exists two open sets U and V of X such that xeU A ygU and xgV A
y €V( by Definition 2.3). Thus ( X, T-, T4, ..., Ty ) 1S N-Tj —space. m
Remark 2.17

The converse of ( Proposition 2.16 ) is not true, as the following example:

Example 2.18
Let X= {1,2,3,...,n}; n= B and let 7,={X, @,[]]; i=1,2,3,...,n, then the space ( X,

T-: Tasw T, ) 18 N-topological space, notice that (X, T-, T4y, T, ) 18 N-Ty -space but each (X,
7, is not Ty —space, for all i.

Note

1. It is clear that each N- T4- space is also, N- T,- space but the converse is not true see
(Example 2.14), the space is 3-T,- space but not 3- T- space.

2. If N-topological space is not N —T_- space, then it is not N - Ty- space.
Theorem 2.19

Let (X, T-2 T3, Ty )is N- Iy-space and (Y, T-", T3, v  Tie” | i sub N- topological
space of ( X, T-s E3, v Ty ). Then(Y, T- s Ta v Tr” | is N- Ty- space.
Proof

To prove (Y, T-", T3 v Ty ) is N- Ty- space, we must prove :Vx, y €Y, x# vy,
JU,Vert; for some i, such that xeUA ygU andx ¢ VA yeV.
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Now, since YC X, then x, y eX and Xis N - Iy- space, then 3W.,"W,et, for some i,
such that xeWyA y ¢W, and xgW.A y €W-.

Then YNWy, YN W, « ;' for some i, (by definition of 7, .

So xe YNty A ye YN, and x¢ YN I5 Aye Y 5.

Then (Y, t;') is Ty- space for somei, then (Y, T-", 72", v Tas" | is N- Ty-space. m
Definition 2.20

An N- topological space ( X, T-,T1, ..., Ty ) 1S said to be an "N-T; -space " if and if
Vx,y €eXAx£y,3U,V N-open sets of X, such that UnV= ,xeU Aye V.

Proposition 2.21

An N-topological space ( X, T-, Ty, ... Ty ) is N-T; -space if (X .7,] is T; —space for
somei=1,2,...,N.
Proof

To prove ( X, T-, T4, ... Ty ) 1S N - T5- space, we must prove for any X, y €X such that x#
y, there exists two N-open sets U and V of X such that UnV= , xeU Aye V.

Now, let x, yeX; x# y since there exists i€l,2,...,N such that (X .7, is T3 — space,
implies there exists two open sets U and V in 7, such that UnV= , xeU A y € V, therefore
there exists two open sets U and V of X such that UnV=0 , xeU A y € V(by Definition 23
). Thus ( X, T-, Tas ... Ty ) is N-T; —space. m
Remark 2.22
The converse of (Proposition 2.21) is not true, to see that consider the n-top ological space (
X, T-s T3smne T, ) in( Example 2.18), which is n-Ty -space but each (X, 7,] is not Ty —space,
for all 1.

Note
1. It is clear that each N - T;- space is also, N- Ty- space, so is N - T.- space but the
converse is not true.
2. If N-topological space isnot N - I'.- space, then it is not N - Ty- space, then it is not
N - T5- space.
Theorem 2.23
Let (X, Ty Tqs Ty ) is N —T5- space and (Y, T- +Ta v T | is sub N- topological
space of ( X, T-y Tas ..s Ty ). Then (Y, T, 75", v 7" ) is N- T5- space.
Proof
The proof of this theorem is similar of the proof of theorem 2.19 =

3. Application of N- topological space in ANN 'S

3.1. What are Artificial Neural Networks?

An Artificial Neural Network (ANN) is an information processing paradigm that is
inspired by the way biological nervous systems, such as the brain, process information. The
key element of this paradigm is the novel structure of the information processingsystem. It is
composed of a large number of highly interconnected processing elements ( neurons )
working in unison to solve specific problems. ANN's, like people, learn by example. An ANN
is configured for a specific application, such as pattern recognition or data classification,
through a learning process. Learning in biological systems involves adjustments to the
synaptic connections that exist between the neurons. This is true of ANN's as well.[3] That is
Artificial Neural Networks are relatively crude electronic models based on the neural
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structure of the brain. The brain basically learns from experience. It is natural proof that some
problems that are beyond the scope of current computers are indeed solvable by small energy
efficient packages. This brain modeling also promises a less technical way to develop
machine solutions. This new approach to computing also provides a more graceful
degradation during sy stem overload than its more traditional counterparts.

These biologically inspired methods of computing are thought to be the next major
advancement in the computing industry. Even simple animal brains are capable of functions
that are currently impossible for computers. Computers do rote things well, like keeping
ledgers or performing complex math. But computers have trouble recognizing even simple
patterns much less generalizing those patterns of the past into actions of the future.

3.2. Artificial Network Operations

The other part of the "art" of using neural networks revolves around the myriad of ways
these individual neurons can be clustered together. This clustering occurs in the human mind
in such a way that information can be processed in a dynamic, interactive, and self-organizing
way. Biologically, neural networks are constructed in a three-dimensional world from
microscopic components. These neurons seem capable of nearly unrestricted
interconnections. That is not true of any proposed, or existing, man-made network. Integrated
circuits, using current technology, are two-dimensional devices with a limited number of
layers for interconnection. This physical reality restrains the types, and scope, of artificial
neural networks that can be implemented in silicon.[3]

Currently, neural networks are the simple clustering of the primitive artificial neurons. This
clustering occurs by creating layers which are then connected to one another.

How these layers connect is the other part of the "art" of engineering networks to resolve real
world problems.

Basically, all artificial neural networks have a similar structure or topology as shown in
Figure (1). In that structure some of the neurons interfaces to the real world to receive its
inputs. Other neurons provide the real world with the networks outputs.

This output might be the particular character that the network thinks that it has scanned or the
particular image it thinks is being viewed. All the rest of the neurons are hidden from view.

But a neural network is more than a bunch of neurons. Some early researchers tried to simply
connect neurons in a random manner, without much success. Now, it is known that even the
brains of snails are structured devices. One of the easiest ways to design a structure is to
create layers of elements. It is the grouping of these neurons into layers, the connections
between these layers, and the summation and transfer functions that comprise a functioning
neural network. The general terms used to describe these characteristics are common to all
networks.

Although there are useful networks which contain only one layer, or even one element, most
app lications require networks that contain at least the three normal types of layers - input,
hidden, and output. The layer of input neurons receives the data either from input files or
directly from electronic sensors in real-time applications.
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The output layer sends information directly to the outside world, to a secondary computer
process, or to other devices such as a mechanical control system. Between these two layers,
there can be many hidden layers. These internal layers contain many of the neurons in various
interconnected structures.
The inputs and outputs of each of these hidden neurons simply go to other neurons.

In most networks each neuron in a hidden layer receives the signals from all of the neurons in
a layer above it, typically an input layer. After a neuron performs its function it passes its
output to all of the neurons in the layer below it, providing a feed forward path to the output.
These lines of communication from one neuron to another are important aspects of neural
networks. They are the glue to the system. They are the connections which provide a variable
strength to an input. There are two types of these connections. One causes the summing
mechanism of the next neuron to add while the other causes it to subtract. In more human
terms one excites while the other inhibits.

Some networks want a neuron to inhibit the other neurons in the same layer. This is called
lateral inhibition. The most common use of this is in the output layer. For example in text
recognition if the probability of a character being a "P" is .85 and the probability of the
character being an "F" is .65, the network wants to choose the highest probability and inhibit
all the others. It can do that with lateral inhibition. This concept is also called competition.

3.3. A Relation Between ANN's and N- Topological space

ANN's have been developed as generalizations of mathematical models of human
cognition or neural biology, and is characterized by :

1. It is a pattern of connections between the neurons and the layers (called topology of
network ).

2. It 1s a method of determining the weights on the connections (called it's training, or
learning algorithm ).

3. It is activation function.

A neural network consists of a number of simple processing elements called neurons, these
neurons consist in many layer. The numbers of neurons and layers in the ANN's differ from
not work to network and this is called the top ology of the network .

The ANN's with multilayer is not well understood [4]. Some authors [5] see that little
theoretical gain in using more than one hidden layer since a single hidden layer model
suffices for density. In this paper, we introduce the definition and properties of N- topological
space which can be applied to ANN's with more than one hidden layer.

One important advantage of the multiple layer model ( N- topological space (see figure

(2) ) has to do with the existence of locally supported functions in the two hidden layer model
(4- topological space ) since for any activation function 7 a=d every g =0

g% = T c.olwx 6)c.d LR andw _ E" has |r lg(=)l" dx = oo
— o

Forevery » € _1,.=},and thus gx) defined above has no compact support.(see [6], [7]
for amore detailed discussion ).
Another advantage of the multilayer model (V- topological space ), there is a lower bound on
the degree to which the single hidden layer model ( 3- topological space ) with r neuron units
in the hidden layer can approximate any function. It is given by the extent to which a linear
combination of r activation function can approximate this same function, and, more
importantly, activation function approximate itself is bounded below (a way from zero )with
some non- trifling dependence on r and on the set to be approximated. In the single hidden
lay er model (3- topological space ) there is an intrinsic lower bound on the degree of
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approximation depending on the number of neuron units used. This is not the casa in the two
hidden layer model, (4- topological space ) .
Finally, we can show, using the kolmogorov super position theorem [7] that a finite number
of units in both hidden layers (4- topological space ) is sufficient to approximate arbitrarily
well any continuous function.
Theorem 3.4

There exists an activation function ¢ which is C”, strictly increasing, and sigmoidal, and
has the following property. For any f € C[0,1]" and £ > 0, there exist constants d;, Cij» O, Vi
and vectors Wj; € R", for which:

2n+1 2n+1 n
£(x)— zl dl.g Zl cl.J.o'(Wy.x+6'l-J.)+]/i <g forall x €[0, 1]".
= J=

Proof
Let f be any continuous function on [0,1]" , € > 0 ,then by Kolmogorov Superposition
theorem , there exist constants ¢;, 0;; and vectors Wj; € R", such that

.D(v

2n+l
f(x)— > d X +8..)[<g/(@2n+1) ... (1)
i=1 ! y

i

since ¢ is continuous function ,and by restrict ¢ in [0,1]" can represent ¢ such that

2n+1
d(x) = él cij cs(rij X + sij )

By substituting (2) in (1) , we obtain :

2n+l 2n+l
f(x)— él diG JZ=:1 CijG(rij(Vin+Sij)+Lij) <g

2n+l 2n+l

Now, we introduce the following definition :

Definition 3.5

A set of functions is said to be fundamental in a given space if a linear combinations of
them are dense in that space.
Theorem 3.6

Let K be a compact set in R". Then the set E of functions of the form p(x) = exp (aTX) ,
where a € R", is fundamental in C(K).
Proof

By the Stone-Weierstrass theorem we need only show that the set forms an algebra and
separates points. Suppose x € K. First, we have:

exp(aTx) exp (b'x) = exp (a'x+b'x) = exp (@' +b") x).

The set also contains the function “1” simply choose a = 0. This establishes that E is an
algebra. It remains to show that E separates the points of K. Soletx,y € Kwithx#y. Seta =
(x—y). Then aT(x— y)# 0, so a'x # aTy. Thus exp(aTx) # exp(aTy).
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The proofis complete. [
Before considering more constructive versions of this result we complete the density
proof.

Theorem 3.7
Let K be a compact set in R". Then the set F of functions of the form g(x), defined by: gXx) =

k
> \s o( WJ.TX + Cj) ,with c as a continuous sigmoidal function is dense in C(K).
j=1

Proof

Let f € C(K). For any € > 0, there exists (by theorem 3.6) a finite number m of vectors
a;, such that:

m €
f—> exp (aiTx)(L <=

i=1 2
since there are only m scalars aiTX, we may find a finite interval including all of them. Thus
there exists a number I such that exp( aiTX) = exp(ly) , where

T .
y = (a; X/I' ) € [0,1]. Then theorem 3.6 tells us that the function exp (I'y) can be

approximated by linear combinations functions of the form o(Wij + ¢; ) with a uniform

error less than &2m, from which the desired result easily follows. =
Remarks

1. Theorem 3.6 tells us one hidden layer is sufficient to approximate any continuous
function to any required accuracy.

2. T in the proof of theorem 3.7 can be chosen to be an integer .

3. The question of rate of convergence of approximations is obviously of considerable
importance. If f is smooth and we use smooth approximating functions we might hope to
get better convergence than the simple O(1/n) .

4. Conclusions
1. We define N- topological space and give some examples and properties about this notion.
2. We give application of N- topological space in ANN's, then we obtain :
(1) Increasing number of hidden units leads to decreasing number of epoch of
training,
(1) Large number of hidden units leads to a small error on the training set
but not necessarily leads to a small error on the test set.
(111) If we fix the number of basis functions and increase the number of the
layers of the ANN's (that's increase N in the N- topological space ), then
we get an accurate numerical solution.
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Fig. (2) Graph of a multilayer(N-Topological space)neural network with sequential
connections
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