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Abstract

In this paper, we introduce and discuss an algorithm for the numerical solution of two-
dimensional fractional dispersion equation. The algorithm for the numerical solution of this
equation is based on explicit finite difference approximation. Consistency, conditional stability,
and convergence of this numerical method are described. Finally, numerical example is presented
to show the dispersion behavior according to the order of the fractional derivative and we
demonstrate that our explicit finite difference approximation is a computationally efficient
method for solving two-dimensional fractional dispersion equation.
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Introduction

The space fractional disp ersion equation is obtained from the classical disp ersion equation by
replacing the second space derivative by a fractional derivative. Numerical methods associated
with integer-order differential equations have been treated extensively in the literature. On other
hand, studies of the numerical methods and error estimates of fractional order differential
equations are quite limited to date [1, 2, 3].

Many works by researchers from various fields of science and engineering deal with dynamical
systems described by fractional partial differential equations, which have been used to represent
many natural processes in physics [4], finance [5,6], and hydrology [7,8].

In this paper, we find the numerical solution of the two-dimensional fractional dispersion
equation of the form:

ou(x, y,t 0u(x, y,t Pu(x,y,t
&:a(x’y)#_kb(x’y)%-fq(x’y,t) ............ (1)
ot Ox
subject to the initial condition

u(xy,0)=fxy), for xp<x<xx and yo<y<yr ... )
and the boundary conditions

u (X,y,t) =0, for yo<y<ygr and 0<t<T
u(xyoet)=0, for xp<x<xx and O<t<T ... 3)

u (xp,y,t) = g(y.t), for yo<y<yg and 0<t<T
u (xypt) =k(xt), for x < x<xg and 0<t<T
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where a, band f are known functions of x and y, g is a known function of y and ¢, k is aknwon
function of x and #. ¥ and f are given fractional number. g is a knwon function  ofx, yand «.

We use a variation on the classical explicit Euler method. We prove this method by using a
novel shifted version of the usual Grunwaled finite difference an approximation for the non-local
fractional derivative operator.

Explicit Finite Difference Approximation for Solving the Two-Dimensional
Fractional Dispersion Equation

In this section, we propose explicit finite difference approximation for solving the initial and
boundary value problem two-dimensional fractional dispersion equation (1)-(3).

The finite difference method starts by dividing the x-interval [x,, xz] into n subintervals to get
the grid points x; = xy + idx, where Ax = (xR - X, )/n and i=0,1,...,n. Also we divide the y-
interval [y,, yg] into m subintervals to get the grid points y; = y, + jdy, where Ay = (yR ) )/m
and j=0,1,....m

Also, the t-interval [0, T] is divided into M subintervals to get the grid points £ = sA,

s =0, ..M, where At=T/M .

Now, we evaluate eq.(1) at (x ; y; ) and we use the explicit finite difference approximation
to get
8ﬂu(x,-,yj,ts)

u(xi’yjatyrl)_u(xiayjat,y) ayu(xiayjals)

:a(x”yj) +b(x,-,yj) —|—q(xl.’yj’[3) (4)

At ox’ o’
Then use the shifted Grunwald estimate to the y, f - the fractional derivative, [9]:
ou(x,y,t) 1
a2 Zgy an(x = (k =DAv, y, 1) + O(Ax)
................ (5)
8ﬂu(x,y,t) 1
gputt(x,y = (k=D)Ay,0) + O(Ay)
ayﬂ (A )ﬁ Z Bk
to reduce eq.(4) as in the following form
u;“ — l/lf j+] 1 j+1 s
T ( XY )|:A P2 ngjf i- k+1/:|+b(x,’y )|: y kzgﬂ,kui,]‘/¢+1:|+q(x,-nyjats)
s+1 s i+l
Ui —u;;
jAt Zg}/k lk+1j Ayﬂzgﬂk ljk+1+qu
izl,...,n—l,le,...,m —1,s=0,..., M e (6)
Where M:j :u(xjayjats)a ai,j :a(xjayj)a bi,j Ib(x,»,yj), qli] =q(x,-,yj,fs),
D)y —k+1) o BB-1)(B—k+1)  1_
g, = 27D kf7 ), k=0,12,... and g, -1y ZLD k'(ﬂ ), k=0,1,2,...
The resulting equatlon can be exp hcltly solved for uHl to give
i+l Jj+l
s+
u ;= ”Axy Zgyk AP l/ Ayﬁ Zgﬂku,j k+l+Ath+uU ............... (7)

Also form the mltlal condition and boundary conditions one can get
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u), = f,;,i=0,...,n

ivj
u,;=0,j=0,...m and s=1,..M
uly=0,i=0,...,n and s=1,..M
uy,; =8 ,Jj=0,...m and s=1I,..M

u', =k’,i=0,..,n and s=1I,...M

L,

where £ ;= f(x,,y,.1,), & =8(y;,t,) and & = (x,.2,)

Stability Analysis of the Explicit Finite Difference Approximation

Define the following fractional partial difference operators:

a. . i+1
) us _ L] g us
yoxhj T Z 7.k i—k+1,j
Ax7 k=0

and
J+l1

b, .
s i,] K
By, Bk j—k+1
s = 3y B Eat

which is an O(Ax) approximation to the y th fractional derivative and O(Ay) approximation to
the [ th fractional derivative term. Then eq.(7) may be written in the operator form

w’ =1+ Mo, +Ato, Ju +Ag] (8)
eq.(8) may be written in form
uj',j‘ =(1+ Atw, )1+ Ata)ﬂ’y)uf,j +Aq);, 9)
where
s K s s K s K s s s T
(L = [ul,] sUp g U Uy o5 Uy oo UL oo UL, 15Uy s 7”;1—I,m—l]

To solve the problem for each fixed y; to obtain an intermediate solution u;, from

A+ANw, Ju, +Atg] , =u> (10)
Then solve for each fixed x;
(I+AMw, Ju,=u, (11)

Now, we must prove each one-dimensional explicit system defined by the linear difference egs.
(10) and (11) is conditionally stable forall 1 <y<2,1<pg <2.

Theorem: The explicit system defined by the linear difference eqs.(10) and (11) with 1<y <2,
1 <f <2is conditionally stable if
At 1
< and Al < !
Proof:

At each grid point y,, fork =1,...,m —1, the system of equation defined by eq.(10) can be

written in the explicit matrix form U;*' = C U, + AtQ; where
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s+l __ s+l s+1 s+1 T
U™ =luy uys w1

* * * * T
(i_ [ul,k’MZ,k""9un—l,k] 5

0= [QT,k’qg,ka""q:—lk]T

C, 1is the matrix of coefficients, and is the sum of a lower triangular matrix and a super diagonal

matrix at the grid point y,, where the matrix entries along the ith row are defined from eq.(10). For
example, for i = 1 the equation becomes

s+l __ * * * K
Wy =148, U T I+ nl,kg;/,l)ul,k 148 0Uoy T Atq

for i =2 we have
s+ _ * * * * s
Wy =M1 8y3tos T 11218y T (I+ nz,kgy,l)”z,k + 10,48, o5, + AlG;

and fori=n - 1 we get

s+1

* * *
un—l,k = nn—l,kg}/,nuo,k +eee 7711—1,kg;/,2un—2,k + (1 + nn—l,kgy,l)un—l,k +

1485 ,0”;,1{ +ALq,
Where the coefficients

At
Nig =4, U’

Therefore the resulting matrix entries C; ; fori =1,...,n—1 andj =1,...,n —1 by are defined by
1+ .18, for j=i

k852 for j=i-1

7:480 for j=i+1

48,1 for J<i+l

i

According to the Greshgorin theorem [9], the eigenvalues of the matrix C lie in the union of

the circles centered at ¢;; with radius ,. _ Z c

=0
l#i

n i+1
Here we have ¢, =1+7,,g,, =1-n,7 and r, =% ¢, =n,,> &, . 1. <0.,7
=0

!
!

~ o

# 1 #i

and therefore ¢;; +7,<1. Wealso have ¢;, —r, 21-n, v —n,,7=1-2n,,7
At At
=1- 2‘:ai,k Axy jly 2 l_2|:amax A7:|7/
Therefore, for the spectral radius of the matrix C to be at most one, it suffices to have

Ar At At At 1
1_2|:amax U:|7/ 2-1— |:amax F:|}/S1_) [amax}/]Ax}/ <l-

<
Ax”  ya

Same method above, resulting the system of equation defined by eq.(11) is then defined by

S Uy = U,

max

where

s _ K K K T
U; _[uk,l’uk,Z""?uk,m—l] >

* * * * T
ﬂ_ [ 15U 25w st a1



IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL24 (1)2011

S, 1s the matrix of coefficients, and is the sum of a lower triangular matrix and a super

diagonal matrix at the grid point x fork=1,...,n —1. Therefore the resulting matrix

entries S, fori =12,...,m—land j =1,...,m—1 by are defined by

I+y,,85, for j=i
VYii8p.2 for j=i-1
Yii8p,0 for  j=i+l

t Vii8p, i for j<i+l

where the coefficients
At
Vik = bi,j Ay_ﬂ
So, and in the same way, according to the Greshgorin theorem [9], to get
At 1
—X<
Ayﬂ ﬂbﬂ’lax

Consistency and Convergent Analysis of the Explicit Finite Difference
Approximation

We note that the three difference operators used in eq.(6) each have a local truncation error
withO(At), O(Ax), and O(Ay)respectively. TheO(At?), for the time derivative term, is obtained

from the classical Taylor's expansion. The O(Ax) and O(Ay) for the local truncation error of the
fractional derivative terms was proved in [10]. Therefore, the explicit finite difference

approximation is consistency. Theorem above shows that (@, @, )u;, converges to the mixed

fractional derivative linearly, asO(Ax)+ O(Ay). Therefore, the local truncation error of the
explicit Euler method eq.(8) is O(A?) + O(Ax) + O(Ay) .

This consistency of the explicit finite difference approximation together with the above result
on conditional stability implies that the explicit finite difference approximation is convergent and
this convergence is O(Ax + Ay + At).

Numerical Example

In this section, numerical example is presented which confirm our theoretical results.

Example : Consider the two-dimensional fractional dispersion equation:

8145u(x’ J’»t) +1—‘(14)y16 al'Gu(xuVat) 0.5_ 2 2t

—x"y*e* 4+ xyle®

ou(x, y,t
Y1) =1(0.5)x % 6
ot ox 2 oy

subject to the initial condition
u(xy,0)= Xyz, 0<x<0.50<y<0.5

and the boundary conditions
u(0,yt)=0,0<y<0.50<1t<0.025
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u (x,0,t)=0,0<x<0.5,0<t<0.025

u(,0.5,y,t)=0.5¢",0<y <0.5,0 < t< 0.025

u(x, 0.5,t) = 0.25¢"x , 0 <x< 0.5, 0 < t< 0.025
This fractional dispersion equation together with the above initial and boundary condition is
constructed such that the exact solution is u(x,y,t) = ethyz.

Table (1) and (2) show the numerical solution using the explicit finite difference approximation.
From table (1) and (2), it can be seen that thereisa good agreement between the numerical solution
and exact solution.

6. Conclusions
In this paper, a numerical method for solving the two-dimensional fractional dispersion
equation has been described and demonstrated. The explicit difference approximation is proved
to be conditionally stable and converges. Furthermore numerical example is presented to show
that good agreement between the numerical solution and exact solution has been noted.
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Table (1) The numerical solution of example by using the explicit finite difference
approximation for Ax = 0.1,Ay = 0.1and Az = 0.0125

03NN~ W —

Numerical Solution | Exact Solution Error
9.730E-4 1.02532 E-3 6.72814 E -2
7.876E-3 8.20252 E-3 3.26521 E -4
0.027 276835 E -2 6.83508 E -4
0.064 6.56202 E -2 1.62017 E -3
9.795E-4 1.05127E -3 717711 E -5
7.759E-3 8.41017E -3 6.51169 E -4
0.027 2.83843 E -2 1.38432 E 3
0.036 6.72814 E -2 3.12814 E -2

Table (2) The numerical solution of example by using the explicit finite difference
approximation for Ax =0.125,Ay=0.125and As = 0.0125

Numerical Solution Exact Solution Error

1.908E-3 2.00257E -3 9.45686 E -5
0.015 1.60205 E -2 1.02055E -3
0.052 5.40693 E -2 2.06935E -3
1.929E-3 2.05326 E-3 1.24264 E -4
0.015 1.64261 E -2 1.42611 E-3
0.036 5.54381 E -2 1.94381 E-2
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