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Abstract 

       In this paper we give definitions, properties and examples of the notion of  type N-
topological space. Throughout this paper  N is a finite positive  number, N  2. The task of 

this paper is to study and investigate some properties of such spaces with the existence of a 
relation between this space and artificial Neural Networks (NN'S), that is we applied the 
definition of this space in computer field and specially in parallel processing. 

Introduction  

       Finite spaces were first studied by P.. lexandroff in 1937. ctually, finite spaces had 
been more earlier investigated by many authors under the name of simplicial complexes. 
There were several other contributions by  Flachasmeyer in 1961, Stong in 1966 and L.Lotz in 
1970, in this paper we define and study the notion of  N- topological space and discuss some 
properties of finite spaces. However, the subject has never been considered as a main field of 
topology. 

With the progress of computer technology, finite spaces have become more important. 
Herman in1990, Khalimsky and et. al. in 1990, kong and Kopperman in 1991 and [1] have 
applied them to model the computer screen. 

 In this paper we focus on N- topological space, The main importance of study is to offer new 
formulations for separation axioms in N- topological space.  

We present and study comparisons between N- topological space and nn'a in the case of 
finite spaces. 

2. asic  Definition of  N- topological space and their properties 

       In this section we introduce the notion of  N- topological space, and give its properties. 
Several of the classical results [2] are extended by defining appropriate substructures on the 
N- topological space. Examples are given to illustrate these structures. 

Definition 2.1  
        Let ( X,  ) be a non empty space with N different topology. { X, } is  

ca lled " N- topological space " if there exists  N proper subspace  of  X such that :                            
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1. X =   

2. =  is a subspace of (  , where i =1,2,…,N . 

Example  2.2 
 Let ( {1, 2, 3}, ) be 3 – topological space where ={X,  when X= {1,2,3}, 

={X, {1}, } and ={X,{2}, }                                                          

Let ={1}, ={2} and ={3}.It clear that X= and = {{1}, }, 

={{ 2}, }, = {{3}, }. 

It is clear that ( , is a topological space of (X   for i=1,2,3. 

 
Now, we give the definition of open set in N- topological space. 

Definition 2.3 
A subset U of  N- topological space ( X,  ) is said to be an "N- open set " if 

and only if it is open in , for some i = 1,2,…,N. 

Definition 2.4 
The complement of  N- open set in N- topological space ( X ,  ) is said to be 

an "N-closed set ". 

Remark 2.5 
1- Every open set in topological space (X   is N- open set,  for all i= 1,2,…,N,  

 But the converse is not true, (see the following Example 2.6). 
2- Every closed set in topological space (X   is N- closed set,  for all i=1,2,..,N 

          But the converse is not true, (see the following Example 2.6). 

3- Every open set in subspace  for all i= 1,2,…,N need not to be N- open set in N- 

topological space ( X,  ), only if the subspace  is open in (X , ( see the 

following Example 2.6 ). 

Example 2.6 
Let  be 4-topological space (where  is the set of natural numbers) 

such that  

And let X1, X2, X3, X4 be four subspace of X such that: 
X1= {1} implies =  

X2= {2} implies =  

X3= {3} implies =  

X4= {4, 5, 6, 7, …} implies = . 

It is clear that X= X1 X2 X3 X4 
Now, to show the converse of  part (1) is not true, let {1} is N- open set in 

 but it is not open set in each (X ; i= 1,2,…,N. 

Also, to show the converse of  part (2) is not true, let {2, 3, 4, 5, …} is N- closed set 
 but it is not closed set in each (X ; i= 1,2,…,N. And also notice that the 

subspace X1= {1} is open in  implies that each open set in  is N- open set in 

 But in the other hand notice that the subspace X3= {3} is not open in (X3, 

 implies that each open set in (X3,  need not to be N- open set in  

         Next, we give a definition about sub N- topological space. 

Definition 2.7 
       Let ( X,  ) be N- topological space ( ) . The subspace Y( )               

of  X is called a sub  N- topological space of  X  if and only if  
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( i )  There exists N proper subspace ,…,   of  Y such that 

and (Y,  is sub-N-topological space of  ( X, 

 ), that is = Y  . 

(ii) = is subspace of (Y ,  

Eexample  2.8  
         Let (X, ) is 3 – topological space where X={1,2,3,4,5,6,7}, ={X,  

   ={X, , {2,4,6}}, and  ={ X,  {3,7}} and let  

Let Y ={2,3,5,6},  = Y  ={Y, },  = Y  =  {Y,  , {2,6}},  = Y   = {Y, 

 , {3}}. 
It is clear that    (Y,   is sub 3-  topological space of  (X, ) where                                                                                   

  , ={2,3} ,   ={5}   ={6}   and  = 

= =  ={ ,  

 
Now, we introduce definitions and examples about separation axioms in N- topological 

space. 
 

Definition 2.9  
        An N- topological space ( X,  ) is said to be an "N-  -space " if and only if  

for each  pair of distinct points x, yX, there exists N- open set U of X such that xU and 
yU.  
 

Proposition 2.10 
An N- topological space ( X,  ) is N-  –space if (X  is  –space for 

some i = 1,2,…,N. 
Proof 

To prove ( X,  ) is N - - space, we must prove for any x, yX such that x≠ 

y, there exists N-open set U of X such that xU and yU. 
Now, let x, yX; x≠ y since there exists i1,2,…,N such that (X  is  –space, 

implies there exists open set U in  such that xU and yU, therefore  N-open set U of X 

such that xU and yU(by Definition 2.3). Thus ( X,  ) is N - - space. ■ 

Remark 2.11 
The converse of (Proposition 2.10) is not true, to see this, let ({1, 2, 3}, be 3-

topological space in (Example 2.2) , then the space ({1,2,3},  is 3-  – space, but 

each (X is not - space. 

 Remark 2.12 
If ( X,  ) is N - - space then  need not to be - space for all i= 

1,2,…,N, only if  (X  is space. 

Theorem 2.13  
        Let ( X,  ) is N - - space and (Y,   is a sub N- topological 

space of the N- topological space ( X,  ).                                                Then(Y, 

  is also N-  - space. 

Proof 
 To prove (Y,   is  N-  - space, we must prove :x, y Y, x≠ y, 

U  for some i , such that xU and yU. 
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 Now, let x, y Y, x≠ y  implies x, y X. Then, there exists W  for some i , such that 

(x W  y W) or (x W  y W) since ( X,  ) is N – - space.  

Then Y W  for some i (by definition of  

 So, xYW  x  Y W and yW y Y W 

 Or  x W  x   Y W and y YW  y  Y W 
 Then (Y, ) is - space. Then (Y,  is  N-  - space. ■   

Example  2.14  
Let ( {1, 2, 3, 4}, ) is 3- - space where ={X, , ={X, , {2}, 

{4},{2,4}} and ={ X,  {2,4},{3,4},{4},{2,3,4}}. 

And let Y ={1,3,4}X , Then (Y,   is sub 3- - space where ={Y, }, 

={Y,  ,{4}},  ={Y,  ,{4},{3,4}}. 

 

Definition 2.15 
An  N- topological space ( X,  )  is said to be an "N-  -space " if and if  

for each  pair of distinct points x, yX, there exists two  N- open sets  U  and V of X such that  
xU  yU  and  xV  yV. 

Proposition 2.16 
An  N- topological space ( X,  )  is N-  -space  if  (X  is  –space for 

some i = 1,2,…,N. 
Proof 

To prove ( X,  ) is N - - space, we must prove for any x, yX such that x≠ 

y, there exists two N-open sets  U and V of X such that  xU  yU  and  xV  yV.  
Now, let x, yX; x≠ y since there exists i1,2,…,N such that (X  is  – space, 

implies there exists  two open sets  U and V in  such that xU  yU  and  xV  yV, 

therefore  there exists  two open sets  U and V of  X  such that xU  yU  and  xV  
yV( by Definition 2.3). Thus ( X,  )  is N-  –space. ■ 

Remark 2.17 
The converse of ( Proposition 2.16 ) is not true, as the following example: 

Example 2.18 
Let X= {1,2,3,…,n}; n  and let ={X, ; i=1,2,3,…,n, then the space ( X, 

 ) is n-topological space, notice that (X,  ) is N-  -space  but each (X, 

 is not   –space, for all i. 

   
Note  

1. It is clear that each   N- - space is also, N- - space but the converse is not true see 

(Example 2.14), the space is 3- - space but not  3- - space. 

2. If  N- topological space is not  N - space, then it is not  N - - space. 

Theorem 2.19  
         Let ( X,  ) is  N - - space and (Y,    is sub N- topological 

space of ( X,  ). Then(Y,    is N- - space. 

Proof 
To prove (Y,  is  N-  - space, we must prove :x, y Y, x≠ y, 

U,V  for some i , such that  xU yU and x  V yV. 
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Now, since Y X, then x, y X and X is  N - - space, then    for some i , 

such that x  y and x  y . 

Then Y , Y   for some i , (by definition of . 

So  x Y    y Y   and  x Y   y Y . 

Then (Y, ) is  - space for some i , then (Y,   is  N-  - space.  ■ 

Definition 2.20 
An  N- topological space ( X,  )  is said to be an "N-  -space " if and if  

x, y X x≠ y ,U,V N-open sets of  X, such that UV=  , xU  y V. 

Proposition 2.21 
An  N- topological space ( X,  )  is N-  -space  if  (X  is  –space for 

some i = 1, 2, …, N. 
Proof 

To prove ( X,  ) is N - - space, we must prove for any x, yX such that x≠ 

y, there exists two N-open sets  U and V of X such that UV=  , xU  y V. 
 Now, let x, yX; x≠ y since there exists i1,2,…,N such that (X  is  – space, 

implies there exists two open sets  U and V in  such that UV=  , xU  y V, therefore  

there exists  two open sets  U and V of  X  such that UV=  , xU  y V(by Definition 2.3 
). Thus ( X,  )  is N-  –space. ■ 

Remark 2.22 
The converse of  (Proposition 2.21) is not true, to see that consider the n-topological space ( 
X,  ) in( Example 2.18),  which is n-  -space  but each (X,  is not   –space, 

for all i. 
 

Note  
1. It is clear that each  N - - space is also, N- - space , so is N - - space but the 

converse is not true. 
      2. If  N- topological space is not  N - - space, then it is not  N - - space, then it is not  

N - - space. 

Theorem 2.23 
 Let ( X,  ) is  N - space and (Y,   is sub N- topological 

space of ( X,  ). Then (Y,   is N-  - space. 

Proof 
The proof of this theorem is similar of the proof of theorem 2.19  ■ 

 

3.  Application of  N- topological space in NN 'S 

3.1. What are Artificial Neural Networks? 

         An Artificial Neural Network (ANN) is an information processing paradigm that is 
inspired by the way biological nervous systems, such as the brain, process information. The 
key element of this paradigm is the novel structure of the information processing system. It is 
composed of a large number of highly interconnected processing elements ( neurons ) 
working in unison to solve specific problems. ANN's, like people, learn by example. An ANN 
is configured for a specific application, such as pattern recognition or data classification, 
through a learning process. Learning in biological systems involves adjustments to the 
synaptic connections that exist between the neurons. This is true of ANN's as well.[3] That is 
Artificial Neural Networks are relatively crude electronic models based on the neural  
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structure of the brain. The brain basically learns from experience. It is natural proof that some 
problems that are beyond the scope of current computers are indeed solvable by small energy 
efficient packages. This brain modeling also promises a less technical way to develop 
machine solutions. This new approach to computing also provides a more graceful 
degradation during system overload than its more traditional counterparts.  

These biologically inspired methods of computing are thought to be the next major 
advancement in the computing industry. Even simple animal brains are capable of functions 
that are currently impossible for computers. Computers do rote things well, like keeping 
ledgers or performing complex math. But computers have trouble recognizing even simple 
patterns much less generalizing those patterns of the past into actions of the future.  

 

3.2. Artificial Network Operations 

The other part of the "art" of using neural networks revolves around the myriad of ways 
these individual neurons can be clustered together. This clustering occurs in the human mind 
in such a way that information can be processed in a dynamic, interactive, and self-organizing 
way. Biologically, neural networks are constructed in a three-dimensional world from 
microscopic components. These neurons seem capable of nearly unrestricted 
interconnections. That is not true of any proposed, or existing, man-made network. Integrated 
circuits, using current technology, are two-dimensional devices with a limited number of 
layers for interconnection. This physical reality restrains the types, and scope, of artificial 
neural networks that can be implemented in silicon.[3]  

Currently, neural networks are the simple clustering of the primitive artificial neurons. This 
clustering occurs by creating layers which are then connected to one another.  

How these layers connect is the other part of the "art" of engineering networks to resolve real 
world problems.  

Basically, all artificial neural networks have a similar structure or topology as shown in 
Figure (1). In that structure some of the neurons interfaces to the real world to receive its 
inputs. Other neurons provide the real world with the networks outputs.  

This output might be the particular character that the network thinks that it has scanned or the 
particular image it thinks is being viewed. All the rest of the neurons are hidden from view.  

But a neural network is more than a bunch of neurons. Some early researchers tried to simply 
connect neurons in a random manner, without much success. Now, it is known that even the 
brains of snails are structured devices. One of the easiest ways to design a structure is to 
create layers of elements. It is the grouping of these neurons into layers, the connections 
between these layers, and the summation and transfer functions that comprise a functioning 
neural network. The general terms used to describe these characteristics are common to all 
networks.  

Although there are useful networks which contain only one layer, or even one element, most 
applications require networks that contain at least the three normal types of layers - input, 
hidden, and output. The layer of input neurons receives the data either from input files or 
directly from electronic sensors in real-time applications. 
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The output layer sends information directly to the outside world, to a secondary computer 
process, or to other devices such as a mechanical control system. Between these two layers, 
there can be many hidden layers. These internal layers contain many of the neurons in various 
interconnected structures.                                
The inputs and outputs of each of these hidden neurons simply go to other neurons. 

In most networks each neuron in a hidden layer receives the signals from all of the neurons in 
a layer above it, typically an input layer. After a neuron performs its function it passes its 
output to all of the neurons in the layer below it, providing a feed forward path to the output. 
These lines of communication from one neuron to another are important aspects of neural 
networks. They are the glue to the system. They are the connections which provide a variable 
strength to an input. There are two types of these connections. One causes the summing 
mechanism of the next neuron to add while the other causes it to subtract. In more human 
terms one excites while the other inhibits.  

Some networks want a neuron to inhibit the other neurons in the same layer. This is called 
lateral inhibition. The most common use of this is in the output layer. For example in text 
recognition if the probability of a character being a "P" is .85 and the probability of the 
character being an "F" is .65, the network wants to choose the highest probability and inhibit 
all the others. It can do that with lateral inhibition. This concept is also called competition.  

3.3. A Relation Between ANN's and N- Topological space 
NN's have been developed as generalizations of mathematical models of human 

cognition or neural biology, and is characterized by : 
1. It is a pattern of connections between the neurons and the layers (called topology of 

network ). 
2. It is a method of determining the weights on the connections (called it's training, or 

learning algorithm ). 
3. It is activation function. 

  neural network consists of a number of simple processing elements called neurons, these 
neurons consist in many layer. The numbers of neurons and layers in the NN's differ from 
not work to network and this is called the topology of the network . 
 The  NN's with multilayer is not well understood [4]. Some authors [5] see that little 
theoretical gain in using more than one hidden layer since a single hidden layer model 
suffices for density. In this paper, we introduce the definition and properties of N- topological 
space which can be applied to NN's with more than one hidden layer. 

One important advantage of the multiple layer model ( N- topological space (see figure 
(2 ) ) has to do with the existence of locally supported functions in the two hidden layer model 
( 4- topological space ) since for any activation function  

 
For every and thus g(x) defined above has no compact support.(see [6], [7] 

for amore detailed discussion ). 
nother advantage of the multilayer model (N- topological space ), there is a lower bound on 
the degree to which the single hidden layer model ( 3- topological space ) with r neuron units 
in the hidden layer can approximate any function. It is given by the extent to which a linear 
combination of r activation function can approximate this same function, and, more 
importantly, activation function approximate itself is bounded below  (a way from zero )with 
some non- trifling dependence on r and on the set to be approximated. In the single hidden 
layer model (3- topological space ) there is an intrinsic lower bound on the degree of  
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approximation depending on the number of neuron units used. This is not the casa in the two 
hidden layer model, (4- topological space ) . 
 Finally, we can show, using the kolmogorov super position theorem [7] that a finite number 
of units in both hidden layers (4- topological space ) is sufficient to approximate arbitrarily 
well any continuous function. 

Theorem 3.4 
There exists an activation function  which is C, strictly increasing, and sigmoidal, and 

has the following property . For any f  C[0,1]n and  > 0, there exist constants di, cij, ij, i 
and vectors Wij  Rn, for which: 























12

1

12

1
)()(

n

i

n

j iijxijWijcidxf   < , for all x [0, 1]
n
. 

Proof 
Let f be any continuous function on [0,1]

n ,  > 0  ,then by Kolmogorov Superposition 
theorem , there exist constants ci, ij and vectors Wij  Rn, such that                                      

                              





1n2

1i
)ijsxijv(Φid)x(f </(2n+1)       ……..(1) 

since ф is continuous function ,and by  restrict ф in [0,1]
n can represent ф such that                                

                           





1n2

1j
)ijsxijr(ijc)x(                      …………(2) 

By substituting (2) in (1) , we obtain : 

            





















1n2

1i

1n2

1j
)ijL)ijsxijv(ijr(

ij
cid)x(f <      

Then,   





















1n2

1i

1n2

1j i)ijxijW(
ij

cid)x(f <     □ 

Now, we introduce the following definition : 

Definition 3.5 
A set of functions is said to be fundamental in a given space if a linear combinations of 

them are dense in that space. 

Theorem 3.6  
Let K be a compact set in Rn. Then the set E of functions of the form  (x)  exp(aTx) , 

where a  Rn, is fundamental in C(K). 
Proof 

By the Stone-Weierstrass theorem we need only show that the set forms an algebra and 
separates points. Suppose x  K. First, we have: 

exp(aTx) exp(bTx)  exp(aTx + bTx)  exp((aT + bT) x ). 
The set also contains the function “1” simply choose a  0. This establishes that E is an 

algebra. It remains to show that E separates the points of K. So let x, y  K with x  y. Set a  
(x  y). Then aT(x  y)  0, so aTx  aTy. Thus exp(aTx)  exp(aTy).  
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The proof is complete.    � 
Before considering more constructive versions of this result we complete the density  

proof. 

Theorem 3.7  
Let K be a compact set in R

n
. Then the set F of functions of the form g(x), defined by:   g(x)  

 


k

1j
j

T

jj
)cxW(v  ,with  as a continuous sigmoidal function is dense in C(K). 

Proof 

Let f  C(K). For any  > 0, there exists (by  theorem 3.6) a finite number m of vectors 
ai, such that: 

 
2

xaexpf
m

1i

T

i






 

since there are only m scalars xaT

i
, we may find a finite interval including all of them. Thus 

there exists a number  such that  exp( xaT
i )  exp(y) , where  

y  ( xaT
i / )  [0,1]. Then theorem 3.6 tells us that the function exp (y) can be 

approximated by linear combinations functions of the form ( T
jW x + cj ) with a uniform 

error less than /2m, from which the desired result easily follows.   ■  

Remarks 

1. Theorem 3.6 tells us one hidden layer is sufficient to approximate any continuous 
function to any required accuracy. 

2.  in the proof of theorem 3.7 can be chosen to be an integer . 
3. The question of rate of convergence of approximations is obviously of considerable 

importance. If f is smooth and we use smooth approximating functions we might hope to 
get better convergence than the simple O(1/n) . 

 

4. Conclusions  
1. We define N- topological space and give some examples and properties about this notion. 
2. We give application of N- topological space in NN's, then we obtain : 
     (i ) Increasing number of hidden units leads to decreasing number of epoch of              
           training. 
     ( ii) Large number of hidden units leads to a small error on the training set         
            but not necessarily leads to a small error on the test set. 
     ( iii) If we fix the number of basis functions and increase the number of the  

   layers of the NN's (that's increase N in the N- topological space ), then 
   we get an accurate numerical solution. 
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Fig. (1) A Simple Neural Network Diagram. 

 
 

Fig. (2) Graph of a  multilayer(N-Topological space)neural network with sequential 
connections  

  

  

  

  



 2011) 1(  24مجلة ابن الھیثم للعلوم الصرفة والتطبیقیة               المجلد

  وتطبیقاتها في الشبكات العصبیة الصناعیة  Nالفضاءات التبولوجیة ــ 

  

  رشا ناصر مجید لمى ناجي محمد توفیق و 

  جامعـة بغـداد،أبن الهیثم  -كلیة التربیة،قسم الریاضیات  

 2009 آذار 16استلم البحث في 

  2010 آذار 29قبل البحث في 

  

 الخلاصة

ة مـن النـوع ـ  في هذا البحث أعطینا تعار یف         فـي  ،N إن إذا . Nخواص وأمثلة حـول مصـطلح الفضـاءات التبولوجیـ

إن فكــرة هـذا البحـث هـو دراســة وتقـدیم بعـض خــواص هـذه الفضـاءات مــع .  ، هـذا البحـث هـو عــدد منتهـي موجـب 

دراسة العلاقة بین هذه الفضاءات والشبكات العصـبیة الصـناعیة وهـذا یعنـي تطبیـق تعریـف هـذا الفضـاء فـي حقـل الكومبیـوتر 

  .في مجال المعالجات المتوازیة لاسیماو 

 

                               

 


